
Static Detection of Event-based Races in Android
Apps

Yongjian Hu
University of California, Riverside

Riverside, California, USA
yhu009@cs.ucr.edu

Iulian Neamtiu
New Jersey Institute of Technology

Newark, New Jersey, USA
ineamtiu@njit.edu

Abstract
Event-based races are the main source of concurrency errors
in Android apps. Prior approaches for scalable detection of
event-based races have been dynamic. Due to their dynamic
nature, these approaches suffer from coverage and false
negative issues. We introduce a precise and scalable static
approach and tool, named SIERRA, for detecting Android
event-based races. SIERRA is centered around a new concept
of “concurrency action” (that reifies threads, events/mes-
sages, system and user actions) and statically-derived order
(happens-before relation) between actions. Establishing ac-
tion order is complicated in Android, and event-based sys-
tems in general, because of externally-orchestrated control
flow, use of callbacks, asynchronous tasks, and ad-hoc syn-
chronization. We introduce several novel approaches that
enable us to infer order relations statically: auto-generated
code models which impose order among lifecycle and GUI
events; a novel context abstraction for event-driven pro-
grams named action-sensitivity; and finally, on-demand path
sensitivity via backward symbolic execution to further rule
out false positives. We have evaluated SIERRA on 194 An-
droid apps. Of these, we chose 20 apps for manual analysis
and comparison with a state-of-the-art dynamic race detec-
tor. Experimental results show that SIERRA is effective and
efficient, typically taking 960 seconds to analyze an app and
revealing 43 potential races. Compared with the dynamic
race detector, SIERRA discovered an average 29.5 true races
with 3.5 false positives, where the dynamic detector only
discovered 4 races (hence missing 25.5 races per app) – this
demonstrates the advantage of a precise static approach. We
believe that our approach opens the way for precise analysis
and static event race detection in other event-driven systems
beyond Android.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173173

CCS Concepts • Theory of computation → Program
analysis; • Software and its engineering→Automated
static analysis; Software reliability;

Keywords Mobile applications; Concurrency; Event-based
race; Happens-before; Static analysis; Google Android

ACM Reference Format:
Yongjian Hu and Iulian Neamtiu. 2018. Static Detection of Event-
based Races in Android Apps. In Proceedings of 2018 Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS’18). ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3173162.3173173

1 Introduction
Android is the dominant software platform for smartphones
and tablets [1]. Ever since the platform’s inception, however,
Android has been plagued by concurrency errors, with con-
currency being one of the top-5 most common bug causes
every year starting in 2008 [34].
Android apps use a concurrent event-driven model and

generally revolve around a GUI. To keep the GUI responsive,
only the main (UI) thread has access to GUI objects. Other,
non-main threads, are used for long-running computation
or I/O tasks, e.g., file download; when the task is finished, it
sends a message to the main thread to perform a GUI update.
Event handlers (callbacks) are written by the developers
while a system component named Android Framework (AF)
orchestrates control flow by invoking these event handlers
in response to GUI actions or hardware notifications. This
event-based model can lead to concurrency errors because
the order in which events are posted is nondeterministic,
e.g., an app with two asynchronous tasks T1 and T2 where
the developer assumes that T1 always executes first, and T2
relies on some initialization performed by T1. However, if
T2 executes first, the result can be a crash or error due to
uninitialized data—this is called an event-based race.

Such errors are pervasive and pernicious: a study of 18,000
fixed bugs in the Android platform and apps has revealed that
66% of the high-severity bugs are due to concurrency [33].
Android concurrency research has shown that the majority
of Android race bugs are event-driven races [7, 19, 23]; per
Maiya et al. [23], in Android apps, event-driven races are
4–7 times more frequent than data races.

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

257

https://doi.org/10.1145/3173162.3173173
https://doi.org/10.1145/3173162.3173173
https://doi.org/10.1145/3173162.3173173

Hence there is a strong impetus for constructing tools that
help find event-driven races in Android apps. To find such
races, several dynamic detectors have been proposed, e.g.,
DroidRacer [23], CAFA [19], and EventRacer Android [7].
However, dynamic detectors have two main issues. First, due
to their dynamic approach, they are prone to false negatives,
i.e., miss actual bugs (in our experiments, EventRacer missed
25.5 out of 29.5 true races on average). Second, their effec-
tiveness hinges on high-quality inputs that can ensure good
coverage [6], as well as efficient ways to explore schedules.
To address these issues, we propose a static approach to

event race detection. Android’s concurrency model makes
static event-based race detection challenging – it is difficult
to establish happens-before relations – for several reasons.
First, unlike traditional (desktop/server) Java applications,
Android apps do not have a main method but rather rely
on callbacks being invoked by the AF. Second, apps consist
of activities (separate screens) that can be navigated back
and forth [6]; further, each activity comprises GUI objects
which can be accessed in relatively unconstrained order [28].
Third, asynchronous/long-running operations (e.g., network
and I/O) are run in separate threads and their results posted
back via messages, in nondeterministic order. Fourth, ad-
hoc synchronization eludes standard control- and data-flow
analyses.

To overcome these challenges, we introduce several novel
approaches. First, we reify Android concurrency primitives
and their processing as context-sensitive actions (event pro-
cessors) that can model threads, messages, lifecycle activi-
ties and GUI events. Second, we use static analysis refine-
ments to significantly improve precision, e.g., automatically-
constructed harnesses to kickstart the static analysis, and a
novel action-sensitive context abstraction for pointer analysis
(Section 3). Third, we introduce Happens-before rules which
order actions, from a harness-based model for lifecycle and
GUI events to inter- and intra-procedural domination; the
result is a Static Happens-before Graph (Section 4). Fourth,
for those actions and memory accesses that have not been
orderable yet, we use symbolic analysis, i.e., goal-directed
(refutation-based) symbolic execution, to see if indeed in-
dependent path conditions allow events to execute in any
order (Section 5).

We have implemented our approach in a tool named SIERRA
(StatIc Event-based Race detectoR for Android). 1 Given an
app, SIERRA analyzes the bytecode (hence the app source
code is not required, and apps can be readily analyzed in the
APK format there are distributed in) and produces a ranked
list of potential races.

Section 6 presents the experimental results. We evaluated
SIERRA on 194 apps, of which 20 were chosen for further
manual analysis. Experiments show that SIERRA is effective,
discovering about 1,223 happens-before edges and 68 racy

1Available at http://spruce.cs.ucr.edu/sierra/

pairs per app. Refutation reduces these substantially, to just
43 race reports per app. SIERRA is efficient: it typically takes
960 seconds to analyze an app, which is acceptable for a static
analysis. For the 20 manually-analyzed apps, we ran Even-
tRacer Android [7], the most advanced dynamic race detector
to date. We found that SIERRA reports 38 potential races on
average, of which 29.5 are true races, whereas EventRacer
Android reports 4 races, missing 25.5 true races. Moreover,
SIERRA can also filter out some false positives reported by
EventRacer.

In summary, our main contributions are:
1. A definition of actions as Android concurrency units.
2. An approach for defining static happens-before rela-

tionships in Android apps.
3. A suite of refinements and precision enablers, based on

static and symbolic analysis, that substantially increase
the precision of ordering.

4. A tool, SIERRA, which implements our approach and
works on off-the-shelf Android apps without requiring
app source code.

5. An evaluation of SIERRA on 194 Android apps.

2 Background and Motivation
We provide a brief background of the Android platform and
the app construction model, then motivate our approach
with two concrete examples of races.

2.1 Android Background
Android platform. The Android software stack consists
of apps running on top of the AF, which orchestrates app
control flow and mediates intra-app and inter-app commu-
nication, as well as the communication between apps and
hardware. Apps are typically written in Java (though certain
parts can be written in C or C++ for efficiency) and compiled
into either Dalvik bytecode that executes on top a Dalvik
virtual machine (Android version < 5.0) or directly to native
code (Android version ≥ 5.0). The Dalvik VM or native code
run on top of an Android-specific Linux kernel.

Android app construction. An app consists of components;
there are four kinds of components: (1) Services, used for
background operations, (2) Content Providers, which man-
age access to data, (3) Activities, i.e., user visible screens,
and (4) Broadcast receivers, used for system or application
events [4].

Activities are the most popular components—apps usually
consist of a suite of Activities. The app transitions among
activities in response to user input, e.g., in the Amazon app,
the “Home” screen is namedMainActivity; when the user clicks
on the “Search” box, the app transitions to a SearchActivity ;
upon selecting from the list of result items, the app tran-
sitions to the SearchListActivity . Within one activity, various
GUI objects are placed in a View hierarchy. Activities follow
a state machine, where the states have associated callbacks

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

258

http://spruce.cs.ucr.edu/sierra/

1 class NewsActivity extends Activity
2 implements onClickListener {
3 RecycleView rv ;
4 NewsAdapter adapter;
5

6 void onCreate() {
7 rv = (RecycleView) findViewById (...) ;
8 adapter = new NewsAdapter(...) ;
9 rvNews.setAdapter(adapter) ;
10 }
11

12 void onClick(View v) {
13 new LoaderTask(adapter).execute () ;
14 }
15 }

16 class LoaderTask extends AsyncTask {
17 final NewsAdapter adapter;
18 LoaderTask(NewsAdapter adapter) {
19 this . adapter = adapter ;
20 }
21

22 void doInBackground() {
23 News[] newslist = download();
24 adapter .add(newslist) ;
25 }
26

27 void onPostExecute(News news) {
28 adapter .notifyDataSetChanged();
29 }
30 }

ad
ap

te
r.a

dd
(n

ew
sl

is
t)

Main
Thread

Background
Thread

onClick

adapter.notifyDataS
etChanged()

scroll

onPostExecute

LoaderTask.execute()

getViewForPosition()
validateForPosition()

Figure 1. Intra-component race.

that can be filled out by the programmer, e.g., upon activity
creation, the onCreate() method is called, upon destruction the
onDestroy() callback is invoked, while in-between the activity
can cycle between visible and invisible states that have asso-
ciated onStop()/onRestart () callbacks. GUI objects, e.g., menus,
buttons, have callbacks as well. The AF automatically in-
vokes callbacks in response to user input (e.g., click ‘Back’)
or hardware events.
While components are strongly isolated — e.g., the only

way for one Activity to share information with another ac-
tivity is through message passing (called Intents) — inter-
component races are possible (Section 2.3).

Threads. Android has three kinds of threads: looper, back-
ground, and binder. Looper threads have an associated Looper

object that implementsmessage processing: the thread blocks
waiting for messages and when a message comes, it is pro-
cessed atomically; the importance of this looper atomicity
guarantee will become clear later on (Section 4.3 §6). Each
Android app has a “main” thread, also known as the UI thread,
responsible for updating the GUI (GUI objects are only ac-
cessible to this thread); the main thread is a looper thread.
Background threads are akin to traditional threads, created
via fork () . Binder threads are used in thread pools to process
inter-process communication. Apps typically perform actual
work in background threads, which notify the main thread
when a GUI update is needed, by posting a message to the
main thread’s processing queue.

2.2 Intra-component Race
Figure 1 shows an actual, harmful, event-based race in theAn-
droid platform (AOSP)2 – more precisely, an intra-component
race, as it happenswithin one activity. TheNewsActivity, shown
on the left, has a RecycleView to display the news items. RecycleView
is an advanced widget, designed to display large data sets

2https://code.google.com/p/android/issues/detail?id=77846

that can be scrolled very efficiently by maintaining a lim-
ited number of views. In NewsActivity’s onCreate method, the
RecycleView is initialized and the corresponding adapter is
set (lines 7–9). The activity registers an onClickListener that
creates a LoaderTask (a subclass of AsyncTask) to update the
news list; this is shown in the center of the figure. The
time-consuming download operation is in the doInBackground

method which runs in a separate thread. This practice is
strongly suggested in Android to make the app more re-
sponsive. When the AsyncTask is done, it posts an onPostExecute

callback to the main thread and notifies the adapter to refresh
the RecycleView with the latest data.

The race manifests when the user scrolls the view before
downloading has finished — a runtime exception will then
crash the app. This exception occurs only in the specific event
schedule (as shown in Figure 1 on the right) where the onScroll

callback is executed before onPostExecute on the main thread,
and the adapter’s internal data is just updated in the back-
ground thread. The root cause of the bug is that when the
user scrolls down, the RecycleView will decide which view to
show according to the last-scrolled position. If the view posi-
tion does not match the previously-cached result because the
adapter has not had a chance to execute notifyDataSetChanged

to update the cache, the exception is thrown. The fix for this
bug is to invoke notifyDataSetChanged right after the adapter’s
add method, or move the add method to the onPostExecute call-
back in AsyncTask. Note that this race bug is very hard to
reproduce using dynamic analysis as it manifests only in
specific schedules.

2.3 Inter-component Race
The previous example has shown a harmful race within one
Android component (Activity). In Figure 2, we show an inter-
component “Activity vs Broadcast Receiver” race that occurs
across Android components. In the onCreate callback of the
MainActivity, a DataBase object is created and a Broadcast Receiver

is registered. Accordingly, the receiver is unregistered and

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

259

https://code.google.com/p/android/issues/detail?id=77846

1 class MainActivity {
2 DataBase mDB;
3 BroadcastReceiver recv = new

BroadcastReceiver() {
4 void onReceive(Context ctx ,

Intent i) {
5 Bundle b = i . getExtras () ;
6 mDB.update(b);
7 }
8 }
9

10 void onCreate (...) {
11 mDB = new DataBase();
12 registerReceiver (recv , ...) ;
13 }

14 void onStart () {
15 mDB.open();
16 }
17

18 void onStop() {
19 mDB.close() ;
20 }
21

22 void onDestroy() {
23 unregisterReceiver (recv

) ;
24 mDB = null;
25 }
26 }

Figure 2. Inter-component race.

the DataBase object is freed in the onDestroy callback where
the activity is no longer usable. The program opens the data-
base in the onStart method when the activity is becoming
visible to the user, and closes it in onStop when it is no longer
visible — the rationale is, the app should consume fewer
resources when the activity is pushed into the background.
The Broadcast Receiver is designed to be invoked from the back-
ground service when new data is available and communicate
with the foreground activity to update the data.

The event-based race occurs if the broadcast message is
delivered at the time when the activity is pushed into the
background. Since the database is closed in the onStop call-
back, an update operation at this time in the onReceive callback
would cause exceptions. There are multiple solutions to fix
this event race bug. For example, registering and unregister-
ing the broadcast receiver during onStart and onStop, or adding
a flag to indicate the status of the activity and checking it
before database updates. Again, this race requires a specific
event ordering and is likely to be missed by dynamic analysis
if that specific schedule order is not exercised.

3 Approach
In this section, we first describe SIERRA’s architecture (Sec-
tion 3.1) and harness generation (Section 3.2). Section 3.3
describes action sensitivity, a novel approach that enables
precise static analysis for event-driven programs.

3.1 Architecture
Figure 3 shows the architecture of SIERRA. First, we lever-
age DroidEL [10], a static AF modeling tool, to handle view
inflation and reflection. The AF relies on reflection to load
the APK. For example, the GUI layouts, written in XML, are
accessed via the findViewById(int id) API to access the specific
view. However, static analysis cannot resolve such objects
created via reflection. DroidEL can resolve these objects and
creates bindings between layout structure and view objects.

The models generated by DroidEL are then integrated into
our harness generator (described later) that will drive the
analysis.

Second, we leverageWALA [22] to performwhole-program
(application and framework) analysis. WALA is a mature,
industrial-level program analysis tool for object-oriented lan-
guages like Java. It provides versatile features for program
analysis such as pointer analysis, call graph generation and
control/data flow analysis. Selecting the appropriate con-
text in pointer analysis is key to achieving scalability and
precision. Prior research has shown that a mix of object sen-
sitivity and call-site sensitivity is an effective abstraction for
object-oriented languages. However, in event-driven systems
like Android, neither object sensitivity nor call-site sensitiv-
ity is precise enough due to over-approximation (merging)
when the context length exceeds the threshold k. SIERRA
introduces a novel abstraction called action sensitivity which
adds action as part of the context abstraction, and combines
object sensitivity and call-site sensitivity within an action
(Section 3.3).

Different action execution orders on the looper thread
lead to a non-deterministic schedule; an event-based race
can manifest if two actions access the same memory, and
at least one access is a write. However, naively considering
that each pair of memory actions is a potential race will
produce an overwhelming number of false positives. SIERRA
defines a set of static happens-before rules between actions
to rule out infeasible racy action pairs, e.g., onCreate always
happens-before onDestroy (only actions that do not have strict
happens-before relation could be involved in races). This
stage, described in Section 4.3, yields a Static Happens-before
Graph (SHBG).
Next, SIERRA generates candidate races by intersecting

the points-to sets between actions that are not ordered by
happens-before. However, these pairs (named racy pairs) are
not necessarily races since in asynchronous programming
ad-hoc synchronizations are widespread. So, in the next step,
we attempt to refute (rule out) false positives by a path-
sensitive, backward symbolic execution; for this we extended
the Thresher tool [8] to verify path feasibility between two
actions (Section 5).

Race prioritization. Finally, to help developers fix likely-
harmful races, SIERRA prioritizes race reports using several
heuristics: 1) races in application code have higher priority
than those in framework code; 2) framework races directly
invoked from app code have higher priority than those in-
voked from the library; 3) races involved in pointer reference
reads/writes are more likely to be dangerous as they can
result in NullPointerException .

3.2 Harness Creation
We now describe SIERRA’s automatic harness creation ap-
proach. As SIERRA performs whole-program analysis, we
need to find the app’s entrypoints. While in traditional Java

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

260

App	

App	
harness	

Harness	
Generator	DroidEL	

Ac4on	Sensi4ve	
Context	Selector	

Call	graph	
builder	

Pointer	
Analysis	

Sta4c	HB	
Graph	

Race	
Reports	

Race	<rw1,rw1’>	

Race	<rw2,rw2’>	

.	.	.		

Path/Context	
Sensi4vity	
Refuta4on	Race	

Priori4za4on	WALA	 THRESHER	

Figure 3. Overview of SIERRA.

Action Creation (SHBG node) Happens-before introduction (SHBG edge)
Thread

Asynchronous thread new AsyncTask AsyncTask.execute ()

Background thread new Thread Thread. start ()

Runnable new <...> implements Runnable Executor . execute ()

Message Message.obtain() sendMessage∗(Message msg)/post ∗(Runnable r)
Execution: Runnable.run()

Lifecycle event onCreate(), onDestroy() According to the activity lifecycle, e.g.,
onStart () , onStop(), onRestart () onCreate→ <created,onStart>

onPause(), onResume() onStop→ <stopped,onStart>

GUI event onClick ∗() According to the GUI model, e.g., onClick1→ onClick2

System event BroadcastReceiver .onReceive() registerReceiver

onServiceConnected bindService

onServiceDisconnected startService

Table 1. Actions and HB introduction.

1 class Harness {
2 public static void main() {
3 NewsActivity a = new NewsActivity();
4 a.onCreate() ;
5 a. onStart () ;
6 a.onResume();
7 while (∗) {
8 switch(∗) {
9 case 1: a . invokeOnClick() ; break;
10 case 2: a . invokeOnScroll () ; break;
11
12 }
13 }
14 a.onPause() ;
15 a.onStop() ;
16 a.onDestroy() ;
17 } }

Figure 4. Harness example.

programs wewould start atmain(), Android apps have nomain.
Rather, in Android, app control flow is orchestrated by the
AF, which invokes lifecycle callbacks, such as onCreate when
the app is created, or onDestroy when the app is destroyed.
Besides these lifecycle callbacks, an app can implement view

event handlers (e.g., onClick and onScroll) that can be regis-
tered either statically in the layout XML or dynamically in
code. Figure 4 illustrates a harness generated for the example
in Figure 1.

First, we create a Harness activity with amainmethod which
serves as the entrypoint. Second, we instantiate theNewsActivity
and invoke its Activity lifecycle callbacks (lines 4–6 and 14–
16). Third, starting from these lifecycle callbacks, a call graph
is built by WALA to compute the reachable methods. Within
the reachable methods, the analysis might discover new call-
backs. For example, an onClickListener may be created and
registered via setOnClickListener . At this time, the harness gen-
erator creates synthetic invocation sites (lines 9–11) and
builds the call graph again. This process iterates until a fix-
point is reached, i.e., no new callbacks found. Finally, the
callbacks registered in XML files are added to the harness
since they are unique.We borrow FlowDroid [5]’s predefined
callback list to find callbacks.

3.3 Action Sensitivity
Context sensitivity plays a key role for scalability and preci-
sion in static analysis. Two main kinds of context sensitivity
have been proposed for object-oriented languages: object-
sensitivity (k-obj) [24] and call-site-sensitivity (k-cfa) [30].

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

261

Prior research [25, 31] has shown that object-sensitivity
increases precision; however, we have found that it is still
not precise enough for our Android setting. K-obj sensitivity
merges the last k object allocation sites, thus precision is
lost for contexts longer than k . The same loss occurs for
k-cfa sensitivity which merges the last k call sites. Incorrect
aliasing may occur when two different actions call a method
foo () which contains j call sites to method bar () and allocates
an object. If j > k , both k-obj and k-cfa fail to distinguish
that the objects are allocated in two different actions and
incorrectly consider them as aliased because their last k
allocation sites (or k call sites, respectively) are the same.
While precision could be improved by increasing the value of
k , this greatly decreases performance, as analysis complexity
is exponential in k .
Based on the insight that objects should be associated

with their corresponding actions, SIERRA introduces a new
context abstraction named action-sensitivity which greatly
improves precision. When building the call graph for an ac-
tion, we add the action’s id as part of its context, and leverage
hybrid-context-sensitivity which consists of object-sensitivity
and call-site-sensitivity. More specifically, the hybrid-context-
sensitivity uses k-obj for normal dispatch calls and k-cfa for
static invocations within one action. Each object’s abstract
context has the action id where this object is allocated in. In
the previous foo () example, the objects created by foo () have
different action ids in their contexts, and are not aliased (con-
flated) anymore. Note that, although within one action the
objects may still lose precision due to last k merges, across
actions objects are still separate. Since SIERRA focuses on
analyzing objects accessed by different actions, we find that
action-sensitivity is particularly useful for our race detec-
tion. While action-sensitivity is effective at distinguishing
abstract objects, a class of objects named “views” need to be
handled specially, as explained next.

Inflated view context. Apps can define views using layout
XML files, and then inflate the views at runtime. Android pro-
vides the findViewById(int id) API to access the inflated view,
given the constant view id; findViewById can be invoked in dif-
ferent actions, but the object is aliased when using the same
id. SIERRA uses a special context named InflatedViewContext
that contains view ids and their type. During APK parsing,
for each view defined in the layout, SIERRA saves its view id

into a map. When findViewById(id) is called, SIERRA uses this
constant id to retrieve the view object from the map; two
inflated view objects are considered aliased when they have
the same ids.

4 Happens-before Relationship
Prior event-driven race detectors for Android have defined
dynamic happens-before rules [7, 19, 23]. Those definitions
do not easily translate here, as our approach is static and
uses symbolic path condition information, hence we define

our own static happens-before (HB) rules. HB orders actions,
described shortly, and the order relations are captured in a
Static Happens-Before Graph (SHBG).

4.1 Definitions
We first define the concepts and notations used in our ap-
proach. We use A, B, A1, etc. as action names. The happens-
before relation, denoted A ≺ B, indicates that we can stati-
cally prove that action A is completed before action B starts.

Races.We define races as unordered memory accesses, at
least one of which is a write. Our points-to sets map variables
x to memory locations ρ, i.e., π (x) = ρ. Memory accesses α
are ⟨x ,τ ,A⟩ bundles, indicating that variable x is accessed
using access type τ (read orwrite) in action A.
Racy pairs. We define racy pairs as follows: accesses α1

and α2 form a racy pair if they come from different actions
A1 and A2, operate on at least one shared location (i.e., their
points-to sets’ intersection is non-empty, π (α1.x)∩π (α1.x) ,
∅) and at least one of the accesses α1.τ or α2.τ is a write.
Race-finding strategy. Our approach proceeds by con-

structing an HB graph, then finding all candidate racy pairs,
and finally using symbolic analysis to refute those racy pairs
that are actually ordered.

4.2 Actions: SHBG Nodes
Actions are the building blocks of our approach. An action
represents context-sensitive event handling. Table 1 shows
how HB nodes and edges are identified, so they can be added
to the SHBG. When the analysis reaches an action creation
(column 2) it creates the appropriate HB node, as described
next.
There are four classes of actions. Threads can be created

as asynchronous tasks, background threads, or runnables.
Messages: in Android, messages are sent using either the send∗

or post∗ API; in either case, the message has an associated
Runnable which will execute in the recipient thread. Lifecy-
cle events: Android activities are controlled by the Android
Framework and have a well-defined lifecycle, described as
activity states, which form HB nodes, while activity state
transitions form HB edges (Section 4.3 §2). GUI events: our
harness is a GUI model where GUI callbacks are HB nodes,
while the GUI callback order introducesHB edges (Section 4.3
§3).

4.3 HB Rules: SHBG Edges
We now define the HB rules, i.e., rules for adding edges
between actions in the SHBG.

1. Action invocation rule: when an action is invoked,
the sender action happens before the recipient. For example,
as is standard in race detection, we add an HB edge between
the action in which a thread is created and the new action
(that thread’s body). Similarly, we add an HB edge from the
message sender’s action to the message’s Runnable.

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

262

onCreate()

Created

Started

Resumed

Paused

Stopped

onStart() “1”

onResume() “1” onResume() “2” onPause()

onStop() onStart() “2”

onRestart()

onDestroy()

[onPause] onStop ≺ [onRestart] onStart “2”

[onCreate] onStart “1” ≺ [onPause] onStop

[onResume] onPause ≺
[onPause] onResume “2”

[onStart] onResume “1” ≺
[onResume] onPause

Figure 5. HB edges among Activity lifecycle callbacks
(dashed red arrows) induced by CFG dominance in our har-
ness model. Black edges represent control flow.

2. Android component lifecycle rule: in Android, ac-
tivities follow a lifecycle described as a state machine where
state transitions invoke callbacks [3]. The Android Frame-
work will invoke these callbacks in predefined order, e.g.,
upon activity creation, onCreate is invoked first, then onStart,
then onResume.3 Our key insight is to use (pre) dominator
information to distinguish between different instances of
callbacks that appear in cycles so we can order them.
We illustrate this rule in Figure 5 on the actual Android

activity lifecycle. According to the lifecycle rules, onCreate
is the first method to be invoked after an Activity has been
created, while onDestroy is the last method to be invoked
before the Activity is disposed of. However, in the call graph,
all these callbacks are disconnected. The harness, described
in Section 3.2, mirrors the Activity lifecycle and invokes the
callbacks in the required order. In the harness, as onCreate

dominates any other node, we know that any shared memory
access in onCreatewill precede accesses in subsequent actions,
e.g., onStart, hence we can add an HB edge onCreate→ onStart.

We now show howwe deal with cycles. As seen in Figure 5,
onResume/onPause and onStart/onStop form cycles. At first sight,
these callbacks do not appear orderable by HB. For example,
since onResume is invoked after either Started or Resumed
states, onResume appears not to be orderable with onPause —
onPause can come either before or after onResume.
Our insight is that we can distinguish between the two

onResume’s if we take into account dominator information.

3While this lifecycle state machine has been unchanged since Android’s
inception, it would be trivial to change our model to accommodate poten-
tial future changes in the state machine, should they occur in subsequent
Android versions.

onResume()

onPause()

*

join

onClick1()

onClick2()

onClick3()

while()

onClick2 ≺
onClick3

Figure 6. HB edges (dashed red arrows) induced by CFG
dominance in our GUI model, e.g., onResume→ onClick1, or
onClick2→ onClick3. Black edges represent control flow.

For simplicity let us name onResume 1 ' ' the callback pre-
dominated by onStart and onResume 2 ' ' the callback pre-dominated
by onPause. Now it can be easily seen that

onResume 1 ' ' ≺ onPause,
and

onPause ≺ onResume 2' ' ,
hence the previously-unorderable callbacks can actually be
ordered. Similarly, we have:

onStart 1 ' ' ≺ onStop

onStop ≺ onStart 2 ' ' .
3. GUI layout/object order: similar to the Android life-

cycle, the GUI layout captured by the harness (Section 3.2) is
used as a basis for HB. We illustrate this rule in Figure 6 on a
simplified GUI layout, where an app cycles and nondetermin-
istically chooses between onClick1 () or onClick2 (); onClick3 () .
Since onResume pre-dominates onClick1 we have:

onResume ≺ onClick1

onResume ≺ onClick2

onClick2 ≺ onClick3.
4. Intra-procedural domination.Assume that amethod

M in activity A has two outgoing calls e1 and e2 that post ac-
tionsA1 andA2, respectively. If e1 dominates e2 thenA1 ≺ A2;
this is intuitive because e1 will always be invoked before e2
and by the time e2 executes (and gets a chance to post A2),
A1 has already been posted, so A2 can only be posted after
A1.

5. Inter-procedural, intra-action domination. This is
similar to rule 4, but the difference is that e1 and e2 can be
in two separate methods M1 and M2 of the same activity
A. Note that e1 cannot straight-up dominate e2 because e2
might be invoked from a context that does not involve e1.
We leverage WALA’s interprocedural CFG (ICFG) to address
this issue as follows: we remove e1 from the ICFG and check

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

263

A1

A2

A3

A4

A1

A2

A3

A4

Lo
op

er

ex
ec

ut
io

n

A1

A3

A2

A4

po
st

po
st

Lo
op

er

ex
ec

ut
io

n

po
st

H
B

H

B

H
B

po
st

(a)

(b) (c)

A3≺A4
A3≺A4

Figure 7. Adding intra-action transitive HB edges: (a) is the
action order, while (b) and (c) are possible schedules.

whether e2 is still reachable; if it is not reachable, then de
facto e1 dominates e2 and we add A1 ≺ A2. If, on the other
hand, e2 is still reachable when e1 is absent, we do not add
any HB edges.

6. Inter-action transitivity: If A1 ≺ A2, A1 posts an ac-
tion A3, and A2 posts an action A4, then A3 ≺ A4. Figure 7
illustrates this. On top (Figure 7 (a)) we show the order re-
lation. On the bottom we show the two possible execution
schedules for this order. A1 executes first, and during its exe-
cution, it posts A3. Importantly, by the time A1 finishes, A3
is already posted. We have two cases: Figure 7(b) when A3
executes before A2 does, hence A3 ≺ A4 because A4 has not
even been posted when A2 finishes; and Figure 7(c) when A2
executes first, but because A3 has already been posted when
A2 starts executing, A4 can only be posted after A3 hence
A3 ≺ A4. We can infer these orderings thanks to the looper
atomicity guarantee.

7. Transitivity: HB is transitive, i.e.,
A1 ≺ A2 ∧A2 ≺ A3 =⇒ A1 ≺ A3

We repeatedly invoke transitive closure together with rule
6, as rule 6 can discover new HB edges in ways other than
control- or data- flow (which rules 1–5 are limited to).
Note that after applying these HB rules we still have an

under-approximation of all HB relations (hence over-approximating
actual races), that is, some accesses might be ordered but
SIERRA does not know that at this stage, potentially making

1 Timer.Runnable runner = {
2 void run() { // action A
3 if (mIsRunning) {
4 mAccumTime=... // αA
5 if (∗) {
6 ...
7 postDelayed(runner ,...) ;
8 }
9 else
10 mIsRunning=false; }
11 }}

12 void stop () { // action B
13 if (mIsRunning) {
14 mIsRunning = false ;
15 mAccumTime=... // αB
16 }
17 }

Figure 8. Refutation helps eliminate this false positive in
the OpenSudoku app.

them false positives. We now describe how we further intro-
duce ordering to refine our HB relations hence reduce false
positives.

4.4 Accesses and Races
Handlers and threads. A thread can register a Looper ob-
ject to receive asynchronous messages. Each Looper object is
associated with one thread and each thread can register at
most one Looper. In Handler’s constructor, a Looper object must
be specified so that the messages sent via this Handler will be
delivered to the corresponding thread. Two actions are con-
sidered to be potentially racy, iff the corresponding Handler

objects refer to the same Looper. SIERRA pre-processes all the
creation sites of Loopers and Handlers to learn which thread
is associated with the Handler by traversing the call graph
from the entry of each thread and performing an in-thread
reachability analysis.

Ruling out ordered accesses. Racy pairs (e.g., accesses αA
and αB in actions A and B, respectively) form the starting
point for detecting races—these accesses are candidate races
unless we can refute that assumption, i.e., prove that αA and
αB are ordered (we do so via symbolic execution, described
next).

5 Symbolic Execution-based Refutation
A candidate race, e.g., accesses αA and αB in two unordered
actions A and B, is not necessarily a true positive since ac-
cesses could be protected by ad-hoc synchronization [27];
such synchronization idioms are prevalent in event-based
systems to protect the event handler from executing unsafe
paths.

Example. We show how SIERRA refutes a candidate race
in the OpenSudoku app (Figure 8). The run method on the
left is from a Runnable object that is posted from the onResume

callback. The stop method on the right is invoked from the
onPause callback to stop the Runnable object.

These two actions do not have an HB edge and they both
write to a shared field mAccumTime (lines 4 and 15). SIERRA
starts by considering both orderings possible. Let us assume

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

264

that action B occurs before action A. SIERRA performs back-
ward symbolic analysis starting from αA (line 4 in action
A). When the analysis reaches the if conditional on line 3,
it adds a path constraint {mIsRunning = true}, i.e., a precondi-
tion to reach αA. The backward analysis continues until
reaching the boundary of the run method and proceeds (as-
suming there are no conflicting constraints). Then SIERRA
traces the path back to the exit block of the stop method in
action B, and continues backward. When the path reaches
line 12, SIERRA chooses to enter the block guarded by line 13
because the guard condition is consistent with the path con-
straint {mIsRunning = true}. Finally, a conflicting constraint is
found when the path reaches line 14 which performs a strong
update to mIsRunning. This strong update means the path con-
straint after this statement must be mIsRunning = false, which
conflicts with our current path constraints. After searching
all the possible paths, SIERRA cannot find a feasible way to
witness the backward path from αA to αB , thus the candidate
race is refuted.

The backward analysis framework is based on Thresher [8],
which we adapted to fit our event-based race detection sce-
nario. Thresher is designed to perform precise heap refu-
tation by traversing all the paths related to the candidate
query back to the program’s entrypoint. SIERRA changes the
refutation process to be witnessing a feasible path between a
source and a sink. The candidate race is a true positive, iff in
both orderings of actions A and B, there does exist a feasible
path from αA to αB , and vice versa.

On-demand constant propagation. When the action is
Handler.handleMessage(Message m), program behavior depends
on the values of Message’s fields, e.g., the what field is an inte-
ger indicating the type of the message. To increase precision,
we introduce constraints to check if any of these fields are
constant integers and used as guard conditions. SIERRA does
on-demand constant propagation from the creation site of
the action (i.e., handler . sendMessage) and checks if any of the
message’s fields are constant. If yes, the constraints are added
to the query of the backward symbolic executor.

Caching. Refutation’s running time varies depending on
app complexity. A refutation could be terminated by the
executor if the system runs out of memory or exceeds the
maximum number of paths (we set this to 5,000 paths in
SIERRA). In either case, SIERRA reports the race, though it
might be a false positive. To prevent redundant computation,
SIERRA memoizes (caches) the call graph nodes visited in a
refuted query. Later queries first check the cache. If the cur-
rent node in a path exists in the cache, then the query stops
immediately as the path is infeasible. This caching mecha-
nism is particularly useful where many race candidates are
within the same call graph node or dominated by that node
in a refuted query.

App Installs Bytecode
size (KB)

APV 500,000–1,000,000 736
Astrid 100,000–500,000 5,400
Barcode Scanner 100,000,000–500,000,000 808
Beem 50,000–100,000 1,700
ConnectBot 1,000,000–5,000,000 700
FBReader 10,000,000–50,000,000 1,013
K-9 Mail 5,000,000–10,000,000 2,800
KeePassDroid 1,000,000–5,000,000 489
Mileage 500,000–1,000,000 641
MyTracks 500,000–1,000,000 5,300
NPR News 1,000,000–5,000,000 1,500
NotePad 10,000,000–50,000,000 228
OpenManager N/A 77
OpenSudoku 1,000,000–5,000,000 170
SipDroid 1,000,000–5,000,000 539
SuperGenPass 10,000–50,000 137
TippyTipper 100,000–500,000 79
VLC 100,000,000–500,000,000 1,100
VuDroid 100,000–500,000 63
XBMC remote 100,000–500,000 1,100

Table 2. App popularity and size for the 20-app dataset.

6 Evaluation
We have evaluated SIERRA in terms of effectiveness, i.e., how
many potential races it can find, and efficiency, i.e., how long
it takes to analyze an app.

App datasets. We chose apps from various categories (news
apps, video players, email clients, etc.) and of various sizes.
First, we reuse Gator [28]’s benchmark which contains 20
apps as listed in Table 2. We chose this dataset because all
the apps are open-source so that we can manually check
SIERRA’s correctness. The center column of Table 2 shows
app popularity, retrieved from Google Play in August 2017.
As we can see, 17 of these apps have in excess of 100,000
installs; the number of installs was not available for Open
Manager as it was retrieved from the alternative F-Droid
market. The right column of Table 2 shows the bytecode size
(.dex) for each app; this ranges between 63 KB and 5.4 MB.
The experimental results on these 20 apps are discussed in
Sections 6.1– 6.5.

Next, we chose an additional 174 apps with a median size
of 1.1MB from F-droid [2] (an online open source reposi-
tory for Android) for automatic testing. These results are
discussed in Section 6.6.

Experimental setup. We ran our experiments on an 8-core
hyper-threaded (hence 16 threads) Intel Xeon E5-2687W
CPU 3.4GHz, with 64GB memory. The server was running
Ubuntu 14.04.1 LTS. We use DroidEL as a pre-processor to
handle reflection and extract app layout, and automatically

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

265

App Harne- Actions HB Ordered Racy Pairs Racy Pairs After Manual Inspection EventRacer
sses Edges (%) w/o AS with AS refutation True Races FP App Races

APV 4 84 1,648 47 75 25 10 8 2 3
Astrid 6 147 2,755 26 319 83 54 37 17 -
Barcode Scanner 9 136 2,756 30 64 24 15 11 4 7
Beem 12 169 3,724 26 467 73 13 10 0 0
ConnectBot 11 171 4,829 33 567 96 58 43 15 16
FBReader 27 259 4,710 14 836 285 106 93 13 5
K-9 Mail 29 312 5,725 12 1,347 370 89 72 17 1
KeePassDroid 15 216 4,076 18 266 61 27 16 1 0
Mileage 50 331 8,498 16 496 195 36 33 3 1
MyTracks 8 198 6,826 35 634 174 80 75 5 34
NPR News 13 490 10,673 9 607 132 21 21 0 3
NotePad 9 72 609 24 436 65 31 27 4 9
OpenManager 6 92 1,036 25 532 113 55 51 4 5
OpenSudoku 10 141 1,425 14 426 158 110 83 27 72
SipDroid 11 206 2,386 11 321 94 27 17 10 -
SuperGenPass 2 43 343 38 82 16 6 6 0 3
TippyTipper 5 100 1,864 38 93 21 9 7 2 1
VLC 13 151 2,349 20 202 78 35 32 3 0
VuDroid 3 45 150 15 62 27 10 10 0 5
XBMC 13 330 4,218 8 445 137 63 48 15 17
Median 10.5 160 2,755 22 431 80.5 33 29.5 8.5 4

Table 3. SIERRA effectiveness on the 20-app dataset.

create harnesses via our harness generator. WALA has pro-
vided points-to information and call graph construction. The
action-sensitive context selector is implemented as a WALA
plugin. SIERRA modifies Thresher to run goal-directed path-
sensitive race refutation. Thresher in turn uses the Z3 SMT
solver [14].

6.1 Effectiveness
We present the results in Table 3. Per Section 3.2, SIERRA
creates a harness method for each app activity which serves
as the entrypoint of the static analysis (on average 10.5 har-
nesses per app). Next, we show the number of actions, i.e.,
SHBG nodes. The number sums all the actions found in
each harness—typically about 160 actions per app. Column
4 shows the total number of HB edges found by SIERRA, and
column 5 shows the fraction of HB edges compared with
the total number of edges (e.g., if the app has N actions, and
all actions are in a happens-before relation, the transitively-
closed graph would have N ∗(N−1)

2 edges); the higher this
percentage, the less work later stages have to do at refuting
potential races, and the lower the chance of false positives.
Note how SIERRA manages to find 22% of the theoretically
maximum number of edges.
Columns 6 and 7 show the number of racy pairs without

and with action-sensitive contexts. The results demonstrate
the effectiveness of action sensitivity, as action-sensitive
contexts reduce racy pairs by a factor of 5, from 431 to 80.5,
which then greatly reduce the number of races to be refuted

by the backward symbolic executor. After refutation (column
8) the median number of races is reduced substantially, to
just 33, which we believe is very effective for developers.
Section 6.4 compares SIERRA’s results with EventRacer’s (last
column).

We have manually inspected the races reported by SIERRA
and classify them into true races (median = 29.5) and false
positives (median = 8.5) in columns 8 and 9. Section 6.5
contains a detailed analysis of true/false positives.

6.2 Efficiency
Table 4 shows the results of efficiency experiments. For each
app, we show the time, in seconds, it took to run each analy-
sis stage. The front-end analysis with WALA typically takes
1,310 seconds per app (CG column). SHBG construction took
28.5 seconds which is quite efficient. Unsurprisingly, refu-
tation takes about 560.5 seconds per app due to symbolic
execution. In total, SIERRA takes about 1,899 seconds per app,
which is acceptable for a static analysis.

6.3 Harmful Race Example
The NPR News app contains a harmful event race that may
result in incorrect view states – such a race is hard to detect
dynamically. The NewsListActivity contains a ListView to show
the news list. When new data must be loaded, the app creates
background threads, via ImageLoaderTask, to load a list of news
items – each item bundles images and text from a certain
URL. Similar with the example in Section 2.2, the program

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

266

App CG+PA HBG Refutation Total
APV 182 18 83 283
Astrid 325 24 938 1,287
Barcode Scanner 173 29 247 449
Beem 397 36 1,664 2,097
ConnectBot 241 54 2,128 2,423
FBReader 1,058 85 1,687 2,830
K-9 Mail 2,936 113 2,759 5,808
KeePassDroid 136 33 288 457
Mileage 1,927 41 3,361 5,329
MyTracks 2,711 52 2,170 4,933
NPR News 562 46 1,546 2,153
NotePad 148 78 702 928
OpenManager 275 53 715 1,043
OpenSudoku 253 36 612 901
SipDroid 278 71 488 837
SuperGenPass 87 16 419 522
Tippytipper 133 32 285 450
VLC 738 30 793 1,561
VuDroid 67 29 405 501
XBMC 2,438 39 1,038 3,515
Median 1,310 28.5 560.5 1,899

Table 4. SIERRA efficiency on the 20-app dataset: running
time for each stage and total, in seconds.

does not take scroll events into consideration. If a scroll event
occurs before the background ImageLoaderTask posts back data,
the ListView will create another ImageLoaderTask to load the
new image. If the new image comes before the old one, the
old image will replace the new one hence displaying the
incorrect image to the user. Triggering this race requires a
specific event order – this order can easily elude dynamic
race detectors. There are multiple ways to fix this bug. The
key is to associate the background ImageLoaderTask with the
URL for each news item. If the downloaded image does not
match the item’s URL, then the image should not update the
view.

6.4 Comparison with Dynamic Race Detection
We also ran EventRacer Android [7], the most advanced dy-
namic race detector to date, on our test apps. We show the
dynamic detection results in the last column of Table 3. Out
of the 20 apps, we could not run EventRacer Android on
Astrid and SipDroid. We then considered the high priority
races that occur in app code. After analyzing the 182 races
reported by EventRacer Android in 18 apps, we found that
102 of them are false positives because they are protected by
guard conditions. EventRacer Android uses a concept called
“Race coverage” to filter ad-hoc sychronization races, but it
only reasons about primitive type variables. Most of the 102
false positive races are protected by pointer checking condi-
tion (e.g., var != NULL or var == NULL). SIERRA can successfully
filter out these false positives because it uses combined path

and points-to queries. For such cases, SIERRA has the ability
to provide more accurate results than EventRacer.
There were also 15 races reported by EventRacer that

SIERRA did not report because they could be ruled out; the
races fall into two categories. First, EventRacer considers
that UI actions can occur after Activity lifecycle callbacks
(e.g., onClick after onStop). However, SIERRA rules this out be-
cause when an Android Activity goes to an invisible state
(i.e., is stopped), an UI callback cannot be executed. Second,
EventRacer considers UI and UI action as racy, but SIERRA
can order UI events (Section 4.3). The remaining races missed
by EventRacer are in actions the dynamic detector does not
cover. This demonstrates the advantage of a precise static
approach compared with a dynamic approach.
Dynamic approaches, on the other hand, can verify the

side effects of the alternative action schedules and distinguish
between benign and harmful races. For example our prior
work [21] has found that only 3% of the reported races are ac-
tually harmful. Static and dynamic race detection could also
be combined: the static approach can find over-approximate
candidate races which the dynamic approach (e.g., determin-
istic replay [20]) can them verify.

6.5 Discussion
False positives. Thanks to action-sensitivity, SHBG and sym-
bolic execution, SIERRA is able to filter a great amount of
false positives. However, we found some cases where false
positives may happen. For example, in OpenManager, SIERRA
reports a race as follows: both onCreate and onClick create a
thread that fetches some data from disk and posts callbacks to
update the ListView items. SIERRA considers thread callbacks
as non-deterministic. But there is an implicit dependency in
the app: onClick can only be triggered after the ListView is filled
with data by the thread from onCreate. Such implicit dependen-
cies are beyond the current capabilities of SIERRA. Another
type of false positives comes from over-approximate merg-
ing in arrays or containers. SIERRA uses index-insensitive
analysis to handle instances stored into an array or list. This
could be improved by an index-sensitive analysis [15], a task
we leave to future work. Finally, a symbolic executor timeout
may also produce false positives – if we cannot refute within
the time budget, we report a potential race (in line with our
approach to over-approximate actual races).

Benign races. Symbolic execution is instrumental in filter-
ing out the vast majority of candidate races. The reported
races are true positives because SIERRA witnesses a feasible
path. However, a true race does not mean it is harmful. Actu-
ally, the majority of the true races are due to guard variables
in the control flow graph. For example, in Figure 8, SIERRA
reports a true race of reading mIsRunning on line 3 of action A
and writing it on line 14 of action B. Note that mIsRunning is a
guard variable to protect mAccumTime from incorrect access. If
actionA happens first, the read value is true in actionA, and

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

267

Effectiveness Efficiency (time in seconds)
App Bytecode Harnesses Actions HB Ordered Racy After CG HBG Refutation Total

size (KB) edges (%) pairs refutation
Median 1,114 4.5 67.5 1,223 17.3 68 43.5 139 27 648 960

Table 5. SIERRA effectiveness and efficiency on the 174-app dataset.

in the alternative order, the read value is f alse . Although this
race is a true race, it is arguably benign. We have examined
the race reports (“After Refutation” column) and found that
74.8% fit this pattern. For the remaining race reports, SIERRA
witnesses different values of an instance variable being set
in alternative order of the actions. To conclude, all the true
races reported by SIERRA are due to bad programming prac-
tices and should be fixed, but the precise extent of the harm
inflicted upon the app varies from race to race.

False negatives. The correctness of SIERRA hinges upon
the correctness of the generated harnesses. DroidEL is used
to handle views defined via XML layouts; per its authors,
DroidEL is sound. SIERRA uses over-approximated type-based
abstractions to model reflection. The rest of Android, e.g.,
components or IPC, is handled by SIERRA itself via over-
approximation. Correctness also hinges on the assumption
that the list of callbacks provided by FlowDroid is complete.
Other approaches for finding callbacks, e.g., EdgeMiner [12]
could be used instead, a task we leave to future work. Finally,
unsafe use of native code may cause false negatives, which
is a common problem in Java static analysis.

6.6 Results on the 174 App Dataset
SIERRA’s results (medians) on the additional set of 174 apps
which were not subject to manual analysis are shown in
Table 5. SIERRA typically reports 43.5 potential races per app,
and the analysis takes 960 seconds. These results are mostly
in line with the 20-app dataset but we believe the results are
more indicative due to the larger set size (174 vs. 20).

7 Related Work
Hong and Kim [18] have surveyed race detection techniques
for traditional programs. Out of the 43 tools/approaches sur-
veyed, only 7 were static since, as they noted, “the accuracy
of [static] execution models is often low because of the im-
precision inherent to static analysis methods.” Hence there
is a clear need for accuracy in static race detection.

Event-driven race detection. There have been several
recent efforts on detecting event-driven races. EventRacer [26,
27] detects event-driven races in web applications while
EventRacer Android [7], CAFA [19] and DroidRacer [23]
focus on Android apps. These approaches are all dynamic,
hence prone to false negatives and dependent on high-quality
inputs; these drawbacks are the main impetus for our work.

DEvA [29] is a static “event anomaly” detector that has
been applied to Android apps. There are several main differ-
ences between SIERRA and DEvA. First, DEvA relies on man-
ual descriptions of the framework model, e.g., event sinks
and callbacks; this approach does not scale well. Furthermore,
manual descriptions can lead to false negatives as shown
in their evaluation. SIERRA, on the other hand, performs au-
tomated harness generation and whole program analysis
including both the app code and Android Framework code,
yielding a precise and scalable approach. Second, DEvA’s
analysis is based on program dependency graphs (PDG) to
infer memory accesses in different components. Due to the
scalability problem of inter-procedural PDG analysis, DEvA
only generates PDGs for the sink methods and uses an over-
approximate call graph to infer reachability, which may pro-
duce false positives. SIERRA’s symbolic execution-based path
refutation algorithm is more accurate than DEvA’s approach.
Finally, aliasing inaccuracy: the implementation of DEvA
uses very coarse-grained class hierarchy analysis (CHA) to
identify aliasing, which is imprecise. SIERRA combines action
sensitivity with state-of-the-art hybrid context sensitivity to
improve the precision of pointer analysis. As a result, SIERRA
provides precise race reports.

Race detection for traditional apps. Race detection
has been widely studied; proposed approaches were either
static [16, 32] or dynamic [11, 17]. However, these efforts
have mainly focused on detecting multi-threaded data races
in applications running on desktop or server platforms. In
Android, event-driven races are 4x–7x more numerous than
data races [19, 23]. Moreover, techniques geared at desk-
top/server programs can be ineffective for detecting event-
based races. For example, traditional dynamic race detectors
assume that instructions executed on the same thread have
program order. However, this is not true for Android due
to asynchronous programming model and Looper events
arriving in non-deterministic order.

Predictive race detection [13] is an approach that extends
the recorded execution trace with causal partial orders to
improve schedule coverage. Thus, a predictive race detector
can “predict” errors that did not happen in the observed
execution. However, it cannot predict the errors that may
appear in code that did not execute – this is a shortcoming
of all dynamic analyses.

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

268

Static analysis for Android. Many static analysis ap-
proaches for Android have been proposed, with specific pur-
poses such as constructing GUI models [10, 28], or infor-
mation flow [5]. Hopper [9] also uses backward symbolic
execution but with a different goal, finding null pointer deref-
erences.We employ an array of techniques, that while geared
at finding races, we believe can also be used as a general,
precise static analysis framework for Android apps.

8 Conclusions
We have presented SIERRA, the first scalable and precise ap-
proach for static event-based race detection in Android apps.
Race detectors – for either Android or traditional programs
– usually employ a dynamic approach, due to the difficulty
of ordering memory accesses statically. We show that, by
employing precise, automatically-constructed harnesses and
a static happens-before graph, we can order actions quite
effectively. Further, by employing action-sensitivity as well
as symbolic execution we can eliminate a large percentage
of false positives. Experiments reveal that our approach is
effective at finding true races without a large number of
false positives, yet has acceptable performance. We believe
that SIERRA opens the way for precise analysis of, and race
detection in, event-based systems in general.

Acknowledgments
We thank Pratik Dhumal for his help with testing and man-
ual analysis of race reports. This material is based upon work
supported by the National Science Foundation under Grant
No. CCF-1629186. Research was sponsored by the Army Re-
search Laboratory and was accomplished under Cooperative
Agreement NumberW911NF-13-2-0045 (ARL Cyber Security
CRA). The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distrib-
ute reprints for Government purposes notwithstanding any
copyright notation here on.

References
[1] 2015. Mobile/Tablet Operating System Market Share. (Oct 2015).

https://www.netmarketshare.com/operating-system-market-share.
aspx?qprid=8&qpcustomd=1.

[2] 2017. F-Droid. (2017). https://f-droid.org/.
[3] Android Developers. 2017. Activity Lifecycle. (2017). http://developer.

android.com/reference/android/app/Activity.html.
[4] Android Developers. 2017. App Components. (2017). https://developer.

android.com/guide/components/index.html.
[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android Apps. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’14). ACM, New York, NY,
USA, 259–269. https://doi.org/10.1145/2594291.2594299

[6] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-first
Exploration for Systematic Testing of Android Apps. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA ’13).
ACM, New York, NY, USA, 641–660. https://doi.org/10.1145/2509136.
2509549

[7] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable Race
Detection for Android Applications. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2015). ACM, New York,
NY, USA, 332–348. https://doi.org/10.1145/2814270.2814303

[8] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2013.
Thresher: Precise Refutations for Heap Reachability. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). ACM, New York, NY, USA, 275–286.
https://doi.org/10.1145/2491956.2462186

[9] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2015. Se-
lective Control-flowAbstraction via Jumping. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2015). ACM, New
York, NY, USA, 163–182. https://doi.org/10.1145/2814270.2814293

[10] Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. 2015.
Droidel: A General Approach to Android Framework Modeling. In
Proceedings of the 4th ACM SIGPLAN International Workshop on State
Of the Art in Program Analysis (SOAP 2015). ACM, New York, NY, USA,
19–25. https://doi.org/10.1145/2771284.2771288

[11] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010.
PACER: Proportional Detection of Data Races. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’10). ACM, New York, NY, USA, 255–268. https:
//doi.org/10.1145/1806596.1806626

[12] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele,
Christopher Kruegel, Giovanni Vigna, and Yan Chen. 2015. EdgeMiner:
Automatically Detecting Implicit Control Flow Transitions through
the Android Framework. In Proceedings of the ISOC Network and Dis-
tributed System Security Symposium (NDSS).

[13] Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. 2008. jPredictor:
A Predictive Runtime Analysis Tool for Java. In Proceedings of the 30th
International Conference on Software Engineering (ICSE ’08). ACM, New
York, NY, USA, 221–230. https://doi.org/10.1145/1368088.1368119

[14] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture
Notes in Computer Science), Vol. 4963. Springer, 337–340.

[15] Isil Dillig, Thomas Dillig, and Alex Aiken. 2011. Precise Reasoning for
Programs Using Containers. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’11). ACM, New York, NY, USA, 187–200. https://doi.org/10.
1145/1926385.1926407

[16] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static
Detection of Race Conditions and Deadlocks. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles (SOSP
’03). ACM, New York, NY, USA, 237–252. https://doi.org/10.1145/
945445.945468

[17] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient
and Precise Dynamic Race Detection. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’09).

[18] Shin Hong and Moonzoo Kim. 2015. A Survey of Race Bug Detection
Techniques for Multithreaded Programmes. Softw. Test. Verif. Reliab.
25, 3 (May 2015), 191–217. https://doi.org/10.1002/stvr.1564

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

269

https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://f-droid.org/
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/guide/components/index.html
https://developer.android.com/guide/components/index.html
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2814270.2814303
https://doi.org/10.1145/2491956.2462186
https://doi.org/10.1145/2814270.2814293
https://doi.org/10.1145/2771284.2771288
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1145/1368088.1368119
https://doi.org/10.1145/1926385.1926407
https://doi.org/10.1145/1926385.1926407
https://doi.org/10.1145/945445.945468
https://doi.org/10.1145/945445.945468
https://doi.org/10.1002/stvr.1564

[19] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cris-
tiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Jason Flinn. 2014.
Race Detection for Event-driven Mobile Applications. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14). ACM, New York, NY, USA, 326–336.
https://doi.org/10.1145/2594291.2594330

[20] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile Yet
Lightweight Record-and-replay for Android. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2015). ACM, New
York, NY, USA, 349–366. https://doi.org/10.1145/2814270.2814320

[21] Yongjian Hu, Iulian Neamtiu, and Arash Alavi. 2016. Automatically
Verifying and Reproducing Event-based Races in Android Apps. In
Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA 2016). ACM, New York, NY, USA, 377–388. https:
//doi.org/10.1145/2931037.2931069

[22] IBM T.J Watson. 2017. WALA. (2017). http://wala.sourceforge.net/
wiki/index.php/Main_Page.

[23] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race De-
tection for Android Applications. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’14). ACM, New York, NY, USA, 316–325. https:
//doi.org/10.1145/2594291.2594311

[24] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parame-
terized Object Sensitivity for Points-to Analysis for Java. ACM Trans.
Softw. Eng. Methodol. 14, 1 (Jan. 2005), 1–41. https://doi.org/10.1145/
1044834.1044835

[25] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race
Detection for Java. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’06). ACM,
New York, NY, USA, 308–319. https://doi.org/10.1145/1133981.1134018

[26] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. 2012.
Race Detection for Web Applications. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’12). ACM, New York, NY, USA, 251–262. https:
//doi.org/10.1145/2254064.2254095

[27] Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effective
Race Detection for Event-driven Programs. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications (OOPSLA ’13). ACM, New
York, NY, USA, 151–166. https://doi.org/10.1145/2509136.2509538

[28] Atanas Rountev and Dacong Yan. 2014. Static Reference Analysis for
GUI Objects in Android Software. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO
’14).

[29] Gholamreza Safi, Arman Shahbazian, William G. J. Halfond, and Nenad
Medvidovic. 2015. Detecting Event Anomalies in Event-based Systems.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 25–37. https:
//doi.org/10.1145/2786805.2786836

[30] Micha Sharir and Amir Pnueli. 1981. Two approaches to interproce-
dural data flow analysis. In in Steven S. Muchnick and Neil D. Jones
(eds.), Program Flow Analysis: Theory and Applications, Prentice-Hall,
Englewood Cliffs, New Jersey. 189–234.

[31] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick
Your Contexts Well: Understanding Object-sensitivity. In Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’11). ACM, New York, NY, USA, 17–30.
https://doi.org/10.1145/1926385.1926390

[32] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static
Race Detection on Millions of Lines of Code. In Proceedings of the
the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC-FSE ’07). ACM, New York, NY, USA, 205–214. https:
//doi.org/10.1145/1287624.1287654

[33] Bo Zhou, Iulian Neamtiu, and Rajiv Gupta. 2015. A Cross-platform
Analysis of Bugs and Bug-fixing in Open Source Projects: Desktop vs.
Android vs. iOS. In 19th International Conference on Evaluation and
Assessment in Software Engineering, EASE 2015. 10.

[34] B. Zhou, I. Neamtiu, and R. Gupta. 2015. Experience report: How do bug
characteristics differ across severity classes: A multi-platform study.
In Software Reliability Engineering (ISSRE), 2015 IEEE 26th International
Symposium on. 507–517. https://doi.org/10.1109/ISSRE.2015.7381843

Session 3B: Mobile Applications ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

270

https://doi.org/10.1145/2594291.2594330
https://doi.org/10.1145/2814270.2814320
https://doi.org/10.1145/2931037.2931069
https://doi.org/10.1145/2931037.2931069
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://doi.org/10.1145/2594291.2594311
https://doi.org/10.1145/2594291.2594311
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/2254064.2254095
https://doi.org/10.1145/2254064.2254095
https://doi.org/10.1145/2509136.2509538
https://doi.org/10.1145/2786805.2786836
https://doi.org/10.1145/2786805.2786836
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1109/ISSRE.2015.7381843

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Android Background
	2.2 Intra-component Race
	2.3 Inter-component Race

	3 Approach
	3.1 Architecture
	3.2 Harness Creation
	3.3 Action Sensitivity

	4 Happens-before Relationship
	4.1 Definitions
	4.2 Actions: SHBG Nodes
	4.3 HB Rules: SHBG Edges
	4.4 Accesses and Races

	5 Symbolic Execution-based Refutation
	6 Evaluation
	6.1 Effectiveness
	6.2 Efficiency
	6.3 Harmful Race Example
	6.4 Comparison with Dynamic Race Detection
	6.5 Discussion
	6.6 Results on the 174 App Dataset

	7 Related Work
	8 Conclusions
	References

