
Detecting Potential User-data Save & Export Losses
due to Android App Termination

Sydur Rahaman
New Jersey Inst. Of Technology

Newark, NJ, USA
sr939@njit.edu

Umar Farooq
U. of California, Riverside

Riverside, CA, USA
ufaro001@ucr.edu

Iulian Neamtiu
New Jersey Inst. Of Technology

Newark, NJ, USA
ineamtiu@njit.edu

Zhijia Zhao
U. of California, Riverside

Riverside, CA, USA
zhijia@cs.ucr.edu

Abstract—A common feature in Android apps is saving, or
exporting, user’s work (e.g., a drawing) as well as data (e.g., a
spreadsheet) onto local storage, as a file. Due to the volatile nature
of the OS and the mobile environment in general, the system can
terminate apps without notice, which prevents the execution of
file write operations; consequently, user data that was supposed to
be saved/exported is instead lost. Testing apps for such potential
losses raises several challenges: how to identify data originating
from user input or resulting from user action (then check whether
it is saved), and how to reproduce a potential error by terminating
the app at the exact moment when unsaved changes are pending.
We address these challenges via an approach that finds potential
“lost writes”, i.e., user data supposed to be written to a file, but the
file write does not take place due to system-initiated termination.
Our approach consists of two phases: a static analysis that finds
potential losses and a dynamic loss verification phase where we
compare lossy and lossless system-level file write traces to confirm
errors. We ran our analysis on 2,182 apps from Google Play
and 38 apps from F-Droid. Our approach found 163 apps where
termination caused losses, including losing user’s app-specific
data, notes, photos, user’s work and settings. In contrast, two
state-of-the-art tools aimed at finding volatility errors in Android
apps failed to discover the issues we found.

Index Terms—Android, Mobile Apps, Static Analysis, Dynamic
Analysis, Persistence

I. INTRODUCTION

Creating and editing persistent user data is a basic features
in Android apps. Examples range from creating notes, saving
app-specific change histories, creating schedules, or editing
pictures. This user-created data can be exported or backed up
as files onto local storage; the action is typically initiated via
the user, e.g., by pressing a ‘Save’ or ‘Export’ button. These
file saves can be jeopardized by app interruption or abrupt app
termination (as explained shortly). However testing whether
such data is saved correctly requires solving two challenges:
(1) identifying the extent of the data, and (2) creating the
termination conditions at the exact moment when the data is
in-memory but not committed onto file storage via I/O yet.

Due to resource and security constraints, mobile platforms
such as Android or iOS are volatile, especially compared
to their desktop/server counterparts. For example, when in
foreground, apps have access to resources, but phone and
user events such as orientation changes or incoming calls will

This material is based upon work supported by the National Science
Foundation under Grants No. CCF-2106710 and CCF-2106383.

perturb the app state; once sent into the background, an app
is subject to resource reclamation or swift termination [1]–[3].
We name system-initiated termination the scenario when an
Android app is terminated swiftly by the system, e.g., due
to memory pressure or limits on background processes [4],
[5]. Such termination has three characteristics: (1) it is less
frequent than user-initiated termination, (2) the termination is
swift, without giving the app a “courtesy” notice, and (3) the
user is unaware of it (silent failure), making it more concerning.
In particular, swift termination might lead to loss of user-
created data that should have been saved into files via file
write operations upon user-initiated save/export actions. There
have been recent efforts to find the extent of user’s data as
a form of UI input that could be lost due to volatility (e.g.,
lifecycle events – orientation changes, app pausing, or receiving
a phone call). These efforts have focused on app fields [6]
or variables and UI properties (“instance state” [7]) that can
be lost due to lifecycle events. However, prior work has not
considered scenarios where not only the user’s UI input data,
but also user action-based data saved as file writes can be lost
when apps are terminated swiftly.

We solve the aforementioned challenges as follows: our
approach finds user input or user action-based file write data,
specifically users’ work that ordinarily would be saved onto
the file system, and checks whether the data could be lost due
to abrupt system-initiated termination.

In Section II we provide background and motivation. Sec-
tion II-A discusses details on system-initiated termination and
its impact on file writes, while Section II-B illustrates losses in
two apps, user drawings in the Acrylic Paint app and calculator
screenshots in the Wabbitemu app.

Note that even finding potential losses is challenging as it
entails (a) defining and identifying the data that has to be saved,
and (b) understanding whether, and how, this data flows to
files. We address these challenges by introducing an automated
approach that combines static and dynamic analysis. We start
with finding user-initiated file writes which are identified via a
suite of static analyses, described in Section III-A. Put simply,
the data of interest is generated, modified, or saved by the user
via UI actions and would normally (i.e., barring termination)
reach file write methods to be saved onto persistent storage.
Our automated static analysis produces a list of objects that are
potentially lost due to system-initiated termination. To verify

these losses, we compare the system call traces (obtained
dynamically) between the original, no-loss execution and the
terminated, lossy execution (Section III-B).

We evaluated our approach on 2,220 apps (2,182 from
Google Play and 38 from F-Droid). We found, and confirmed,
losses in 163 apps. Examples of such losses, found in widely
popular apps with more than 5 million installs, are described
in detail in Section IV-B: user settings, artwork, edited photos,
notes, history, or bookmarks. In Section IV-C we compare
our approach with two state-of-the-art approaches for finding
volatility-induced UI data – KREfinder and LiveDroid – and
show that those approaches fail to expose the data lost due
to system-initiated termination. Finally, in Section IV-G we
propose potential solutions to fix file write losses.

Our work makes several contributions:
• A static analysis that identifies potential UI-to-file losses

due to system-initiated termination.
• A dynamic analysis that confirms potential losses via

OS-level trace differencing.
• An automated approach that enables developers to test

apps for user-data loss.
• A study on 2,220 apps that has revealed such losses in

163 apps.

II. MOTIVATION

A fundamental principle in mobile app development – on
both Android and iOS – is to “not perform file writes on the
synchronous UI thread, to keep the UI responsive” [8], [9]. This
forces programmers to run file write operation in a separate
thread, e.g., asynchronously via an AsyncTask in Android.
However, asynchronous (and potentially time-consuming) file
writes are on a collision course with the volatility of mobile
platforms. Specifically, mobile apps can be terminated without
notice (or on short notice) by the system, due to low memory
or runtime changes. We detail this by first presenting a brief
overview of Android app construction, file writes in app, and
app termination; next, to motivate our approach, we present a
suite of examples of file write losses due to termination.

A. Background: File Writes and Termination in Android

1) App Construction and File Writes: Android apps are
constructed from four fundamental components: Activities
managing the UI, ContentProviders managing access to data,
Services that run in the background, and Broadcast Receivers
which respond to system-wide events. The most common
component, Activity, is a “page” in the app; apps with a UI
typically consist of one or more Activities. The UI elements
in an Activity are owned and managed by a special thread,
named the UI thread or main thread. The UI thread plays a
critical role: timely processing of UI events, to keep the UI
(and app) responsive. Therefore, one of the first lessons in
Android programming is “you should not perform work on
the UI thread” [8]: as file write is potentially long-running
and blocking, performing a file write on the UI thread could
render the app unresponsive. Hence any long-running or
blocking operations should run asynchronously, in a different

(background) thread. Occasionally though, apps violate this
requirement: among the apps we have analyzed, some perform
file writes on the UI thread.

2) App Termination: There is an inherent tension between
long-running operations and the constraints of the mobile plat-
forms. Unlike desktop/server applications, mobile applications
cannot expect to “run forever”; rather, mobile applications can
be terminated summarily to free resources such as memory [4],
conserve energy, and protect user’s security (e.g., by preventing
background apps from accessing users’ location). Therefore,
long-running operations can be interrupted or terminated
without notice – in fact the entire process enclosing the Android
app is terminated – for various external reasons, as listed below.

1) Memory pressure. Android’s Low Memory Killer Dae-
mon (LMKD) [2] handles low-memory situations: when
the phone is under memory pressure, the LMKD ranks
apps based on their memory usage and acts according
to a configuration-described policy, e.g., the app which
consumes most memory and is not in foreground will be
killed to release memory.1

2) Background process limit. The Android OS provides
a developer option to limit the number of background
processes. When the option is set to “No background
processes” an app process is killed whenever the app is
not in the foreground.

3) Kill via external signal. Apps can also be terminated by
sending them a traditional Unix signal, e.g., SIGKILL.

Besides system-initiated termination, an app process can also
be terminated internally, when the app invokes API methods
such as System.exit or finishAndRemoveTask; the use of these
APIs in our app dataset was practically non-existent, so our
approach focuses on system-initiated termination.

B. Motivational Examples

We now present several examples where file write loss can
occur due to system-initiated termination.

1) Example: File write on the main thread: We show a case
study on the Acrylic Paint app [11] in Figure 1. Specifically,
we show two scenarios: a successful scenario where file write
operation completes, and an unsuccessful scenario where the
file write is eschewed due to system-initiated termination,
leading to user’s work being lost. Acrylic Paint is a painting app:
the user can save painting progress either by clicking the ‘Save’
button (Figure 1(a)) or by exiting the app. The user’s progress
or changes to the drawing are saved in a local file inside the app
directory, as shown in the middle part of the figure: Figure 1(b)
shows the confirmation message, whereas Figure 1(c) shows
the saved painting as a file in the app’s directory. However, in
the case of a system-initiated termination such as low memory,
the app process is terminated before the user’s changes, or
progress, can be saved. In that case, illustrated in Figure 1(d),
the valuable file write data is lost and the file is missing from
the app’s local directory.

1In smartphones, I/O consumes substantial energy [10], hence apps that run
background I/O are at higher risk of termination due to resource pressure.

2

a) User Action: Saving User Painting d) File Missing Due To Terminationc) User Data Saved In File
(Screenshot From The File

Storage App)

b) Confirmation Of File Write

Fig. 1. Acrylic Paint app: success scenario (a-c) and user file write data loss scenario (d).

1 public boolean onOptionsItemSelected(MenuItem item) {
2 switch (item.getItemId()) {
3
4 case R.id.save menu:
5 takeScreenshot(true);
6 break;
7}}
8 private File takeScreenshot(boolean showToast) {
9

10 Bitmap copyBitmap = cachedBitmap.copy(Bitmap.Config.ARGB 8888, true);
11 File file = new File(path,”fileName.png”);
12 FileOutputStream output = new FileOutputStream(file);
13 copyBitmap.compress(CompressFormat.PNG, 100, output); //Process gets

terminated here
14}

Main
Thread

onOptionsItemSelected

Process Terminated

takeScreenshot

write

compress

….

System-initiated
Termination

Fig. 2. Acrylic Paint app code (left) and file write operation termination events (right).

In Figure 2 we show the app source code (left) and event
sequence diagram (right). When the user clicks the ‘Save’ menu
option, the onOptionsItemSelected event is triggered (lines 1–4).
The method takeScreenshot is called next (line 5); inside
the method, new Bitmap, File, and FileOutputStream instances
are created (lines 10–12). Finally, the file writing operation
Bitmap.compress (line 13) executes on the main thread. If the app
is terminated prematurely, the file write operation is terminated,
resulting in data loss. The sequence of events, i.e., code that
will not execute due to termination, is shown in gray.

2) Example: file write on a background thread: Next, we
show an example of file write loss due to termination, where
the file write operation is performed on a background thread.
Wabbittemu [12] is a graphic calculator app. We show relevant
app screenshots in Figure 3: the user can save calculator
screenshots locally in a file by selecting the ‘Screenshot’
menu item (Figure 3(a)); the save confirmation is shown in
Figure 3(b), whereas Figure 3(c) confirms the file’s presence
in the app’s own directory. The file write loss scenario, due to
system-initiated termination, is shown in Figure 3(d): data is
lost, hence the file is missing from the directory.

Figure 4 shows the relevant source code (left) and
event sequence diagram (right). When the user selects the

screenshot menu item, the ScreenshotCalcTask executes. Note
that ScreenshotCalcTask extends the AsyncTask class hence
will execute asynchronously as follows: ScreenshotCalcTask
invokes the SaveScreenshotCalc method on a background thread
(line 4). Inside the SaveScreenshotCalc method, first, Bitmap
and FileOutputStream instances are created (lines 8,10), then
the screenshot image is written into a file (line 11). App
termination in turn terminates both the main thread and its
(child) background thread, hence the file write data will be
lost; specifically, the file write operation and the onPostExecute
method do not execute. The gray-colored part of the sequence
diagram shows the parts that will not execute due to termination.

Hence our goal is to automatically identify the file-bound
data and file write operations that are lost (and do not execute,
respectively) due to termination.

III. APPROACH

In Figure 5 we provide an overview of our approach. Given
an Android app we first perform a static analysis which
produces reports of user-initiated file writes, i.e., file data
that originates from UI events, hence is potentially lost. Then,
we verify the potential losses in a dynamic report verification
phase. We now discuss each phase in detail.

3

a) User Action: Saving Calculator
Screenshot

d) File Missing Due To Terminationc) User Data Saved In File
(Screenshot From The

File Storage App)

b) Confirmation Of File Write

Fig. 3. Wabbitemu app: success scenario (a-c) and user file write data loss scenario (d).

1 private class ScreenshotCalcTask extends AsyncTask{
2 protected void onPreExecute() {...}
3 protected Boolean doInBackground() {
4 SaveScreenshotCalc();
5 }
6 void SaveScreenshotCalc() {
7
8 Bitmap Screenshot = Bitmap.createScaledBitmap(screenshot,

screenshot.getWidth() * 2, screenshot.getHeight() * 2, true);
9 try {

10 FileOutputStream out = new FileOutputStream(new
File(outputDir, ”screenshot” + new
SimpleDateFormat(”yyyyMMdd”,
Locale.getDefault()).format(new Date()) + ”.png”));

11 Screenshot.compress(CompressFormat.PNG, 100, out);
//Process gets terminated here

12
13 }
14
15 }
16 protected void onPostExecute(Boolean success) {...} }

SaveScreenshotCalc()

Main
Thread

Background
Thread

onPostExecute

ScreenshotCalcTask.
execute()

System-initiated
Termination

Process Terminated

write

compress

….

SaveScreenshotCalc()

Fig. 4. Wabbitemu app code (left) and file write operation termination events (right).

A. Static Analysis

In this phase, we perform a combination of control and
data flow analyses to identify data that originates from user
interaction (UI) and flows into file write APIs; this data is
marked as potential loss.

Our static analysis has two main objectives:

• Finding all the file write operations initiated by (generated
from) user interactions with the app, and

• Tracking the data that contains user input and flows into
the aforementioned file write operations.

We first define “user-initiated” more precisely, then proceed
to describe how we achieved the aforementioned objectives
using a combination of control-flow and data-flow analysis.

1) What is “User-initiated”: A key requirement for finding
potential data losses is defining exactly what data is “worth
saving”. Intuitively, user’s work or changes are worth saving,
whereas logging operations happening in analytics libraries

are not. Hence we define as “worth saving” two kinds of
user-initiated file write operations.

First, we consider file write operations where the file content
is coming directly from UI input, e.g., the canvas in the Acrylic
Paint app shown in Figure 1, which has type ImageView. Another
example is note contents, whose type is TextView. These file
writes are identified via data-flow analysis.

The second kind of worthy content is file-written but does not
come from UI input; rather, the file write operation depends
on user interaction with the UI such as saving screenshots
or exporting log data. One such example is the ‘Export to
Excel’ UI action in the Auto-Away app to export call history
log mentioned in detail in Section IV-B. Though in that case
the exported file does not contain UI data (in contrast to the
painting content above), the user nevertheless initiates this file
write or export operation. We find these type of file writes via
control-flow analysis.

2) Defining UI Interaction Callbacks: Android apps do not
have a main() method; rather, apps have multiple entry points

4

Trace
Comparison

APK

Soot

Report: User-
Initiated
Writes

File Write API Methods

Entry Points …

Loss Report

Original
Execution

Original
File Write

Trace

Lossy
File Write

Trace

Lossy
Execution

Static Analysis Dynamic Report Verification

User-initiated Callbacks

Data-flow Analysis

Control-flow Analysis

Termination

DroidBot
Exploration

Manual
Exploration

Success

Fail

Write Loss
Verification

Fig. 5. Overview of our approach.

TABLE I
FILE WRITE API PREVALENCE.

File Writing API % Apps
OutputStream 89
FileOutputStream 82
Writer 81
FilterOutputStream 81
ByteArrayOutputStream 79
StringWriter 72
BufferedOutputStream 66
BufferedWriter 54
ObjectOutputStream 47
DataOutputStream 43
FileWriter 15
PrintStream 10
PrintWriter 9
CharArrayWriter 3
FilterWriter 1

induced by top-level callback events, as follows. Apps can
register callbacks for events of interest, such as GPS location
updates or UI interaction (menu select, button click, etc.).
We create a “dummy” main method (similar to other static
analyses such as FlowDroid [13]) which contains all top-level
callbacks and will serve as an end point for backward analyses.
Among the top-level callbacks, we only retain UI-related ones.
There are several UI interaction callback APIs in Android,
such as OnClick, onMenuItemClick, etc. Generally these callbacks
are part of the Android View (UI) components hence defined
in the android.view class hierarchy. Non-UI callbacks are not a
target of our analysis. For example onLocationChanged, defined
in android.location .Location and handling GPS location updates,
does not correspond to user interaction and is not considered
a UI interaction endpoint.

3) Defining File Write APIs: Our analysis focuses on file
write operations. We manually identified 15 java. io classes
that support file writes. The first column of Table I lists these
classes and the second column states the frequency of the
APIs observed in our evaluated app dataset. Within these
classes, we identified API methods that perform file writes,
e.g., FileOutputStream.write(), Writer.append(), etc. We observed

that the most common API classes were the *Stream and *Writer
families, e.g., OutputStream, FileOutputStream, Writer. Note that
this list is just an input configuration file in our implementation
hence can be easily extended.

4) Finding User-initiated File Writes: Our static analyzer is
built on top of the Soot analysis framework [14]. Using Soot,
we first build an inter-procedural call graph, which will form
the basis for the control- and data-flow analyses.

To find all the file write calls originating from user interac-
tion, we proceed as follows. We perform a backward control-
flow analysis from every file write callsite back to its app
entry point. If the callback belongs to UI interaction callbacks
(Section III-A2), then the write operation is initiated by the
user, and we add this write to our list.

Example. We show an example of how our backward control-
flow analysis operates in Figure 6. The example is drawn from
the Privacyfriendlynotes app (a simple note-saving app). The
relevant source code is shown on the left, and the corresponding
control-flow diagram along with the app UI screenshots are
shown on the right. We start our backward analysis from
the file write API. In this case, the file write API is on
line 23: the compress method call (taking a FileOutputStream as
an argument) is the point where the note or sketch are saved in a
file. From compress our analysis lands in saveToExternalStorage;
backtracking from the saveToExternalStorage method leads to two
different paths, as the method has two callers. One of them is
onRequestPermissionsResult (lines 13–18) which does not belong
to android.view class, hence is not a UI interaction callback. The
second control-flow path traces back to onOptionsItemSelected
which belongs to the android.view.MenuItem class, hence is a
UI interaction callback. When the user selects the ‘SAVE’
option, the onOptionsItemSelected callback is triggered and
saveToExternalStorage is called (lines 6–8). Hence this particular
file write falls under the category of writes initiated by the
user. The control-flow path that satisfies our requirement and
belongs to the “user-initiated file write” path is marked with
green color in the figure. Hence, we add the file write operation
on line 23 as a user-initiated file write.

5

1 class SketchActivity extends AppCompatActivity{
2 public boolean onOptionsItemSelected(MenuItem item) {
3 int id = item.getItemId() ;
4 if (id == R.id.action reminder) {
5
6 }else if (id == R.id.action save) {
7 ...
8 saveToExternalStorage();
9 ...

10 }
11 ...
12 }
13 public void onRequestPermissionsResult(int

requestCode,..) {
14 switch (requestCode) {
15
16 saveToExternalStorage();
17 }
18 }
19 private void saveToExternalStorage(){
20
21 Bitmap bm = overlay(new

BitmapDrawable(getResources(),
mFilePath).getBitmap(), drawView.getBitmap());

22 ...
23 bm.compress(Bitmap.CompressFormat.JPEG, 100, new

FileOutputStream(file));
24
25 } }

fileOutputStreamsaveToExternalStorageonOptionsItemSelected

onRequestPermissionsResult

…. ….

….

UI Interaction Callback Control-flow Propagation File Write API

Fig. 6. Backward control-flow analysis in the Privacyfriendlynotes app.

1 private File takeScreenshot(boolean showToast) {
2
3 View v = findViewById(R.id.CanvasId);
4 v.setDrawingCacheEnabled(true);
5 Bitmap cachedBitmap = v.getDrawingCache();
6 Bitmap copyBitmap =

cachedBitmap.copy(Bitmap.Config.ARGB 8888, true);
7 File file = new File(path,”fileName.png”);
8 FileOutputStream output = new FileOutputStream(file);
9 copyBitmap.compress(CompressFormat.PNG, 100, output);

10}

compressv

…. ….

….

android.view Type Data-flow Propagation File Write

copyBitmap

….

cachedBitmap

Fig. 7. Backward data-flow analysis in the Acrylic Paint app.

5) Finding User Input Flowing to File Writes: To find the
extent of the data flowing to file write APIs, we perform a
data-flow analysis. Similar to the control-flow analysis, we
start our data-flow analysis from the write callsite (but now
consider the method arguments) and trace whether the data
transitively flows from a UI input class. Starting from the file
write API callsite, we run a backward data-flow analysis up
to the point where the data type belongs to a UI input type
(android.view class) or exits via an app entry point. We now
illustrate this analysis with an example.

Example. We show the data-flow analysis of the Acrylic Paint
app in Figure 7. The relevant source code is shown on the left,
and the corresponding data-flow edges on the right. The method
in consideration here is takeScreenshot, which contains the file
write call compress (line 9). Data-flow analysis of copyBitmap
leads to line 6, specifically cachedBitmap. Tracing back from
cachedBitmap leads to line 5, value v, which belongs to the
android.view class as per line 3. Therefore, we end the data-flow
analysis here, concluding that the file write content is coming
from an UI input; in this example, it belongs to ImageView type

UI input. Therefore, we add v as potential loss.

B. Dynamic Report Verification

Our dynamic verification phase reduces the false positives
resulting from the static analysis phase. Given the list (reports)
of user-initiated writes produced by the static analysis, we
proceed to verify the potential losses report. Dynamic report
verification has multiple components as discussed below:

1) GUI Exploration: Our goal is to explore the target app
to find relevant file write initiating action (i.e., button click
to initiate Save/Export) and then inject a termination event
which should lead to a “lossy” execution and finally compare
file write traces in the original and lossy executions. Those
writes that are confirmed missing will help us verify whether
the file writes containing user data is lost.

DroidBot Exploration. We have used DroidBot [15] to
automate the app exploration or trace generation process.
DroidBot’s GUI-based model helped to automatically identify
various view objects (such as Button or TextView) related to target
user Save/Export actions. We wrote custom DroidBot scripts

6

1 // (a) succesful strace
2 openat(AT FDCWD,”/data/user/0/org.secuso.privacyfriendlynotes/
3 files /sketches/sketch 1606849053910.PNG”,

O WRONLY|O CREAT|O TRUNC, 0666) = 71
4
5 // (b) lossy strace
6 openat(AT FDCWD,”/data/user/0/org.secuso.privacyfriendlynotes/
7 files /sketches/sketch 1607044227961.PNG”,

O WRONLY|O CREAT|O TRUNC, 0666 <unfinished
...>

Fig. 8. Strace differences between a) successful file write and b) lossy
execution in app PrivacyFrinedlyNotes.

to identify these target GUI elements and trigger necessary
events (e.g., clicking Save button).

Manual Exploration. Besides DroidBot, we have explored
apps manually (human-driven) for cases where DroidBot failed.
DroidBot failed in two types of scenarios. First, the scenario
where DroidBot could not reach targeted Save/Export
options and the collected traces did not have the desired file
write logs. Second, the cases where automated GUI exploration
using DroidBot crashed and no trace logs were generated.

2) Triggering Termination: While termination can be trig-
gered via various system events (Section II-A2), we used the
background process limit option, based on the observation that
background apps are frequently/routinely terminated due to
memory pressure [4], [5], [16], [17].2 In other words, if the user
switches away from app A (which in the absence of termination
would perform a file write operation, either on the main thread
or on a background thread) to app B, the file write operation
can be terminated, resulting in data loss. We automated
switching from target app A to app B via Monkey [18]
(the adb shell monkey -p package.name command
offered by the Android Debugging Bridge). In case of manual
exploration, we manually switched from the target app to
another.

3) Trace Comparison: We confirm the write loss via
automated trace differencing: we compare the strace Linux-
level system call trace [19] across two runs: original execution
(normal, uninterrupted) and lossy execution (operation inter-
rupted by triggering termination via app switching). We have
automated trace differencing by checking for interrupted I/O,
e.g., unfinished openat(), fstat () , or write () system calls. We
show an example of successful vs. lossy straces for app
PrivacyFriendlyNotes in Figure 8. The successful execution trace
is shown on top – note the openat() call completing (lines 2–3).
The lossy trace is shown on the bottom: the openat() call fails
(unfinished) as shown in lines 6–7. Hence, aside from the visual
confirmation of file data loss (e.g., Figure 1(d), Figure 3(d)),
which is not scalable for a large set of apps, we automated the
dynamic verification process via strace differencing; this
dynamic verification is key to achieving a low false positive
rate (Section IV-E).

2Typical background process limit (number of concurrent apps): 16 apps
for mobile devices with 1GB memory and 26 apps for 2GB memory [16].

TABLE II
APP SELECTION AND FINDINGS.

#Apps
Save/Export in UI 2,953

Soot Successful 2,220
Contains File Writes 1,476
User-initiated File Writes 298
Confirmed Losses 163

Automatically 107
Manually 56

TABLE III
CATEGORIES OF CONFIRMED LOSSES.

Category # Apps
App-specific/misc. 61
Notes, documents, PDF files 28
Image, audio, video files 19
Database backups 17
Reports 14
Painting 8
Settings or preferences 6
History 4
Recipes 4
Schedules 2

IV. EVALUATION

We now discuss our evaluation in detail. We introduce our
dataset, then quantify the effectiveness of our approach. Next,
we present 27 examples of verified losses. We then compare
our approach with existing tools, and quantify our analysis’
efficiency. Finally, we discuss the limitations of our approach.

Dataset and test platform. To evaluate our approach, we
focus on apps that support saving or exporting user data. First,
we collected an app dataset of interest from the main Android
app store, Google Play, and the open-source app store, F-Droid.
To identify apps that offer Save or Export facilities, we used
an automated filtering process on GUI data: more precisely,
we extracted app resource XMLs from 20,000 popular Android
apps split across across various app categories, and retained
those apps whose GUI resources (e.g., buttons or menus) match
keywords such as Save, Export, or similar. We found 2,953
apps whose GUI matched our keywords of interest. Next, we
excluded 733 apps that could not be analyzed with Soot (on
top of which we built our analysis). Soot failing on certain
commercial apps is unsurprising, because popular Google Play
apps tend to employ anti-analysis techniques such as packing
or obfuscation. We ran our dynamic analysis on a Nexus 5
smartphone running Android 6 (API level 23).

A. Effectiveness

Table II summarizes our evaluation results, and is discussed
in detail next. Among the 2,220 apps where Soot ran suc-
cessfully, we identified those apps whose bytecode contained
file write APIs, yielding 1,476 apps. We found that certain
categories of file writes are not of interest: they are performed
by third-party libraries, e.g., tracking and analytics packages
that write into log files. We configured our analysis to ignore
such writes – because they consist of logging and analytics
data, they are out of our purview. Instead, our focus is on

7

user-initiated writes as mentioned in Section III-A: the static
analysis has identified 298 such apps. Among the 298 candidate
apps (apps with potential losses) having user-initiated file writes,
we found and confirmed losses in 163 apps using our semi-
automated dynamic verification approach – a combination of
automated and manual analysis discussed next. We show the
summary of our evaluation in Table II.

We categorize these confirmed losses in Table III. Most
of the losses fall under the app-specific data category (e.g.,
saving newborn vitals for a baby care app). Other categories
of lost data include notes, photos, database backups, artwork,
or settings.

1) DroidBot Exploration Results: Using our automated GUI
exploration with DroidBot, we produced trace logs for 177
cases out of 298 potential losses. DroidBot crashed and could
not generate traces for 121 cases. This automated DroidBot-
driven approach verified losses in 107 cases by comparing
original and lossy execution traces. For the rest of the 70 cases,
there were no differences between original and lossy execution
traces due to the lack of file writes in the original execution
(DroidBot exploration did not result in the desired file write
operations).

2) Manual Exploration Results: For those 191 apps where
DroidBot either crashed or could not reach the target GUI
exploration, we performed a manual (human-driven) analysis.
Our manual analysis confirmed losses in 56 apps, hence a
total of 163 apps with automatically-confirmed or manually-
confirmed losses. For 135 apps, the manual analysis could not
run or did not produce traces evidencing losses. These apps
fell into several categories: 58 apps could not be explored
as they either required a paid membership, their operation
was geo-fenced, or could only run when connected to specific
hardware devices; 39 apps crashed on our test platform; finally,
there were 38 apps where no save- or export-related option
was found in the GUI.

B. Example Of Confirmed Write Loss Cases

Table IV summarizes data loss examples in 27 apps: 20 apps
from Google Play (apps with highest number of installs, shown
in the second column) and 7 apps from the open-source F-Droid
store. We show a brief summary of the user file write data
lost in the third column and the result of running LiveDroid
on these apps in the final column (the results are discussed
in Section IV-C2). We now discuss selected apps (more than
5M installations) and the semantics of lost data in detail.

SketchBook. This app allows users to sketch, paint, and draw;
due to termination, new sketch data, as well as changes to an
existing sketch, can be lost.

Smart TV Remote. This app is used to define and control TV
channels via channel logos; due to termination, exported data
(TV channels) is lost.

WPS Office. This is an all-in-one office suite app; due to
termination, user-made document changes are lost.

Drum Pad Machine. This music mixer app can be used to create
beats, mix loops and record new melodies; due to termination,
user-created music beats are not saved.

AndrOpen Office. This office suite app allows users to view
and edit PDF, Word, Excel, and PowerPoint documents; due
to termination, user-made document changes are lost.

King James Bible. This Bible reader app provides options
for adding bookmarks and writing notes while reading; due
to termination, user settings or preferences (e.g., related to
bookmarks, highlights, and notes) can be lost.

K-9 Mail. This is an open-source email client app; due to
termination, exported data (user-settings backup) is lost.

Beauty Camera. This app allows editing pictures via filters or
stickers; due to termination, edited pictures are not saved.

Barcode Scanner Pro. In this app the user can scan, decode,
create, and share QR codes or barcodes; due to termination,
the user’s barcode scanning history is lost.

C. Comparison With Existing Tools

We now compare the results of our approach with the results
obtained by running two state-of-the-art tools that aim to find
volatility-induced UI losses in Android apps.

1) Comparison with KREfinder: KREfinder [6] is a static
analyzer that looks for incorrectly-handled instance state.
Specifically, the analysis looks for app fields that are written
to, or modified, and for which there is no subsequent save.
KREfinder explicitly looks for state flowing into OutputStream
or Writer objects, and generally any Java API methods offering
write or save. As the public version of KREfinder is not
maintained/updated (latest release: July 2016), we asked the
KREfinder’s corresponding author to run it on 14 selected apps
(7 top Google Play apps, 7 F-Droid apps); KREFinder reported
no data losses.

2) Comparison with LiveDroid: LiveDroid [7] is a tool
focused on finding UI fields that might be lost during runtime
changes (e.g., phone orientation changes). LiveDroid identifies
variables and GUI input which represent “necessary app state”;
this state essentially captures the subset of user input data
which must “survive” runtime changes. We ran LiveDroid on
the 298 apps with user-initiated file writes. The LiveDroid
analysis summary is:

Apps
Analyzed 298
Soot Error 157
Issues Found 13

LiveDroid is mainly designed for open-source apps and fails
due to Soot error on the 157 Google Play apps with large
and/or obfuscated bytecode. For the remaining Google Play
apps and all the open-source F-Droid apps, LiveDroid ran to
completion; LiveDroid found app state-saving related issues
in 13 apps. For example, LiveDroid found app states saving
related issues in Beauty Camera and Privacyfriendlynotes app as
shown in the third column of Table IV, but these issues are
unrelated to file write losses; LiveDroid reported no issues in
the other 128 apps it successfully run on.

D. Efficiency

In Table V we present brief descriptive statistics for static
analysis time and app dataset. Analysis time varied between

8

TABLE IV
LOSSES FOUND AND CONFIRMED BY OUR APPROACH; RESULTS OF RUNNING LIVEDROID.

App #Installs (Million) Our Approach (Data Lost) LiveDroid
Google Play

SketchBook 100 User artwork (sketch, painting) Failed due to Soot error
WPS Office 100 User-made document changes No issues found
Drum Pad Machine 100 User created music beats No issues found
Smart TV Remote 10 Saved TV Channels export No issues found
Barcode Scanner Pro 10 Barcode scanning history Failed due to Soot error
Beauty Camera 10 Edited photos Found 5 app states not saved (user input loss)
AndrOpen Office 5 User-made document changes No issues found
King James Bible 5 User-settings / preferences No issues found
K-9 Mail 5 User-settings / preferences No issues found
Robin 1 App properties/preferences Failed due to Soot error
Soccer Tactic Board 1 User-created soccer tactic Failed due to Soot error
Baby Care 1 User-created baby growth data Failed due to Soot error
Bills Reminder 0.5 Database backup Failed due to Soot error
SmartTruckRoute 0.5 Truck route exported data Failed due to Soot error
BCBSM 0.1 Patient’s medicare data sharing fails Failed due to Soot error
Wabbitemu 0.1 Calculator screenshot Failed due to Soot error
Gallery Slideshow Music 0.1 Edited Video Failed due to Soot error
TV Show Favs 0.1 User backup data Failed due to Soot error

(e.g., favorite TV, watched shows)
User Dictionary Manager 0.05 Dictionary words Failed due to Soot error
Bahamas Dining Rewards 0.01 User credentials Failed due to Soot error

F-Droid
Sanity n/a Settings/preferences No issues found

(e.g., audio recording, call blocking)
Privacyfriendlynotes n/a New or updated note Found 6 app states not saved (user input loss)
MedicLog n/a Medic log history No issues found
Acrylic Paint n/a New or updated drawing No issues found
Auto-Away n/a Call or message log export No issues found
ComfortReader n/a New or updated note No issues found
BeeCount n/a database table update No issues found

TABLE V
EFFICIENCY RESULTS.

Analysis time (seconds) Bytecode size (MB)
min max median min max median
35 25,200 115 0.04 103.4 21.2

35 seconds and 7 hours, with a typical time of 115 seconds,
which we believe is efficient for a static analysis. App bytecode
varied between 40KB and 103MB, with a typical size of 21MB,
which shows that our analysis can handle sizable apps.

E. False Positives and False Negatives

We measured the False Positives (FP) and False Negatives
(FN) by comparing the results of our automated approach
with a manual analysis on 60 apps (all containing file writes)
where the file write data losses were confirmed manually. The
60 apps were selected as follows: 30 true positive apps that
contain user-initiated file writes and 30 true negative apps
that contain file writes, but the writes are not user-initiated.
Rather than exploring apps using DroidBot and performing
dynamic verification of user data loss via Strace difference
checking as mentioned in Section III-B, we performed a manual
verification of data losses. We manually sent the target app
into the background after inducing file write operations and
then manually checked whether the expected file writes were
missing, i.e., user data is lost. The confusion matrix is:

True Positives: 30 False Positives: 0
False Negatives: 5 True Negatives: 30

We found 5 False Negatives, i.e., an 85% recall for the auto-
mated approach. These are due to automated GUI exploration
with DroidBot failing to reach targeted save or export-related
GUI options and as a consequence, no file write operation
happened, and no file write traces were found. We have no
False Positives because static analysis reports are subjected to
dynamic verification.

F. Limitations

Our approach has two limitations. First, the static analysis
to find user-initiated file writes is implemented on top of Soot,
which failed to produce call graphs for 733 apps. As a result,
we were unable to analyze those apps further. Second, our
automated dynamic verification used a customized version of
the DroidBot input generator [15] to drive app interaction.
However, DroidBot, and Android input generators in general,
cannot achieve complete coverage [20]. This shortcoming led
to manually exploring cases where DroidBot failed to verify
user data losses. These limitations can be alleviated with more
engineering efforts.

G. Potential Solutions

File write losses due to termination could be addressed by
keeping the target app alive as a foreground process. The

9

Fig. 9. Progress bar for ongoing I/O operations in Android.

app developers could show a progress bar for file writes
(e.g., Figure 9) so users do not switch to a different app while
writes are in progress. Another solution is to keep the app
alive as a background process by granting unrestricted battery
usage (available for Android 8.0 or above), which ensures the
app is running with fewer limits while in background, hence
is less likely to be killed due to memory pressure. Finally,
another option for updating data is to write a temporary copy
and delete the old data upon successful writing of the new
data, or alternatively, use storage with transactional APIs such
as SQLite or Firebase.

V. RELATED WORK

Android state volatility has been the subject of several prior
efforts. However, none of the prior efforts has looked at system-
initiated termination or file write operation.

LiveDroid [7] focuses on the issue of finding UI fields
that might be lost during runtime changes. LiveDroid’s static
analysis employs a top-down approach from program variables
and UI input instances to the part of saving these inputs into
the Android Bundle (the default storage where Android apps
can save instance state), whereas we take a bottom-up approach
to trace back to UI inputs from file write APIs. However, file
writes leading from user interactions are not considered as
user data losses in their analysis. LiveDroid has a patching
component that injects state-saving code into an app o fix
state-saving issues; we do not offer an error repair component.
LiveDroid handles, and was run on, F-Droid apps only; in
contrast, we successfully analyzed thousands of Google Play
apps in addition to F-Droid apps.

iFixDataloss [21] is similar to LiveDroid, detecting and fixing
data losses due to Android lifecycle events (e.g., orientation
change, back button press). Unlike LiveDroid, their approach
is not limited to data losses in a singular instance of an app
run, as they also detect and fix data loss issues across multiple
runs. Like our approach, iFixDataloss has a reduced false
positives rate as they combine static analysis with dynamic
testing. However, they do not consider data losses due to
system-initiated termination.

KREfinder [6] used program analysis to identify object fields
that should be saved during resume-and-restart cycles to avoid
user data loss. However, their technique is focused more on
finding a path from a field write to an app exit without an
intervening save (e.g., in the Android Bundle) rather than
finding lost file writes due to system-initiated termination.

The work of Hu et al. [22], Zaeem et al. [23], and Adamsen
et al. [24] focused on finding app state issues related to activity
restart by generating test cases and performing systematic
execution of event sequences. Our goal (lost user file writes) is
different; in addition, our approach is based on static analysis
whereas their approach is based on testing.

SafeExit [25] is a study on ungraceful exits in desktop
applications. They propose cleanup operations on file writes
that are interrupted by an ungraceful exit in order to match
the program behavior to that of normal execution. However,
SafeExit did not categorize file writes based on user interaction,
and did not consider user data loss.

Several prior efforts have studied the issue of whether an
API call was in response to a user action.

Huang et al.’s AsDroid [26] identifies user interactions that
result in malicious behavior differing from the intended purpose.
They perform reachability analysis of specific APIs from top-
level user interaction functions via control-flow-graph and
call-graph analysis and compare the result with the intended
behavior described in the UI text. Although our analysis
includes control-flow analysis, we do not perform UI text
analysis to determine file-write-related UI interactions. In our
dynamic verification, we have not found any evidence of the
UI element’s text description representing a file write operation.
Rather, we rely on a combination of control-flow and data-flow
analysis to identify file write-related user interactions.

Shan et al.’s work on detecting self-hiding behavior [27]
introduced a user decision analysis to understand whether an
API call performing questionable behavior in an Android app
was initiated by the user or performed by the system. Their
focus is mostly on discerning between different UI elements
(some are considered decision-related, some not); their analysis
considers control-flow only, rather than the intricate interplay
between control-flow and data-flow analyses required in our
case to detect user-initiated data losses.

Enforcer [28] tests application behavior in the presence of I/O
failures by executing tests with and without fault injection. Our
approach differs in two ways. First, Enforcer identifies all I/O
types and instruments the code to simulate faulty system calls,
while we focus on user-initiated I/O and instrument the code
to simulate system-initiated termination. Second, Enforcer was
evaluated on Java programs, including the Apache Commons
Math library, whereas we target Google Play apps.

VI. CONCLUSIONS

Mobile apps’ construction and operation is fundamentally
different from “run forever” desktop/server programs which
complicates testing whether user data is inadvertently lost due
to resource pressure. In this paper, we focus on user work/data
that should be saved via user-initiated file writes; while expected
to be stored in local storage, such work and data can be lost due
to system-initiated termination. We constructed a static analysis
to find potential losses in users’ work due to premature file
write termination and verified losses via an automated dynamic
approach. We were able to confirm such losses in 107 Google
Play and F-Droid apps. Our approach can improve the overall
user experience of saving user data and form the basis of
further studies and explorations into (a) loss of mobile state
due to volatility, (b) extending the findings from file writes to
all possible I/O, and (c) the nature of losses due to unexecuted
I/O in programs in general.

10

REFERENCES

[1] Memory allocation among processes, “Memory allocation among pro-
cesses.” April 2022, https://developer.android.com/topic/performance/
memory-management.

[2] Android Open Source Project, “Low memory killer daemon,” May 2022,
https://source.android.com/devices/tech/perf/lmkd.

[3] Background Execution Limits, “Background execution limits.” April
2022, https://developer.android.com/about/versions/oreo/background.

[4] N. Lebeck, A. Krishnamurthy, H. M. Levy, and I. Zhang, “End the
senseless killing: Improving memory management for mobile operating
systems,” in 2020 USENIX Annual Technical Conference (USENIX ATC
20), 2020, pp. 873–887.

[5] M. Xia, W. He, X. Liu, and J. Liu, “Why application errors drain battery
easily? a study of memory leaks in smartphone apps,” in Proceedings of
the Workshop on Power-Aware Computing and Systems, ser. HotPower
’13. New York, NY, USA: Association for Computing Machinery,
2013. [Online]. Available: https://doi.org/10.1145/2525526.2525846

[6] Z. Shan, T. Azim, and I. Neamtiu, “Finding resume and restart errors
in android applications,” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 864–880. [Online].
Available: https://doi.org/10.1145/2983990.2984011

[7] U. Farooq, Z. Zhao, M. Sridharan, and I. Neamtiu, “Livedroid:
Identifying and preserving mobile app state in volatile runtime
environments,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, nov
2020. [Online]. Available: https://doi.org/10.1145/3428228

[8] Threading in Android, “Better performance through threading —
android developers,” April 2022, https://developer.android.com/topic/
performance/threads.

[9] Apple, Inc, “Swift dispatchqueue,” May 2022, https:
//developer.apple.com/documentation/dispatch/dispatchqueue.

[10] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent
inside my app? fine grained energy accounting on smartphones
with eprof,” in Proceedings of the 7th ACM European Conference
on Computer Systems, ser. EuroSys ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 29–42. [Online].
Available: https://doi.org/10.1145/2168836.2168841

[11] Acrylic Paint, “Acrylic paint — f-droid - free and open source android app
repository,” April 2022, https://f-droid.org/en/packages/anupam.acrylic/.

[12] Wabbitemu, “Wabbitemu,” April 2022, http://wabbitemu.org/.
[13] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 259–269. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594299

[14] Soot.2022, “Soot: a java optimization framework.” April 2022, https:
//www.sable.mcgill.ca/soot/.

[15] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: A lightweight
ui-guided test input generator for android,” in Proceedings of the 39th
International Conference on Software Engineering Companion, ser.
ICSE-C ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 23–26.
[Online]. Available: https://doi.org/10.1109/ICSE-C.2017.8

[16] I. A. Qazi, Z. A. Qazi, T. A. Benson, G. Murtaza, E. Latif,
A. Manan, and A. Tariq, “Mobile web browsing under memory pressure,”
SIGCOMM Comput. Commun. Rev., vol. 50, no. 4, p. 35–48, oct 2020.
[Online]. Available: https://doi.org/10.1145/3431832.3431837

[17] G. Aponso, “Effective memory management for mobile operating
systems,” American Journal of Engineering Research (AJER), vol. 246,
2017.

[18] P. Patel, G. Srinivasan, S. Rahaman, and I. Neamtiu, “On the
effectiveness of random testing for android: Or how i learned to stop
worrying and love the monkey,” in Proceedings of the 13th International
Workshop on Automation of Software Test, ser. AST ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 34–37.
[Online]. Available: https://doi.org/10.1145/3194733.3194742

[19] Strace, “Using strace — android open source project,” April 2022, https:
//source.android.com/devices/tech/debug/strace.

[20] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet? (e),” in Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE), ser. ASE ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 429–440. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2015.89

[21] W. Guo, Z. Dong, L. Shen, W. Tian, T. Su, and X. Peng, “Detecting
and fixing data loss issues in android apps,” in Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 605–616. [Online]. Available:
https://doi.org/10.1145/3533767.3534402

[22] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively detecting
mobile app bugs with appdoctor,” in Proceedings of the Ninth European
Conference on Computer Systems, ser. EuroSys ’14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2592798.2592813

[23] R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated generation
of oracles for testing user-interaction features of mobile apps,”
in Proceedings of the 2014 IEEE International Conference on
Software Testing, Verification, and Validation, ser. ICST ’14. USA:
IEEE Computer Society, 2014, p. 183–192. [Online]. Available:
https://doi.org/10.1109/ICST.2014.31

[24] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution of
android test suites in adverse conditions,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ser. ISSTA
2015. New York, NY, USA: Association for Computing Machinery, 2015,
p. 83–93. [Online]. Available: https://doi.org/10.1145/2771783.2771786

[25] Z. Jia, S. Li, T. Yu, X. Liao, and J. Wang, “Automatically
detecting missing cleanup for ungraceful exits,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 751–762. [Online]. Available:
https://doi.org/10.1145/3338906.3338938

[26] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 1036–1046.
[Online]. Available: https://doi.org/10.1145/2568225.2568301

[27] Z. Shan, I. Neamtiu, and R. Samuel, “Self-hiding behavior in android
apps: Detection and characterization,” in Proceedings of the 40th
International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
728–739. [Online]. Available: https://doi.org/10.1145/3180155.3180214

[28] C. Artho, A. Biere, and S. Honiden, “Exhaustive testing of exception
handlers with enforcer,” in Formal Methods for Components and Objects,
2006.

11

https://developer.android.com/topic/performance/memory-management
https://developer.android.com/topic/performance/memory-management
https://source.android.com/devices/tech/perf/lmkd
https://developer.android.com/about/versions/oreo/background
https://doi.org/10.1145/2525526.2525846
https://doi.org/10.1145/2983990.2984011
https://doi.org/10.1145/3428228
https://developer.android.com/topic/performance/threads
https://developer.android.com/topic/performance/threads
https://developer.apple.com/documentation/dispatch/dispatchqueue
https://developer.apple.com/documentation/dispatch/dispatchqueue
https://doi.org/10.1145/2168836.2168841
https://f-droid.org/en/packages/anupam.acrylic/
http://wabbitemu.org/
http://doi.acm.org/10.1145/2594291.2594299
https://www.sable.mcgill.ca/soot/
https://www.sable.mcgill.ca/soot/
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1145/3431832.3431837
https://doi.org/10.1145/3194733.3194742
https://source.android.com/devices/tech/debug/strace
https://source.android.com/devices/tech/debug/strace
http://dx.doi.org/10.1109/ASE.2015.89
https://doi.org/10.1145/3533767.3534402
https://doi.org/10.1145/2592798.2592813
https://doi.org/10.1109/ICST.2014.31
https://doi.org/10.1145/2771783.2771786
https://doi.org/10.1145/3338906.3338938
https://doi.org/10.1145/2568225.2568301
https://doi.org/10.1145/3180155.3180214

	Introduction
	Motivation
	Background: File Writes and Termination in Android
	App Construction and File Writes
	App Termination

	Motivational Examples
	Example: File write on the main thread
	Example: file write on a background thread

	Approach
	Static Analysis
	What is ``User-initiated''
	Defining UI Interaction Callbacks
	Defining File Write APIs
	Finding User-initiated File Writes
	Finding User Input Flowing to File Writes

	Dynamic Report Verification
	GUI Exploration
	Triggering Termination
	Trace Comparison

	Evaluation
	Effectiveness
	DroidBot Exploration Results
	Manual Exploration Results

	Example Of Confirmed Write Loss Cases
	Comparison With Existing Tools
	Comparison with KREfinder
	Comparison with LiveDroid

	Efficiency
	False Positives and False Negatives
	Limitations
	Potential Solutions

	Related Work
	Conclusions
	References

