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a b s t r a c t 

The Bring-Your-Own-Handheld-device (BYOH) phenomenon continues to make inroads as more people 

bring their own handheld devices to work or school. While convenient to device owners, this trend 

presents novel management challenges to network administrators as they have no control over these 

devices and no solid understanding of the behavior of these emerging devices. In order to cope with 

the impact of these BYOHs on current existing network management infrastructures, we identify two 

tightly-coupled questions that network administrators need to answer: (a) how do these BYOHs behave? 

and (b) how can we manage them more effectively based on the understanding of their behaviors? In 

response, we design and deploy Brofiler, a framework that could enable network administrators to effec- 

tively manage BYOHs via behavior-aware profiling. Our behavior-aware profiling captures the behaviors of 

each individual BYOH and improves the visibility on managing these BYOHs. In detail, the contributions 

of our work are three-fold. First, we present Brofiler, a time-aware device-centric approach for grouping 

devices into intuitive behavioral groups from multiple perspectives, including data plane, temporal be- 

havior, and the protocol and control plane. Second, we conduct an extensive study of BYOHs using our 

approach with real data collected over a year, and highlight several novel insights on the behavior of 

BYOHs. For example, we find that 70% of the BYOHs generate 50% of their monthly data traffic in one 

day, while remaining mostly idle the rest of the month. In addition, 68% of BYOHs do not conform to 

DHCP protocol specifications. Third, we present the implications of our study based on the framework 

in DHCP management, bandwidth management and access control. Overall, our approach could enable 

network administrators better understand and manage these new emerging devices for their networks in 

the post-PC era. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

In the post-PC era, smartphones and tablets are becoming

biquitous in companies and universities. These devices are used

ore and more to complement, or even replace, desktops and

aptops for computational needs: Gartner market research indi-

ates that worldwide PC shipments decline while smartphone

ales grew rapidly [1] ; hence the Bring Your Own Handheld-device

BYOH) practice is going to increase. However, though the emer-

ence of these devices changes the society rapidly, current net-

ork management infrastructures evolve slowly to accommodate

hem, which creates the challenges for the network administra-
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or to effectively manage these devices in their networks. We use

he term BYOH to describe only smartphones and tablets, in ac-

ordance with the National Institute of Standards and Technology’s

efinition [2] . In other words, we consider a device as BYOH if it

uns a mobile OS, such as Android, iOS, or BlackBerry OS. 

We argue that BYOHs deserve to be studied as a new breed of

evices as the loss of visibility into BYOHs brings the challenges

o network administrators and add another layer of complexity on

etwork management [3] . In detail, first, every time a new technol-

gy or a new killer app emerges, IT departments must re-evaluate

he way they manage their networks. Network administrators must

nderstand the behavior of BYOHs in order to manage them ef-

ectively. Second, it is clear that BYOHs introduce different tech-

ologies and user behaviors: (a) BYOHs join and leave the network

requently, (b) their form factor enables novel uses compared to

esktops and laptops, (c) they run different operating systems and

http://dx.doi.org/10.1016/j.comnet.2017.01.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.01.003&domain=pdf
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1 The 366 stands for the days of the year, which was a leap year. 
various versions of each operating system compared to other com-

puting devices, and (d) most importantly, the apps that can run on

them introduce a slew of management challenges [3–7] . 

The fundamental problem we address here is: what does the

network administrator need to know about BYOHs? Specifically, we

identify two key questions we want to answer in this paper: (a)

how do these devices behave? and (b) What are the implications

to manage operational concerns, such as the stress exerted on net-

work resources? 

Given our interest in the network administrator’s point of view,

we have consulted with administrators of two different lar ge net-

works, and our study has been largely shaped by their concerns

and feedback. Both administrators admitted that there is a great

need to better understand what BYOHs do in order to better man-

age them. 

Most prior effort s have focused on studying either the aggre-

gate network traffic incurred by smartphones and tablets, or per-

formance and network protocol issues, such as TCP and download

times or mobility issues [8–12] . Such aggregate network traffic be-

havior hides more useful and fine-grained information to network

administrator, which hinders them to gain the visibility on these

BYOHs. In addition, existing approaches for managing traffic as-

sume certain software installations on devices or embed tracking

libraries in enterprise architectures. However, in practice, network

administrators usually have no control over the software running

on BYOHs, which makes it difficult to monitor and control the be-

havior of these devices [4] in their networks. This is even worse

as mobile apps are blooming. Therefore, we first need an approach

that could effectively capture and reveal the behavior of each in-

dividual BYOH for network administrators so that they can better

manage their networks. To the best of our knowledge, no prior

work has focused on understanding individual BYOH behavior in

campus networks, with a view towards better managing and pro-

visioning network resources on-the-fly. In this paper, we extended

our earlier paper [13] by explaining our profiling framework with

more details on the background and architecture, extending the

multi-dimensional behavior analysis towards operational concerns

of BYOH management based on our framework, revising the opera-

tions of DHCP address allocation with informed profile information

of BYOHs, recommending data usage quotas for the BYOHs, and en-

hancing the access control with fine-grained behavior profiles. We

discuss related work in Section 6 . 

1.1. Contributions 

In this paper, we propose Brofiler (BYOH profiler), a systematic

approach to profiling the behavior of BYOHs in a device-centric

way. In addition, we arguably provide the first multi-dimensional

study on the behavior of BYOHs from a network administrator’s

point of view. A key advantage of our approach is that it is easy to

deploy: it learns BYOH behavior on-the-fly, and it does not require

software installed on the device or device registration. Further, we

argue that the intuitive profiles of Brofiler can help administrators:

(a) form a conceptual view of what their BYOH user-base does, (b)

help them troubleshoot issues by providing meaningful groups of

users, and (c) provide an informed starting point for developing ef-

fective management of BYOHs. Specifically, our work has two im-

plications: (1) BYOHs need to be managed explicitly as they behave

in unique and unexpected ways, and (2) there are significant op-

portunities from tailored management strategies. 

Our major contributions are highlighted below: 

a. The Brofiler approach. We present Brofiler, a time-aware

device-centric approach for grouping BYOHs into intuitive behav-

ioral groups, and a hierarchical framework for profiling individ-

ual user behavior based on multiple dimensions, including the

data plane, temporal behavior, the protocol and control plane, and
he combined multiple dimensions. We also describe how it can

orm the foundation of an effective BYOH management system

 Section 3 ). Brofiler analyzes and profiles BYOHs across these mul-

iple dimensions, and we show how it can help us identify groups

f users with interesting behaviors. For example, nearly half of

he BYOHs are “mobile zombies”, which acquire IP addresses with-

ut transferring any data over the campus network because they

annot advance past a captive portal. This behavior wastes re-

ources, because zombies claim an address and possibly hit the

aptive portal log-in page, but never successfully log-in. Further-

ore, a group of more than 32% of these mobile zombies (dis-

ussed in Section 4.4 ) appear only one day in the month of obser-

ation, which indicates ephemeral visitors with no impact on the

etwork other than occupying an IP address; we refer to these as

agabonds. 

b. An extensive profiling study. Using our approach, we conduct

n extensive profiling study using real traces from a large campus

in Section 4 ): device access logs collected over the entire year, in-

olving 22,702 BYOHs, and traffic data logs during one month in-

olving 6482 BYOHs. We identify many unexpected behaviors and

nteresting groups of users. For example, we find that 68% of BY-

Hs do not conform to DHCP protocol specifications (reportedly

ue to a software bug [14] ). Among the BYOHs that produce traf-

c, 94% of them generate less than 100MB in a month. At the same

ime, only 6% of BYOHs generate 82% of the total BYOH traffic. 

c. The Implications of Our Study. Based on our profiling, we

resent the implications of our study that go a long way toward

mproving device management, network usage and operations, and

ltimately user experience. These implications could help network

dministrator better understand the operational issues of BYOHs

nd manage their networks. Finally, in a more open-ended case-

tudy, we show how our profiling can help start the discussion to-

ards security enhancement, using access control as an example. 

. Datasets and initial statistics 

Our study is based on two datasets collected at a monitoring

oint inside a large, educational, campus network. One dataset, de-

oted DHCP-366 , 1 consists of the campus WLAN’s year-long DHCP

ogs. Another dataset (denoted as Traffic-May ) is network flow-

evel traffic for BYOHs during the month May, which is obtained as

ollows. First, WLAN traffic is filtered by the WLAN IP address pool.

e then identified those IP addresses associated with BYOHs from

HCP logs during the month May (we use DHCP-May to denote

he DHCP logs from the month May). For each BYOH, we use the

apping between its IP addresses and MAC address to identify the

etwork traffic flows associated with the device in the flow-level

raffic dataset. In total, our year-long DHCP dataset ( DHCP-366 )
omprises 22,702 BYOHs and 29,861 non-BYOHs. The month-long

YOHs’ traffic dataset ( Traffic-May ) comprises 6482 BYOHs. 

BYOH vs. non-BYOH. We identified BYOHs by examining the de-

ice’s operating system keywords and MAC address as captured

y the DHCP log file. First, we extracted each device’s manufac-

urer; the MAC address contains an OUI (Organizationally Unique

dentifier) which identifies the manufacturer [15] . Next, we use the

perating system and manufacturer information to distinguish be-

ween BYOH and non-BYOHs. We identify BYOHs based on key-

ords (e.g., Android, iPad, iPhone, or BlackBerry) in their operat-

ng system name [15,16] . Table 1 shows the number of devices in

ach category in the dataset DHCP-366 . Note that BYOHs repre-

ent 43.2% of WLAN-using devices during one year, thus constitut-

ng a significant presence on the campus network. 
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Table 1 

Distribution of devices in dataset 

DHCP-366 . 

Device Type Count Percentage 

BYOHs 22 ,702 43 .2% 

Android 10 ,756 47 .4% 

iOS 11 ,328 50% 

BlackBerry OS 618 2 .6% 

non-BYOHs 29 ,861 56 .8% 

Fig. 1. System architecture of Brofiler. 
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Mobile platforms. We observe three mobile platforms in our

HCP-366 dataset: Android, iOS, and BlackBerry. As expected, An-

roid and iOS are dominant and together, they account for roughly

7.4% of BYOHs. 

. Brofiler: systematic profiling 

We propose a systematic approach to profile BYOHs based on

heir behavioral patterns. The goal is to develop a classification

hat is: intuitive and useful , so that network administrators can

onitor, manage, and reason about groups of BYOHs. Our frame-

ork focuses on profiling user behavior based on multiple dimen-

ions such as frequency of appearance, data usage, and IP requests.

.1. Architecture 

At the same time, our profiling system can be integrated in a

olicy and traffic management system as shown in Fig. 1 . The mon-

tor module of Brofiler first monitors the traffic, which includes the

etwork flow-level traffic and DHCP traffic, and stores the traffic

ata into the data repository. The traffic data could be collected

oth at the gateway router (flow-level traffic data) and from DHCP

erver logs in the target campus, and stored in the data repository

odule. Then, Brofiler runs the profiling module on the collected

ata and generates the corresponding profiles. Our profiles include

he profiling results from three dimensions, data plane, tempo-

al behavior, and the protocol and control plane, and also the re-

ults of combining these dimensions. The information of profiles

ould be used by network administrators to develop the manage-

ent policies. Then, the policy enforcement module could config-

re these policies to the traffic management module [17] . Network

dministrator could manage the traffic via the traffic management

odule with these configured policies. This whole process will be

erformed periodically to update the corresponding profiles due to

he evolving device behavior. 

.2. Profiling 

we first present our classification approach using three dimen-

ions, and then we combine multiple dimensions. 

a. Data plane. In this dimension, we profile devices based on

he traffic that they generate. Clearly, there are many different as-

ects and properties of traffic; in this work, we focus on traffic

ntensity. First, we determine whether the BYOH has any network
raffic. Note that we define network traffic as the traffic that goes

ver the institution’s network, not over the mobile wireless carrier.

We define two categories of BYOHs: (a) Zero traffic BYOHs or

obile zombies, that do not generate any network traffic, and (b)

on-zero traffic BYOHs, that generate traffic. Later, we show how

e further study traffic behavior based on traffic intensity. In our

ataset, there are 3040 zero traffic BYOHs and 3442 non-zero traf-

c BYOHs. We present the details in Section 4.2 . 

b. Temporal behavior. In this dimension, we profile devices

ased on temporal behavior, focusing on device appearance fre-

uency on the campus network. A human-centric way to define

requency is by counting how many distinct weeks the device ap-

eared on campus. The intuition is that regular employees and dili-

ent students appear every week on the campus network. Clearly,

rofiling criteria depend on the context and nature of the network,

.g., campus versus enterprise or a government network. Here, we

se the datasets DHCP-May and Traffic-May . Note that the

onth May began on a Monday and spanned five weeks, labeled

s follows: Week 1 (May 1–May 5), Week 2 (May 6–May 12), Week

 (May 13–May 19), Week 4 (May 20–May 26), and Week 5 (May

7–May 31). 

We define the following terms. If a BYOH appears in at least

our of the five weeks, we label it as REG (short for regular). Oth-

rwise, we label the BYOH as NRE (short for non-regular). This ap-

lies to both zero and non-zero traffic BYOHs. We present the de-

ails in Section 4.3 . 

c. Protocol and Control plane. This dimension captures the op-

rational properties of every BYOH. There are many interesting as-

ects such as the OS it runs, whether it conforms to protocol spec-

fications, and whether it could pose security concerns, e.g., using

ncryption. In this work, we mostly focus on: (a) the behavior of

he BYOH from a DHCP point of view, i.e., how it behaves in terms

f acquiring an IP address, and (b) the use of encryption in terms

f HTTPS. In Section 5.3 , we also examine whether a BYOH com-

unicates with internal servers, which could be benign or raise

ecurity concerns. We present details in Section 4.1 . 

d. Multi-dimensional grouping using the H-M-L model. We pro-

ose a profiling framework using an H-M-L model, which groups

evices based on intensity measures across different dimensions

sing three levels per dimension: H (High), M (Medium), and L

Low). Though we could use a different number of levels, we have

pted for a three-level model because (a) it is more intuitive and

hus easier to use, and (b) three levels are statistically suitable for

apturing the distribution of the users on the dimensions of inter-

st. Specifically, we used the X-means clustering algorithm [18] on

ur data to identify these three clusters and derive the thresholds,

hich correspond to our levels. Note that, the major benefit of us-

ng X-means clustering algorithm is that network administrators

on’t need to supply the number of clusters in advance; the num-

er of clusters is derived based on the target dataset automatically.

owever, if the network administrator wants to have the control

n the thresholds, our framework can easily replace X-means clus-

ering algorithms with the K-means clustering algorithm or other

lustering algorithms. 

Flexibility and customizability. The main point here is to pro-

ide an initial framework and showcase its usefulness. Clearly, our

ramework can be customized and extended. Note that one could

onsider different or multiple metrics from each dimension and

ppropriately define thresholds for defining the H-M-L levels. The

election of metrics and thresholds could be dictated by: (a) what

he network administrator wants to identify, and (b) the nature of

he traffic under scrutiny. For example, in a military setting, de-

ices could be expected to be present every day and a single un-

ustified absence could be a cause for concern. 

The value of an intuitive model. The rationale behind our H-M-L

odel is that, often, relative and contextualized metrics are more
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useful than raw performance numbers, depending on the task at

hand. For example, reporting that a user generates 100MB of data

in a month is more precise, but arguably less useful than knowing

that a user belongs to the network’s heavy-hitters. We argue that

an intuitive model can help administrators form a conceptual pic-

ture and then dive deeper into more fine-grained and quantitative

analysis, as needed. 

The Utility of our Approach. In order to showcase how Brofiler

helps us identify interesting groups of devices or users, we use two

dimensions: days of appearance and daily average traffic. Days of

appearance is the number of days that each BYOH shows up in the

campus network. Daily average traffic is the ratio of total traffic

per BYOH during one month over the number of days it shows up.

We argue that the metrics and dimensions defined above are suf-

ficient to give interesting results, and help administrators develop

the effective management of BYOHs, as we do in Section 5 . 

We further profile the REG and NRE group devices with the

H-M-L model. We present a more detailed discussion and related

plots that lead to the observations as stated in Section 4 . Note that,

we use data from the month of May, where we have both DHCP,

DHCP-May , and traffic information, Traffic-May . We now start

to presenting some of the findings enabled by Brofiler. 

1. In the Traffic-May dataset, nearly half of the BYOHs are

mobile zombies, which we define as BYOHs that hold IP ad-

dresses without transferring any data through the campus

network. Note that the data transferred while interacting

with the captive portal does not count; rather we mean no

data is transferred after the captive portal exchange. 

2. We find that 23% of the BYOHs in Traffic-May are

vagabonds, a term we use to refer to BYOHs that appear only

one day during that month. Vagabonds is a sub-category of

non-regular BYOHs, that we defined earlier. 

3. We found that 3% of non-zero traffic BYOHs show low

frequency of appearance and high traffic (denoted as LH),

which is an uncommon behavior. We investigated this fur-

ther and found the cause to be the use of video and

streaming. 

4. 26% of the mobile zombies appear frequently, each for more

than 10 days in a month. This group unnecessarily and re-

peatedly occupies IP addresses, and should be managed ac-

cordingly. 

5. We identify a group with high frequency of appearance dur-

ing the month and low traffic (denoted as HL in our H-M-

L classification), which accounts for 4% of non-zero traffic

BYOHs. 

4. Studying and profiling BYOHs 

We use Brofiler as a starting point towards a long-term study

on real BYOH traces. We show how Brofiler can help us profile and

classify BYOHs, and reveal performance and network management

issues. The goal here is to highlight both the usefulness of our ap-

proach, and interesting observations on BYOH behaviors. Even for

the rather expected behaviors, such as diurnal pattern and bimodal

usage, this is arguably the first study to quantify these behaviors

for BYOHs in a systematic and comprehensive way. 

Summary of observations. We highlight our results grouped by

the four dimensions of our approach. 

a. Protocol and Control Plane. 

1. 68% of BYOHs misbehave, by not conforming to the DHCP

protocol specifications. 

2. 80.6% of the IP lease requests by BYOHs are non-conforming.

3. Most of the web data of BYOHs is not encrypted: less than
15% of web traffic uses HTTPS. D  
b. Data Plane. 

1. Of the BYOHs that produce traffic, 94% generate network

traffic of less than 100MB (in a month). However, just 6%

of BYOHs generate 82.1% of total BYOHs’ traffic. 

2. Data generation is very bursty, with 70% of BYOHs generat-

ing half of their monthly traffic in just one day. Surprisingly,

28.8% of BYOHs are active (sending or receiving traffic) only

one day during the month. 

3. 42% of BYOHs talk to internal (campus) servers. 

c. Temporal Behavior. 

1. BYOHs’ patterns of appearance on the network follow

weekly and daily patterns. 

2. Intra-day behaviors of BYOHs are anthropocentric. 

3. 55% of BYOHs are NRE devices while 45% of devices are REG
devices. 

4. Over 23% of the BYOHs are vagabonds that appear on only

one day. 

d. Multi-level profiling. The key results were listed in

ection 3.2 . 

In the following, we will first present the profiling study based

n three dimensions used in Brofiler, namely, the protocol and con-

rol plane, data plane, and temporal behavior, and then the multi-

imensional grouping using the H-M-L model. 

.1. Protocol and control plane 

The dimension of the protocol and control plane captures the

perational properties of every BYOH. There are many interesting

spects such as the OS it runs, whether it conforms to protocol

pecifications, and whether it could pose security concerns, e.g.,

sing encryption. In our paper, we focus on the DHCP operations

f BYOHs and the use of encryption. 

Non-conforming IP Lease Requests: We examine the DHCP op-

rations between BYOHs and DHCP servers. We find that 68% of

YOHs issue unnecessary IP lease requests; this behavior is largely

imited to BYOHs. We define a non-conforming IP lease request

s an IP lease request sent by a device which already has an IP

ddress from an earlier, unexpired lease. Note that this process be-

ins with DHCPDISCOVER and it is not the regular IP lease re-

ewal process via DHCPREQUEST . In other words, clients behave

s if the IP acquisition process has failed, and they go back to

he initial IP discovery phase, as indicated by the DHCPDISCOVER
essage. 

Roughly 80% of IP requests issued by BYOHs are

on-conforming . This erratic behavior significantly increases

HCP server workload and overloads the networks’ DHCP service.

n contrast, we find that non-BYOHs never issue such requests.

ecent anecdotal evidence suggests that software bugs (ac-

nowledged by Google [14] ) in BYOHs are responsible for this

isbehavior and argues that this erratic behavior is not due to

he events of disconnection, reconnection and roaming [14] . This

bservation suggests that network administrators should monitor

nd diagnose protocol operation behaviors from BYOHs in order to

etect malfunctioning devices. Given our profiling information on

ach BYOH, we could revise the DHCP protocol to react more in-

elligently to these malfunctioning devices and ensure the normal

peration of IP allocation. 

Given the observation above, a question arises naturally: Are

YOHs making more IP requests because of shorter IP lease times?

e show that this is not the case. BYOHs issue more IP lease re-

uests, although they have longer lease times compared to non-

YOHs. We identify lease times by analyzing the DHCPOFFER and

HCPACK messages, which contain a variety of lease parameters,
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Table 2 

Top 5 HTTPS domains in our data 

by percentage of HTTPS traffic. 

Amazon 17 .95% 

Facebook 13 .3% 

MSN 13 .3% 

internal web-servers 13 .2% 

Google 11 .36% 

C
D

F

0

0.5

1.0

Device Traffic (MB)
0 500 1000 1500 2000 2500

Fig. 2. Distribution of traffic volume per BYOH. 
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Fig. 3. Ratio of maximum daily traffic volume over total monthly traffic for each 

device. 

a  

t  

8  

s  

h  

s

 

fi  

w  

o  

w  

m  

a  

a  

m  

fi  

a  

m  

i  

s  

a  

e  

u  

s  

s  

p

 

4  

p  

a  

b  

u  

a  

h  

g

4

 

v  

a  

d  

v  

p  

t  

n  

m

 

p  

p  
ncluding IP address lease time. We compute the average IP lease

or both types of devices and find that the average IP lease time of

on-BYOHs is 28 min, whereas that of BYOHs is 2.6 h. This rules

ut a short lease time as the cause for the large number of IP lease

equests from BYOHs. 

Encrypted Traffic: Our study confirms that HTTP traffic

ominates BYOH traffic [10,19] . However, we observe diverse

TTPS/HTTP ratios across BYOHs. We find that roughly 24% of BY-

Hs have network traffic in which the fraction of traffic that uses

TTPS is over 50%. Surprisingly, some BYOHs have 100% HTTPS

raffic. We further investigate the HTTPS domains that BYOHs talk

o ( Table 2 ). We can see that most of the HTTPS traffic is from

opular online service providers. This is natural, as traffic to these

roviders is privacy-sensitive. For example, Amazon provides shop-

ing and cloud services, and maintains personal or business trans-

ction information. Facebook, the popular social networking ser-

ice, contains private content, such as personal messages and pho-

os. We can also see that web servers internal to the campus are

mong the top five web servers in terms of HTTPS traffic volume,

ith 13.2% of the total HTTPS traffic; these correspond to secure

nterprise services, such as financial services, employee creden-

ials, and email. Such fine-grained information could provide more

ontext-aware knowledge on improving the access control. Though

e find the percentage of HTTPS traffic to be small, it is not clear

hat the presence of unencrypted HTTP traffic is necessarily a secu-

ity risk. To verify this, we need to do an in-depth analysis of the

nencrypted traffic, which we could not perform with our current

ata trace (lack of access to HTTP headers or payload data). 

.2. Data plane 

The data traffic generated by the devices is an important di-

ension to capture the behavior of BYOHs when they interact with

he networks. There are many different aspects and properties of

raffic. We first profile and classify the BYOHs by looking at the

raffic volume generated by each BYOH, then further look at the

raffic dynamics, and whether these BYOHs talk to internal servers

nd malicious sites. 

Traffic Volume: In Fig. 2 , we plot the distribution of traffic

olume across BYOHs, over the entire month. The distribution is

ighly skewed as roughly 94% of BYOHs generate less than 100MB

uring the month. The traffic volume per BYOH varies significantly
cross BYOHs, e.g., traffic volume ranges from as little as 72 bytes

o as large as 2.5GB. In fact, we find that 6% of BYOHs generate

2.1% of the total traffic from BYOHs. This strongly indicates that a

mall fraction of BYOHs consumed most of the network bandwidth,

ence classifying such groups of users and prioritizing network re-

ources accordingly are desirable (see Section 5.2 ). 

Traffic Dynamics: A natural question to ask is whether the traf-

c behavior is consistent day to day. We find that it is not. In Fig. 3 ,

e plot the CDF of the ratio between the maximum daily traffic

ver the total volume of the BYOH for the month. If the traffic

as equally distributed among the days of the month, then the

aximum daily traffic over the total monthly volume would be

round 3.33% (100% divided by 30 days), hence the CDF would rise

bruptly around the 3.33 point on the x -axis. Instead, we see that

ore than 70% of BYOHs consume half of their total monthly traf-

c in a single day ( x = 50 , y = 0 . 3 ). Surprisingly, 28.8% of BYOHs

re active (sending or receiving traffic) only one day in the entire

onth. The above observations are helpful guidelines for manag-

ng and provisioning the network. At a high level, the observations

uggest that traffic volumes: (a) vary across devices significantly,

nd (b) are very bursty in time. An effective management strat-

gy will need to consider these factors. For example, different data

sage quotas could be assigned to different BYOHs in order to en-

ure the effective and fair operation of data usage. In fact, we will

ee how these implications can help network administrators to im-

rove the management of BYOHs in Section 5.2 . 

Talking to internal servers and malicious sites. We found that

2% of BYOHs talk to internal servers (i.e., servers within the cam-

us network) and 58% talk only to outside servers. We also ex-

mine the traffic sources to see if any BYOHs are connecting to

lacklisted websites and IPs—we found no such devices. Overall,

nderstanding the typical behavior of users could provide profiles

nd patterns that could help identify outliers and surprising be-

aviors, in return, to enhance the access control with more fine-

rained profile information. 

.3. Temporal behavior 

In the dimension of temporal behavior, our Brofiler profiles de-

ices based on temporal behavior by focusing on device appear-

nce frequency on the campus network. A human-centric way to

efine frequency is by counting how many distinct weeks the de-

ice appeared on campus. The intuition is that different users ap-

ear on the campus network in different tem poral patterns. Note

hat, the profiling criteria depends on the context, complexity, the

ature of the network, e.g., campus versus enterprise or a govern-

ent network. We now study the temporal behavior of BYOHs. 

Weekly and Daily Patterns: Our study indicates that BYOHs’

atterns of appearance on the network follow weekly and daily

atterns. Our daily observations along the entire month indicate
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Table 3 

Time regions vs. percentage of devices. 

Number of time regions Devices appearing (%) 

1 39 .4 

2 42 .27 

3 17 .69 

4 0 .64 
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that the number of BYOHs exhibits weekly periodicity: the num-

ber of devices increases on Monday, reaches its peak point on

Tuesday and Thursday, and then decreases from Friday to Sunday.

By considering these weekly and daily patterns, network operators

have an opportunity to provision and use network resources more

efficiently. 

Intra-Day Behavior: To manage traffic on a per-hour basis, we

need to understand the intra-day behavior of BYOHs. In Fig. 4 , we

plot the number of active devices at each hour of the day. We ob-

serve that the number of active BYOHs (sending or receiving traf-

fic) is low before 6 a.m. After 6 a.m., the number of active BYOHs

increases and reaches a peak point during 11 a.m.–1 p.m. After 1

p.m., the number of active BYOHs decreases steadily until 11 p.m. 

We further examine for how long devices are present during

a day to enable a more “anthropocentric” analysis. Based on this

observed behavior, which was consistent with other days, we de-

fine four distinct time regions during a day: Night (12 a.m.–6

a.m.), Morning (6 a.m.–12 p.m.), Afternoon (12 p.m.–6 p.m.),

and Evening (6 p.m.–12 a.m.). In Table 3 , we show how many

time regions devices appear in. We can see that most devices ap-

pear in 1 or 2 time regions, with 3 time regions being rare and 4

time regions uncommon. We further find that among the 1-time-

region devices, Afternoon is the most popular. Among all de-

vices that appear on two time regions, most devices appear dur-

ing Morning and Afternoon , as expected. Note that while this

behavior is unsurprising, we are the first to quantify these aspects.

Regularity of appearance: For every BYOH, we determine

whether it appears regularly on campus. A human-centric way

to define frequency is by counting how many distinct weeks the

BYOH has appeared on the network—the intuition is that regular

employees appear every week. 

This social behavior could allow us to estimate which group of

devices are used by regular employees, and which group of devices

are used by visitors, part-time contractors, and vagabonds. Recall

that we classify BYOHs into REG and NRE , as discussed earlier in

Section 3 . We apply this classification to both BYOHs with zero

and non-zero traffic, and identify 2896 REG BYOHs and 3586 NRE
BYOHs. 

Vagabonds: In Fig. 5 , we see that over 23% of the BYOHs are

vagabonds that appear only one day. Furthermore, 32% of mo-

bile zombies (Zero-traffic BYOHs, see definition in Section 4.4 ), i.e.,

more than 10 0 0 BYOHs, belong to this group. Identifying this group
ould prompt several actions at the operational level. First, we

ould manage them separately, as they may not be employees. Sec-

nd, we may want to give them short IP leases, until they prove

hat they actually need them for sending data. Overall, these tem-

oral behavior analyses not only help network operators identify

he operational issues caused by these devices, but also offer the

pportunities to better manage the BYOHs. 

.4. Multi-level profiling and H-M-L model 

In previous subsections, we only present the study on each

ndividual dimension, which shows the interesting profiling re-

ults. In this section, we take a step further to conduct the cross-

imension analysis for a deeper investigation. We find that nearly

alf of the BYOHs are mobile zombies. The mobile zombie behavior

an have significant implications for management purposes. First

nd foremost, this behavior is potentially problematic as IP ad-

resses are often a limited resource. As a result, there is a need

o allocate IPs in a more efficient way, for example, by not allo-

ating IPs to known zombie devices. Second, it is a useful obser-

ation in estimating the required bandwidth for a group of BYOHs

nd defining user profiles. We highlight how our profiling method

elps us identify interesting groups of BYOHs. 

Days of appearance of both Zero Traffic and Non-zero Traffic

YOHs: We present the distribution of devices by number of days

f appearance in Fig. 5 . We can see that most of the zero traffic

YOHs appear on few days, typically one or two. Furthermore, in

ig. 6 , we plot the number of non-zero and zero traffic BYOHs that

ppear on each calendar day. We observe that both non-zero traffic

nd zero traffic BYOHs have similar distributions in terms of days

f appearance within a month, although there are fewer zero traf-

c BYOHs. 

Intrigued, we investigated further and found that zero-traffic

YOHs that appear on only one day have a similar distribution

cross different weeks during the month. In other words, there is a
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Table 4 

Average IP requests per BYOH for each group. 

Group Avg. # IP requests 

Non-zero Traffic BYOHs 66 .8 

REG Non-zero Traffic BYOHs 95 .7 

NRE Non-zero Traffic BYOHs 21 .7 

Zero Traffic BYOHs 34 .3 

REG Zero Traffic BYOHs 84 .1 

NRE Zero Traffic BYOHs 16 .6 
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airly consistent presence of vagabond devices on a daily basis. In

able 4 , we show the average number of IP requests for each group

for the month of May). Non-zero traffic BYOHs have a higher in-

ensity of IP requests than zero traffic BYOHs, as expected. In fact,

on-zero traffic BYOHs place, on average, twice as many IP requests

s zero traffic BYOHs. Such an observation can help administrators

stimate the number of DHCP requests, which indicates a potential

se of our device-centric profiling techniques. 

Given this difference, we investigated whether there is a corre-

ation between traffic volume and IP lease time. In Fig. 7 , we show

he distribution of IP lease times for non-zero traffic and zero traf-

c BYOHs. The durations of IP lease time between zero traffic and

on-zero traffic BYOHs are similar, which shows that a single IP

llocation strategy is being used across all devices. This is an inef-

cient use of scarce IP resources, and a differential group-based IP

llocation is necessary. 

Regularity of Non-zero Traffic BYOHs: We now proceed to fur-

her profile non-zero traffic BYOHs in more detail, in a way that

ill help us define the thresholds for our H-M-L model. We focus

his analysis on non-zero BYOHs to understand how device traffic,

nd to an extent user behavior, changes from day to day. 

In Fig. 8 , we present the number of days of appearance for REG
nd NRE BYOHs. As expected, REG BYOHs appear more frequently

han NRE BYOHs and most of the NRE BYOHs show up on fewer

han 8 days. As a point of reference, some students have classes
n Tuesdays and Thursdays, which would lead to 10 days of ap-

earance in our dataset. In addition, we see that 20 days seems

o also be an important threshold in this distribution, that aligns

ith users appearing more than four days a week, every week,

ointing to full-time students and campus employees. This higher

requency of appearances of REG BYOHs on campus networks re-

ults in a higher number of IP lease requests to the DHCP server.

n Table 4 , we can see that, in the categories of non-zero traf-

c BYOHs, the intensity of IP requests from REG BYOHs is sig-

ificantly larger (by a factor of four) compared to that of NRE
YOHs. Table 4 shows similar results when comparing REG with

RE in zero traffic BYOHs. Again, these observations can be help-

ul for estimating and provisioning purposes. An NRE BYOH is more

ikely to have a zero-traffic day , a term we use to describe a day

n which a BYOH is present but with no traffic activity. In Fig. 9 ,

e see that the number of zero-traffic days in most REG BYOHs is

reater than 2, largely skewed towards more days. This indicates

hat even non-zero traffic BYOHs do not necessarily use the net-

ork every day they appear. This is another opportunity for im-

roving the efficiency of IP address usage, assuming the ability to

dentify such days. REG BYOHs exhibit more variable daily traffic be-

avior. In Fig. 10 , we plot the distribution of the coefficient of vari-

nce of the daily traffic volume for REG and NRE BYOHs. We see

hat roughly 23% of REG BYOHs have a coefficient larger than 1

 x = 1 , y = 77 ) which indicates high variability. 

In summary, there are significant differences between the be-

aviors of REG and NRE BYOHs. This suggests that: (a) our classi-

cation can identify groups with distinct behaviors, and (b) estab-

ishing different management strategies can help optimize resource

tilization. 

Using the H-M-L model for a deeper investigation: Table 5

hows the thresholds that we identify using our H-M-L based clas-

ification of BYOHs. In Table 6 , we show the distribution of non-

ero traffic REG BYOHs (in percentages) for all possible groups in

hese two dimensions. The table provides a quick and intuitive
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Table 5 

Group definitions in the H-M-L model. 

L M H 

Days of 

appearance [0 ,8) [8 ,20) [20, + ) 

Daily average 

traffic (MB) [0, 1 .13) [1 .13, 10.01) [10 .01, + ) 

Table 6 

Days of appearance v. daily traffic in- 

tensity in REG non-zero traffic BY- 

OHs. 

Days of Daily traffic 

appearance L M H 

L 17% 9% 3% 

M 29% 22% 8% 

H 4% 5% 3% 

Table 7 

Top 5 domains for HL and LH BYOHs in 

the REG group (percentage is the traffic 

fraction of total traffic from that group of 

devices). 

HL BYOHs LH BYOHs 

Google (22.09%) Google (21.09%) 

Facebook (8.18%) Amazon (16.03%) 

Amazon (7.25%) Level3 (12.15%) 

Twitter (4.76%) LimeLight (9.24%) 

NTT (4.4%) Akamai (7.11%) 
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snapshot of the activity. For example, we can identify a specific

group of interest that we want to monitor and analyze further, or

we can observe a surprising change in the size of a group. Such a

change could signal a new trend in the user base. For example, an

increase in the LH groups could indicate the emergence of a new

high-bandwidth application used by low-appearance users. Overall,

these fine-grained profiles could be correlated with the operational

issues brought by BYOHs. 

As a case-study of our model, we further analyze two of the re-

sulting groups. We find that 3% of REG BYOHs are in group LH: low

days of appearance and high daily average traffic. In addition, 4% of

REG BYOHs form group HL: high days of appearance and low daily

average traffic. These two groups of BYOHs have rather counter-

intuitive behaviors, which we investigate next by examining the

applications that these two different groups use. To do that, we re-

solve the IP addresses to domain names, as we do not have access

to the HTTP headers. In Table 7 , we present the top five domain

names for LH and HL BYOHs. We observe that most of the traffic

in either group is with Google. This is not surprising, as Google is

one of the most frequently accessed web sites and Google appli-

cations (e.g., Google Maps, Google Voice, Gmail) are widely used

by BYOHs. Similarly, Amazon’s cloud services serve many popular

smartphone applications (e.g., Hootsuite and Foursquare). In the HL

group, we can see that a sizable fraction of traffic goes to Facebook

and Twitter, which are the most popular social network applica-

tions. Facebook typically uses Akamai to serve sizable static con-

tent (e.g., video), and uses its own servers to serve dynamic con-

tent directly (e.g., wall posts). However, in the LH group, a lot of

traffic goes to content delivery networks (CDNs), such as Limelight

and Akamai, that deliver large volume traffic (e.g., video). These

domain differences between LH and HL groups could explain why

LH devices generate a lot of traffic, while HL devices do not. At the

same time, it also provides an indication of the interests of end-

users in that group. 
. The implications of our study 

So far, we have applied the Brofiler framework to profile BYOHs

long multiple dimensions and to identify groups with common

ehaviors. Here, we close the loop by showing how Brofiler could

elp administrators better manage their network. We revisit the

mplications that our observations have, and propose some recom-

endations to some of the operational issues that we have identi-

ed focusing on the efficient use of resources. 

A major advantage of our approach is that it is easy to deploy

ithout requiring any software installation on the device, or de-

ice registration. It can be deployed by a network administrator,

nd it will learn BYOH behavior on-the-fly, and label and manage

evices according to a desired strategy, as we explain below. How-

ver, the administrator has the ability to label specific devices (e.g.

he tablet of the president) and treat them differently. 

Note that we do not claim that our approaches are the best (or

he only) approaches. Rather, we showcase the benefit of having

 deep and intuitive understanding of the BYOH traffic, which our

pproach provides. 

.1. Informed DHCP address allocation 

In the previous sections, based on the profiling results from the

erspective of the protocol and control plane in Brofiler, we found

hat the operation of DHCP in our network is far from ideal: (a)

YOHs issue a large number of non-conforming IP lease requests,

b) nearly half of BYOHs acquire IP addresses, but do not send any

raffic over campus network, and (c) many “vagabond” BYOHs ap-

ear in the campus network. To address these issues, we propose

 strategy, based on two design principles, for tailoring IP lease al-

ocations to BYOHs. 

Principle #1: Device-centric privileges: The on-the-fly learning

f our approach could lead to the creation of device profiles, which

an be stored and then used to provide different privileges and

ermissions to each device. 

One reasonable implementation of device-centric management

ould be as follows: (a) all never-before seen devices are given IP

ddresses, (b) verified zombie devices may be entered in a black-

ist that will preclude them from procuring an IP address, unless

he user makes an explicit request to be removed from that list,

c) there could be a privileged-list of devices that receive prefer-

ntial treatment, with respect to DHCP but also bandwidth as we

ill see later, and (d) periodically, we could flush old entries in

he database and the lists. This way, we allow visitors to use the

etwork as guests, but we eliminate inefficiencies for devices that

o not use the network anyway, and allow administrators to hard-

ode schemes for particular devices. 

Principle #2: Compliance validation: To cope with non-

onforming IP lease requests, we mandate that the DHCP server

gnore non-conforming IP lease requests by maintaining a BYOH’s

urrent state of IP lease allocation. If a BYOH currently holds one

ctive IP lease, the DHCP server will ignore any subsequent non-

onforming or unnecessary IP lease requests. 

Our intention is not to find the optimal protocol. Rather, our

oal is to reveal that some simple strategies can be used to im-

rove DHCP operation. All our principles require the system to

aintain client state. The features necessary to implement such a

cheme are supported, though not required, by the DHCP RFC [20] .

AT (Network Address Translation) is an alternative, but NAT has

ts own issues that sysadmins often want to avoid [21] . Managing

ddress allocation properly is an issue of efficient resource usage

hich management approaches should strive for, as resource waste

an be particularly problematic in large networks. 
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Table 8 

The number of affected devices after enforcing blocking 

strategies at a group level. 

Blocking Strategy Affected users Affected flows 

(%) (%) 

Block-All-IS 42 19 

Block-NRE-IS 14 2 .7 

Block-All-IS-HTTP 40 11 

Block-NRE-IS-HTTP 12 1 .8 
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.2. Data usage quotas 

The large number of BYOHs and the rapid growth in data de-

ands can potentially complicate the task of managing the campus

etwork and fill up the available capacity. We found that in our

ase, this increase is driven by a small fraction of BYOHs: 6% of BY-

Hs generate 82.1% of total BYOHs’ traffic, as noted in Section 4.2 .

he lopsided data usage patterns of these “heavy users” could af-

ect other users. Therefore, we set out to recommend to place lim-

ts on the data usage per device. In a manner similar to data plan

imits imposed by commercial wireless cellular carriers or ISPs, we

ropose to impose a maximum volume of data that each BYOH

onsumes per month and per day, namely monthly quota and daily

uota, which may be tailored by the device profiles obtained from

he Brofiler. We envision that it could ensure the fair share of

andwidth. 

In practice, bandwidth management is a concern: the consulted

etwork administrators said that they impose traffic shaping near

heir egress point of the network. They also expressed the de-

ire to ensure that users get a “fair” share of bandwidth, and

hey were interested in the idea of grouping users based on their

rofiles (e.g., users who are streaming) and managing the usage

er groups. limiting heavy-hitters on a daily or monthly basis can

nsure that light users are not dominated by heavy-hitters. The

pecifics of the solution have to do with the network architecture,

he user base behavior, and the optimization goals (fairness, dif-

erentiated services, resource utilization, etc.), and extends beyond

he scope of this work. 

.3. Towards enhancing the access control 

Security is one of the most pressing BYOHs concerns inside the

etwork perimeter of a campus or an enterprise. Management of

ecurity risks introduced by BYOHs is still in its infancy [4] . The

oncern stems from: (a) lack of standard access control schemes

or BYOHs in contrast to the well established schemes and tools

o ensure the safety of laptops and desktops, (b) large variations

mong devices OS or device OS versions, and (c) the vulnerabili-

ies introduced by apps, easily bought for as little as $0.99, whose

ehavior and potential risks are not well-understood. 

Brofiler’s profiling can provide a basis to start the discussion on

roviding security enhancement, and enable administrators to be-

in reasoning about the access control scheme. As a showcase, we

iscuss how an administrator can think about enhancing the access

ontrol. This case-study is more tentative than the two previous

tudies, where we demonstrated tangible benefits. Nevertheless,

e show that having intuitive groups can provide a good starting

oint for developing a better access control for BYOHs. 

We now state our assumptions; while reasonable to us, in prac-

ice the specific needs for the access control might vary across or-

anizations or administrators. For the sake of the case-study, we

ocus on non-zero traffic BYOHs. Specifically, we could assess the

ecurity threat of each such device considering three aspects of

ts behavior: (a) is the device talking to Internal Servers (IS)? (b)

oes it belong to the group of non-regular devices (NRE)?, (c) does

he device use unencrypted HTTP flows (HTTP)? Clearly, the three

spects capture indications that the BYOH may pose a risk. The

rst aspect captures whether the device accesses sensitive infor-

ation of the institution. The second aspect represents the reg-

larity of the BYOH with the consideration that a regular BYOH

ould be treated differently from an ephemeral BYOH. The third

spect provides an indication of how security-sensitive is the de-

ice owner or the apps that the device runs. For example, using

nencrypted traffic could allow an eavesdropper to gain access to

ensitive personal information, and subsequently, allow the hacker
o impersonate that user, including potentially the student account,

nd thus putting the network at risk. 

While this is not a comprehensive list of security aspects—

epending on the scenario and the network configuration, other is-

ues may also be of interest in the context of device security—note

ow Brofiler-supplied information allows administrators to quan-

ify risk and design approaches to mitigate this risk. 

Given this profile-driven approach, an administrator could re-

trict access to or completely block traffic to potentially sensitive

esources for certain groups of BYOHs. 

For example, let us assume that the goal is to protect the inter-

al servers from being accessed by BYOHs that raise concerns, e.g.,

agabonds. 

Based on the groups obtained above, we consider enabling dif-

erent blocking strategies per group. We also provide an assess-

ent of how many BYOHs will be affected by such a restriction

n Table 8 . Block-All-IS means we block all the connections that

alk to internal resources from BYOHs. Block-NRE-IS means we only

lock the NRE BYOHs that talk to internal servers. Block-All-IS-

TTP or Block-NRE-IS-HTTP means we block BYOHs with unen-

rypted HTTP flows from all or NRE BYOHs correspondingly. To

um up, we have illustrated how behavioral profiles and groups

acilitate an intuitive discussion on how to develop the access

ontrol for BYOHs. Evaluating the effectiveness of the aforemen-

ioned strategies in a real deployment is beyond the scope of this

ork; nevertheless, Brofiler has allowed us to draw up manage-

ent strategies that have intuitive appeal. 

. Related work 

No prior effort s have f ocused on comprehensively understand-

ng the behavior of individual BYOH on multiple dimensions, with

 view of BYOH management on campus networks. 

Campus network studies. Prior research on DHCP has focused

n studying and optimizing DHCP performance [22,23] , which is

elated to the DHPC part of our work. However, these are ear-

ier studies, around 2007, when smartphones and tablets were not

idely used. In their work, a fingerprinting technique was first

roposed to classify devices by type and to manage IP lease time

ccording to device type [16] . In our paper, we use a DHCP point

f view to capture the operational behaviors of BYOHs in both the

rotocol and control plane, which could offer a fine-grained be-

avior profiling of BYOHs with a new dimension. Very few prior

ffort s f ocus on BYOH management over campus WiFi networks,

hich is our main focus here, and those efforts had largely differ-

nt goals, from the characterization of traffic [12,24] , network per-

ormance [25] to mobility [26] . However, smartphones were only

idely adopted recently, which makes these work not suitable for

urrent networks that accommodate BYOHs. Later, Afanasyev et al.

27] indicated that the number of smartphone users significantly

ncreased in WiFi networks, which again proves the importance

o manage these BYOHs. Deshpande et al. [28] compared the per-

ormance between 3G and WiFi networks and found that signif-

cant benefits could be obtained through the hybrid network de-

ign. Gember et al. [10] have studied the user-perceived perfor-
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mance differences between handheld devices and non-handheld

devices(e.g., laptops) in campus networks. They found that smart-

phones tend to have smaller flow size and smaller range of flow

durations. However, they studied only at the aggregated network

traffic from these devices. Chen et al. [19] have studied the net-

work performance of smartphones in campus networks, focusing

on delay and congestion, which is different with our focus. In con-

trast, we focus on BYOH management from the point of view of

the network administrator and focus on individual BYOH behavior,

and study and group their behavior-based profiles, which are not

addressed in the aforementioned studies. 

General smartphone studies. In the broader area of smartphone

studies, several studies focus on general modeling of wireless and

smartphone traffic characterization focusing on public WiFi, 3G

cellular networks, or residential networks. These studies only fo-

cused on the aggregated traffic, and also do not look at the BYOH

management problem from the point of view of a network ad-

ministrator. Falaki et. al. [8] , as the first step, have analyzed net-

work traffic from 43 smartphones and focused on TCP transfer per-

formance, network congestion, and delay issues. The same group

[9] also analyzes the diversity of smartphone usage, e.g., user inter-

actions with devices and smartphone application usage patterns, in

an effort to improve network and energy usage, which is not our

focus in this paper. Later, Maier et al. [11] have analyzed smart-

phone traffic from the home, by analyzing DSL line traces. From

the large-scale infrastructure perspective, Shafiq et al. [29] have

studied the traffic of smartphones as aggregated over backbone In-

ternet links. Sommers et al. [30] compare the performance of cel-

lular and WiFi in metropolitan areas. Gember et al. [31] developed

guidelines to accurately assess smartphone performance from the

perspective of in-context. Nikravesh et al. [32] observed significant

performance differences of mobile devices across different carri-

ers, different access technologies, different geographic regions and

over time. Erman et al. [33] investigated the impact of the large

event on the resource provision of wireless networks. Fukuda et al.

[34] studied the effectiveness of mobile traffic offloading in the

wild. Ashkan et al. performed a large-scale measurement study

to improve the visibility into mobile network performance [35] .

Moreover, mobile apps are the important element in the BYOH de-

vices. Huang et al. [36] have studied smartphones on 3G networks,

and focused on application performance issues. PROTEUS was de-

veloped to passively collect network information and forecast fu-

ture network performance for mobile apps [37] . Qian et al. [38] in-

vestigated Redundancy Elimination techniques to achieve the re-

duction of smartphone traffic. Huang et al. [39] studied the im-

pact of protocol and application behaviors on the network perfor-

mance based on a large-scale LTE measurement. A tool QoE Doc-

tor was proposed to better understand Quality of Experience prob-

lems across multiple layers [40] . A large scale traffic study on thou-

sands of cellular towers was conducted to derive a powerful model

on the traffic pattern in urban environment [41] ,and this model

could enable various applications. Again, all these work focused on

general network performance and application issues from smart-

phones, e.g., delay, congestion, application usage and optimization.

In addition, MAPPER was developed to enforce management poli-

cies on diverse smartphones apps [3] , which showed unique chal-

lenges to manage BYOH devices in the enterprise networks. 

Network management related work. Network management has

been studied extensively by researchers on different topics. For ex-

ample, some studies focused on the network management’s mid-

dleware and policy implementation. Rendon et al. [42] jointly used

the situation management and mashup technologies for the net-

work management in order to facilitate the daily work of net-

work administrators. Han et al. [17] surveyed a variety of policy

languages that are used to express the intentions of network ad-

ministrators and explained how the languages are used to imple-
ent the policies. Due to the blooming of Internet of Things(IoT)

evices, Sicari et al. [43] presented a framework to enforce the

olicies for the security and data quality issues from IoT devices

nd services. Our work focused on profiling the behavior of BY-

Hs, which could later help administrators to develop the corre-

ponding policies and integrate them into the policy enforcement.

ecently, software-defined networking has been introduced to net-

ork management that provides the flexible management of the

etworks. For example, a software-defined networking based pol-

cy enforcement framework was proposed to efficiently manage

he traffic though the middle-boxes [44] . In Cellular networks, Sou

t al. [45] presented a reference model to perform the application

wareness with the data flows in order to realize the application-

ased charging management. Furthermore, an advanced mobility

anagement approach was proposed to manage the two-tier LET-

dvanced network by jointly considering the impact of user mobil-

ty, interference, and power consumption [46] . In addition, Sanchez

t al. [47] presented an experimental study on the connectivity

anagement on three mobile operating systems, Android, iOS and

indows. This work focused on the connectivity management in

andover technologies, which is different with our work. A scalable

olution was proposed to automatically balance the traffic from

he heterogeneous network operation environments [48] in order

o optimize the target network. All these works focused on ei-

her traffic optimization, or middlewares, or policy language and

nforcement. However, our paper focused on how to manage the

YOHs, which are not controlled by installing any software, effec-

ively and systematically via profiling the individual BYOH behavior

rom a multi-dimensional perspective. 

. Conclusions 

Taking a network administrator’s point of view, the key con-

ribution of our work is Brofiler, a systematic approach for pro-

ling the behavior of BYOHs along four dimensions: (a) Protocol

nd Control Plane, (b) Data Plane, (c) Temporal behavior, and (d)

cross dimensions using the H-M-L model by considering the dif-

erent levels of intensity in each dimension. We arguably provide

he first multi-dimensional study of BYOHs, which shows how our

rofiling can provide interesting insights. Finally, we show that us-

ng profiles, a network administrator can develop effective strate-

ies for managing BYOHs. 
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