
Whom Does Your Android App Talk To?

Xuetao Wei‡ Iulian Neamtiu∗ Michalis Faloutsos∗
‡University of Cincinnati ∗University of California, Riverside

xuetao.wei@uc.edu neamtiu@cs.ucr.edu michalis@cs.ucr.edu

Abstract—Smartphone privacy and security work has focused
mostly on malicious apps. We take a different angle by ques-
tioning whether good apps suffer from a lack of judgment and
interact with “bad” websites. We use the term bad websites to
refer to entities that engage in dangerous or annoying activities
that range from distributing malware, to phishing and overly
aggressive ad spamming. The focus of our work is this relatively
neglected aspect of security: “Whom does an app talk to?” In
this paper, we design and implement AURA, a framework for
identifying the hosts that an app talks to and evaluating the risks
this communication entails. AURA makes use of both static and
dynamic analysis. We studied 13,500 popular free Android apps
that connect to 254,022 URLs and 1,260 malicious Android apps
that connect to 19,510 URLs. Our main contribution is showing
that good apps pose security risks as they contact at least one
website that: (a) distributes malware (8.8% of apps), (b) are in a
blacklist (15% of apps) based on the classification by VirusTotal
and Web of Trust. Our work can raise awareness that even good
apps need to be carefully evaluated, especially as people become
more concerned about smartphone security and privacy.

I. INTRODUCTION

Apart from portability and form factor, the popularity of
the smartphone platform is due to apps that are providing
more and more essential functions. At the same time, the apps
collect more information about us with sensors that offer a
wide range of context-sensitive functionality, from GPS- and
compass-assisted navigation to song recognition to exercise
tracking to picture geo-tagging and sharing. This is illustrated
in Figure 1: the private data (e.g., location, phone state, list
of contacts) can be leaked by apps to all kinds of websites:1
good, bad, or somewhere in-between.

App	
	 	

Loca&on	
Phone	 state	

Email	
Contacts	

Bad	 Websites	

Ad
ve
r&
sin

g	
W
eb

sit
es
	

Tr
ac
ki
ng
	 W

eb
sit
es
	

Good	 Websites	

Fig. 1. Even good apps communicate with websites of variable
reputation, which can raise a range of concerns.

We focus on a specific security and privacy question: Do
good apps talk to “bad” websites? We use the term good
apps here loosely to refer to apps that come from reputable
developers, and widely vetted by large numbers of users. For

1Websites, domains, hosts and entities are used interchangeably in our paper.

the term bad websites, we use it to refer to hosts and domains
that have been labeled as inappropriate by malware repositories
such as VirusTotal [3] and trustworthy reputation engines such
as Web-Of-Trust (WOT) [4]. In general, these bad websites
engage in dangerous or annoying activities that range from
distributing malware, to phishing to overly aggressive ads
and spamming, as we discuss in Section III. Adopting the
terminology from WOT, we define the terms: (a) malicious
website, implicated in distribution of malware, (b) bad website,
that appears in blacklists, and (c) low-reputation websites that
have a user rating of less than 60, with each category including
the previous in the order presented. For labeling a website, we
rely on information and the lists from WOT and VirusTotal,
which are widely-used and widely considered as reference
sources.

We focus on apps’ network communication, since it is an
obvious vector for security attacks: Internet access is a de
facto capability for almost all apps. On the Android platform,
most apps request Internet permission, while all apps in the
iOS App Store have Internet access by default without even
asking the user. It is also highly unlikely that apps will refrain
from getting Internet access: (a) many apps needs access to the
Internet to operate, and (b) many apps, especially the free ones,
seek revenue by either showing ads or collecting information
about the user and her behavior, such as mobility patterns. So
the question is: does Internet access pose concerns for security
and privacy, even for good apps? Interestingly, even identifying
which websites an app talks hides several subtleties.

In this paper, we propose AURA (Android Url Risk
Assessor), a systematic approach to identifying security and
privacy concerns for apps based on the websites that an app
talks to. The first step is to comprehensively identify all such
websites for a given app, which is non-trivial. We propose
and compare the use of both dynamic and static analysis, and
we argue that static analysis is necessary as many embedded
websites are not contacted, even during exhaustive test runs.
Second, we provide a taxonomy of websites using both mal-
ware detection and crowdsourcing efforts to capture a wide
range of annoying or dangerous activities. We study 13,500
popular free Android apps from Google Play [1] that connect
to 254,022 URLs and 1,260 malicious Android apps [21] that
connect to 19,510 URLs.

The results of our work can be summarized in the following
points.

a. Developing AURA. We develop a systematic and com-
prehensive approach focusing on a lesser-studied security
aspect of apps, which uses both static (bytecode) analysis
and dynamic (execution) analysis when available. We employ
widely-used classification labels for the bad websites, in order
to make reporting of results consistent with industry standards.

Static

Dynamic

Risk
 Assessment

APK
Malicious
websites

Unsuitable for
children

Insecure
communication

WOT

VirusTotal

URL

Fig. 2. AURA architecture.

b. The importance of static analysis. We show that dynamic
analysis cannot match the thoroughness of static analysis. Even
when apps are explored thoroughly (on average for two hours
each) using high-coverage automated tools, dynamic analysis
identifies less than half the URLs static analysis does. This
suggests that using static analysis provides significant insight
into an app’s potential communication.

c. Good apps talk to bad websites. We find that good
apps can be interacting with questionable websites: for our
examined apps, 8.8% communicate with malicious websites,
15% talk to bad websites, 73% with low-reputation websites
(as defined above), and 74% of the apps talk to websites
containing material not suitable for children.

d. Understanding bad intentions. We find the following
intentions of bad websites: 43% of bad websites try to phish
sensitive personal information or confidential financial infor-
mation, e.g., credit card details, while 42% of bad websites
are used for distribution of rootkits, trojans, viruses, malware,
spyware, rogues and adware, and creating virus attacks. The
rest of the bad websites, which account for 15%, intrusively
and aggressively sell ads. These intentions vary from harming
devices to stealing confidential data to annoying users.

Potential uses and deployment: We envision using
AURA in several different ways.

a. Advisory stand-alone tool. AURA could be used as
an advisory stand-alone tool, where users submit the apps of
interest, and receive an assessment; the set of users includes
researchers that want to further study app security from an
Internet access point of view.

b. Expanded app information. AURA could enhance the
information presented to an user prior to installing an app. The
Google Play market information panel could include AURA’s
assessment as a part of the profile of the app as a more refined
explanation of the Internet Access permission.

c. App filtering. AURA could also be used as a filter before
the app is allowed to enter Google Play. The market owner,
such as Google, Samsung or Amazon, could force developers
to evaluate their apps with AURA, and allow apps on the
market only if they meet certain requirements (not talking to
malware-hosting sites seems like a good requirement).

d. A component in a larger security system. AURA could
be integrated into other static and dynamic analysis tools to
provide more comprehensive risk information for each app.
The interactions between the developer and market administra-
tors are encouraged during the development and maintenance

of the app.

Limitations: Our primary focus is to detect risk asso-
ciated with good, well-intended apps which contain URLs to
malicious or simply questionable domains. On the flip side,
a malicious app developer who wants the app to contact a
bad website has a lot of opportunity to hide and make the
detection difficult. For example, one can obfuscate the website
name, making it difficult to detect through static analysis;
or create indirections, perhaps even use fast flux networks,
where the redirection target varies dynamically over time.
Nevertheless, AURA was capable of discovering malicious
websites in malicious apps, as discussed in Section III-B.

II. APPROACH

We now proceed to presenting our approach by discussing
each component of AURA as shown in Figure 2. Determining
the URLs an app talks to is challenging. Static analysis (in this
context) means extracting the URLs embedded in the app by
analyzing the app bytecode. Dynamic analysis means observ-
ing the URLs accessed by the app dynamically, by instrument-
ing the app or the smartphone. We performed a preliminary
investigation into the suitability of each of these techniques by
comparing the statically-discovered URLs with dynamically-
discovered URLs. We found that, even when driven by sys-
tematic exploration tools, dynamic analysis misses many more
URL compared to static analysis for all the selected apps.
Hence for our large-scale investigation on the set of 13,500
apps we used static analysis only.

A. Static Analysis Component

An Android app is distributed as an .apk file which con-
tains the compressed bytecode of the app (a .dex file) along
with app resources. For each app, we decompiled the .dex
file, and scanned it to find the URLs embedded inside the app.
Next, we extract the domains from these URLs. We need to be
clear that a domain is different from a URL. One URL could
be one domain directly (e.g., www.facebook.com) or only one
resource path in one domain (e.g., www.facebook.com/login).
Multiple URLs may have the same domain.

Note that static analysis could miss URLs when websites
use redirection, dynamic content, JavaScript, etc. However, we
argue that our method achieves a very good approximation of
the number of entities the app talks to. The domains we find are
the least domains (“lower bound”) that the app will talk to. As
discussed shortly (Section II-C and Table I), we have observed
that our static method works significantly better than just
dynamically running apps. In AURA, we envision that static
analysis and dynamic analysis should work together. If extra
domains are found during app usage, the dynamic analysis
component could complement the static analysis component,
as we will see in Table I.

B. Dynamic Analysis Component

Dynamic analysis requires a set of inputs or tests to drive
execution. Unfortunately, relying on users to manually produce
such suites is ineffective. First, previous studies show that it is
difficult and expensive to dynamically analyze apps as they run
on the phone [20]. Second, other studies have shown that even
when combining usage data from multiple users, only about

30.08% of an app’s screens and 6.46% of an app methods are
explored [17]. To alleviate the manual burden yet achieve good
coverage, we used A3E, a tool which automatically explores
apps in a systematic way [17]. A3E automatically generates
the events to test each app thoroughly (sometimes over several
hours) to cover on average around 60% of the screens and 33%
of the methods, which is far superior to manual efforts. Finally,
during execution, we use tcpdump to collect the traffic data
and identify the traffic entities.

C. Why is Static Analysis Preferable?

Dynamic analysis critically hinges on the availability of a
good (high-coverage) testing suite, so that all the facets of an
app can be explored. As argued above, even sophisticated tools
such as A3E have limited reach in terms of how thoroughly
an app is explored. In the following, we demonstrate the
effectiveness of static analysis when compared with dynamic
analysis. In order to ensure representative results, we selected
our test apps by following rigorous criteria as we did in
previous work [20]. In Table I, we present a comparison of
the two analyses for each app, and over all apps. The first
column contains the app name. The second column shows
the exploration time required by dynamic analysis. Note that
dynamic exploration is thorough, with apps being explored
on average for two hours, which is far longer than the typical
average app user session (71.56 seconds) [7]. The third column
shows the total number of URLs discovered by dynamic
analysis for each app; on average, 6.1 URLs per app. The
fourth column shows the number of URLs discovered via
dynamic analysis that could not be found via static analysis.
The last two columns show the number of URLs discovered
by static analysis (total and the extra URLs compared to
dynamic analysis). We observe that static analysis finds on
average 11.9 domains that dynamic analysis does not find,
whereas dynamic analysis finds on average 2.8 domains that
static analysis does not. Therefore, we chose static analysis as
our preferred method for performing the rest of the study. An
additional advantage of static analysis is scalability: as URL
extraction and classification takes on the order of seconds per
app, static analysis is particularly suitable for analyzing large
sets of apps.

D. Classification and Evaluation

In this section, we try to demystify the usage of network
entities and evaluate the risks from both technical and crowd-
sourcing perspectives. Typically, antivirus software might pro-
tect the device or app when it comes to viruses and malware,
but dangers such as scams, phishing and untrustworthy online
stores are hard to detect by traditional technical methods.
Furthermore, it is non-trivial to classify an app as malicious,
privacy infringing, or benign. In addition, a recent study from
McAffee, a major industrial security company, shows that the
dividing line between benign and malicious apps is not so
clear and there are increasing numbers of risky (albeit not
malicious) apps in app stores [2]. AURA aims to address
this. As we mention above, we demystify the usage of URLs
and domains and use two-level analysis (both technical and
crowdsourcing approaches) to evaluate the risks associated
with the URLs. We first use traditional technical methods (the
VirusTotal database) to scan the URLs to determine whether

App Dynamic analysis Static analysis
Time Total Extra Total Extra

(minutes) URLs URLs URLs URLs
Amazon 131 5 2 10 6
AdvncdTaskKiller 47 0 0 3 3
AdvncdTaskKiller($) 58 0 0 0 0
BBCnews 52 13 8 5 2
CNN 161 8 6 12 10
Craigslist 91 7 3 7 3
Dictionary.com 131 19 15 13 8
Dictionary($) 156 0 0 13 13
Dolphin Browser 179 6 0 14 12
ESPN 44 1 1 7 7
Flixster 219 9 4 20 16
IMDB 126 4 3 17 17
InstantHeartRate 51 0 0 27 27
InstantHeartRate($) 49 0 0 27 27
Pandora 111 3 0 19 19
Picsay 121 0 0 3 3
Picsay($) 129 0 0 3 3
Shazam 239 12 4 24 20
Shazam($) 230 12 4 24 20
Weatherbug 107 14 3 16 16
Weatherbug($) 124 14 1 16 16
ZEDGE 114 8 8 16 15

Average 121 6.1 2.8 13.4 11.9
TABLE I. SUMMARY OF STATIC AND DYNAMIC ANALYSES; “EXTRA”

REFERS TO DOMAINS FOUND BY ONE ANALYSIS BUT NOT THE OTHER.

the URL is malicious. Next, we further evaluate the domains
the app talks to. We then use the Web of Trust (WOT), a
crowdsourcing approach, to determine the nature (e.g., scam,
phishing, malware hosting) and reputation of domains. WOT
is widely used by many enterprises, e.g., Facebook; it is
based on a crowdsourcing approach that aggregates feedback
from a global community of millions of users who rate and
comment on domains based on their own experiences [4].
WOT allows users to rate a domain in terms of trustworthiness
and child safety; then it aggregates user ratings as well as
information from other sources into a rating along each of
the dimensions as well as a combined score, from 0 to 100.
Low reputation is defined by WOT as a website having a
reputation score < 60, and this low reputation is assigned due
to: bad customer services, misleading advertising, distributing
malware and phishing users’ information, etc.

Using WOT enables AURA to reveal the threats that
only humans can spot (via crowdsourcing), such as scams,
unreliable web stores and questionable content, which is
especially valuable as we want to understand who is using
our personal information. This complements the traditional
security solutions that protect smartphones against technical
threats such as viruses and other harmful software [4]. Detailed
analysis results for both URL and domains can be found in
Section III

III. EVALUATION RESULTS

Our study is based on a sizable number of apps, both
benign and malicious. After we apply AURA to these apps,
we obtain 254,022 URLs from 13,500 benign apps and 19,510
URLs from 1260 malicious apps. In the remainder of the paper,
with the exception of Section III-B where we discuss malicious
apps, all the findings are based on analyzing the 254,022 URLs
that the 13,500 benign apps talk to [16]. Note that the total
number of URLs was obtained by adding the number of URLs
for each app, so the dataset contains duplicates; we will discuss
this next.

1 admob.com 11 tapjoyads.com
2 android2020.com 12 mydas.mobi
3 twitter.com 13 adwhirl.com
4 facebook.com 14 w3.org
5 airpush.com 15 wikipedia.org
6 google.com 16 amazonaws.com
7 android.com 17 psesc.com
8 gstatic.com 18 inmobi.com
9 mobclix.com 19 paypal.com
10 flurry.com 20 hubblesite.org

TABLE II. TOP 20 DOMAINS USED IN APPS.

A. Malicious URLs

Malicious sites could be visited or interacted with when
using Android apps, which poses great risk especially when
more and more apps harvest the personal information stored
on the smartphone. We examined whether malicious URLs
are used in our benign app dataset. To find such URLs, we
cross-checked against VirusTotal’s database. We found that 286
URLs were malicious; these URLs spread across 1,187 apps
(8.8%). We believe that the 8.8% percentage is a significant
source of concern. In Section III-C we present a detailed
analysis of these blacklisted domains.

We now turn to investigating the domains (or hosts) in
our dataset, that is the trustworthiness of sites without regard
to the specific path. We found that 66% of the apps talk to
at least one domain that has very poor reputation; that 74%
of the apps talk to websites containing material not suitable
for children; that malicious apps do not necessarily talk to
ill-reputed websites; and that 15% of apps talk to blacklisted
domains. We also found that Android apps tend to have more
tracking services than advertisement services.

We also computed the top domains used in the 13,500
benign Android apps, and present the top-20 in Table II.
We can see that advertisements (e.g., admob.com, flurry.com,
airpush.com, inmobi.com), cloud services (e.g., amazonaws.
com), social networking services (e.g., twitter.com, facebook.
com) and payment solution services (e.g., paypal.com) are used
intensively among apps. We also plot the distributions about
the number of tracking and advertisement services of each app
in Figure 3(a) and Figure 3(b). We can see that both services
penetrate Android apps broadly, while Android apps tend to
have more tracking services than advertisement sources.

B. Trustworthiness and Child Safety

We now investigate the reputation of the domains extracted
from our URL dataset with respect to trustworthiness and child
safety. WOT assigns each domain a reputation score from 0
(very poor reputation) to 100 (very good reputation). We use
WOT’s domain reputation score to compute the reputation for
each domain in our dataset. If we could not find the reputation
for a domain in WOT’s database, we just assign that domain
a reputation score of -1. For each app, we compute several
reputation indicators: a minimum reputation, that is the lowest
reputation score across all the domains used in the app; an
average reputation, that is the average reputation score across
all the domains used in the app; and a reputation span, that is
the difference between the minimum and maximum reputation
score across all the domains used in the app;

Benign apps: Our analysis has revealed several reasons
for concern. We found that 63% of apps talk to at least one
domain for which WOT does not have any reputation score.

Blacklist type Description
malware Site is blacklisted for hosting malware
phishing Site is blacklisted for hosting a phishing page

scam Site is blacklisted for hosting a scam
TABLE III. DEFINITIONS AND DESCRIPTIONS OF BLACKLISTED TYPES

OF DOMAINS FROM WOT.

In addition, 73% of the apps talk to at least one domain that
has unsatisfactory reputation (score is less than 60). In detail,
68% of the apps talk to domains with poor reputation (score
is less than 40) and 66% of the apps talks to the domains with
very poor reputation (score less than 20). Unsurprisingly, these
trends are also reflected in the reputation span: 60% of the
apps have reputation spans exceeding 90 points, meaning the
apps mix high-reputation with low-reputation domains. These
findings indicate that there is significant cause for concern
even for benign apps: when these supposedly benign apps send
information to low-reputation domains, users can be exposed
to privacy and security risks.

Children use Android apps for many activities, e.g., gaming
or social networking. Hence we proceed to analyze how child-
safe the domains are, based on WOT’s definition of child-safe
domains. Similar to trustworthiness, we plot the child-safety
reputation score for benign apps in Figure 3(e). We observe
that 74% of the benign apps talk to at least one domain that has
unsatisfactory reputation based on user ratings, hence may not
be suitable for children (for example, the website contains adult
material). We believe that such findings could help Google
Play, the main Android app marketplace, to better regulate
app distribution in order to safeguard child safety.

Malicious apps: Intuitively, we would assume that
malicious apps would contain low-reputation of domains. We
do the same reputation evaluation for the malicious apps, and
we find that our intuition would be wrong—malicious apps
have similar distribution of trustworthiness and child safety
as benign apps. For example, in terms of trustworthiness Fig-
ure 3(d) indicates that about 55% of the apps have reputation
less than 15, and there are fewer apps with large reputation
spans. Child safety reputations (Figure 3(f)) are also similar to
benign apps.

This is unsurprising, since most malicious apps are created
by injecting a malware veneer in a benign app via repack-
aging [23]. The edge that AURA provides is the ability
to examine the reputation of domains the app talks to: it
is important to tackle Android app security not only via
traditional security techniques (that protect devices against
technical threats such as viruses and other harmful software),
but also via crowdsourcing. Hence our AURA approach can
help protect the device and the app against threats that only the
human eye can identify, such as scams, unreliable web stores
and questionable content.

C. Blacklisted Domains

Blacklisted domains are known for hosting malwares or
viruses, phishing and scam hosts, as shown in Table III.
Surprisingly, according to both VirusTotal and WOT’ratings,
AURA found that 2,025 apps (15% of the dataset) talk to
blacklisted domains. These blacklisted domains pose a wider
rage of dangers to end-users, e.g., users’ sensitive data could be
leaked to these domains for illegal purposes, or users could end
up downloading and installing malware. We provide a detailed

C
D

F

0

0.2

0.4

0.6

0.8

1.0

Number of Track Services Per App
0 100 200 300 400 500 600 700 800 900

0.8

1.0

0 50 100 150

(a)

C
D

F

0

0.2

0.4

0.6

0.8

1.0

Number of Ads Per App
0 1 2 3 4 5 6 7 8 9 10 11 12

(b)

Minimum Reputation
Average Reputation
Reputation Span

C
D

F

Reputation Score

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

(c)

Minimum Reputation
Average Reputation
Reputation Span

C
D

F
Reputation Score

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

(d)

Minimum Reputation
Average Reputation
Reputation Span

C
D

F

Reputation Score

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

(e)

Minimum Reputation
Average Reputation
Reputation Span

C
D

F

Reputation Score

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

(f)

Fig. 3. 3(a): Distribution of number of tracking services per each app; 3(b): Distribution of number of advertisement services per each app; 3(c): Domain
reputation distribution in benign apps; 3(d): Domain reputation distribution in malicious apps; 3(e): Child safety reputation distribution in benign apps; 3(f):Child
safety reputation distribution in malicious apps.

Category %
Advertising 28
Hosting Service 23
Entertainment Media 14
Short URL Service 8
Dating 7
Social 7
DNS service 6
Online Shopping 3
Finance 2
Misc 2

TABLE IV. CATEGORIES OF BLACKLISTED DOMAINS AND THEIR
PERCENTAGES.

break-down of blacklisted site categories in Table IV. As we
can see, they include advertising services, hosting services,
financial services, etc. We have manually browsed some of
the blacklisted domains to discover how they lure users in
and how they exploit users and there information. We provide
details on their nefarious behavior next.

1) Luring Users In: Blacklisted websites first use a “lure-
in” to entice users into visiting the website or clicking on
download links, namely, using these means:

1) “Big reward” return trap: cheat users by claiming
that they could obtain a big return after they buy the
advertised promotions from the website.

2) Adult content: using explicit images to lure users into
subscribing to services.

3) Intrusive ads, that is display ads that constantly pop
up, counting on user’s attrition to eventually click on
the ad.

4) Fake sites: present a deceiving front page (e.g., news,
government, bank, travel) to lure users into sharing
their sensitive and confidential information.

5) Exploited sites: sites or hosting services that are
compromised by malware.

6) Abusing short URL and DNS services: using an

URL shortener to hide their suspicious intentions and
redirect the users to malicious sites.

2) Inflicting Malicious Behavior: Once users are lured
into visiting websites, sharing information, or downloading
software, the blacklisted websites exploit users’ good faith by
inflicting malicious behavior in a variety of ways, which we
describe next.

Phishing sensitive personal information or confidential
financial information, e.g., credit card details. Once users share
confidential information, websites will resort to identity theft,
credit card abuse, and tracking users’ habits.

Distribution of rootkits, trojans, viruses, malware, spyware,
rogues and adware, and creating virus attacks. Once such ne-
farious software is installed, the malicious behavior can take a
variety of forms: corrupting the data saved on the smartphone,
which could render the phone unusable, information leaking
(e.g., financial information, passwords), and so on.

Intrusively and aggressively sell ads. Once such adware is
installed, it displays non-stopping pop-up ads that users cannot
dismiss/unsubscribe from.

Note that a blacklisted domain may have two or more of
these behaviors, which means some of these intentions can
co-exist.

IV. RELATED WORK

Most security studies focus on malicious apps or OS-
level exploits of good apps. There are several studies that
focus on identifying malicious apps [12], [21], [22], analyzing
the source code and the OS behavior and permissions [5],
[6], [8], [15], [16]. Then, there is a group of studies that
study network traffic patterns [9], [14], [20]. Other efforts
focus on user information leakage and attempt to detect the
specific information that is being leaked [11], [13], [18].
Systems that rely on instrumenting the whole software stack,
e.g., TaintDroid, can warn users when an Android app leaks
sensitive data over the network [19]. The developer can also
use the system OASIS to have control on the data that the
applications are using [10]. Finally, there are web-oriented
efforts, not necessarily focusing on smartphones, that evaluate
and label websites [3], [4] either focusing on malware, or
considering a wider range of goodness based on user-feedback;
we leverage such efforts to classify the websites here. However,
our focus is different, in that we want to find out: (1) Which
entities is the personal data potentially sent to (e.g., content
providers, advertisers)? (2) Are these entities trusted? These
questions are not answered in prior work.

V. CONCLUSION

We have presented AURA, an approach and tool that
can perform scalable risk assessment of the hosts Android
apps communicate with via static and/or dynamic analysis.
Experiments with using AURA on 13,500 popular benign
Android apps have revealed that a sizable share of good apps
talk to bad websites: these apps communicate with websites
that have low reputation, or outright host malware, or are
unsuitable for children. We believe that the scalable URL risk
assessment offered by AURA can potentially benefit Android
app users, developers and researchers.

ACKNOWLEDGEMENTS

This work was supported in part by funds from the
University of Cincinnati CECH, as well as National Science
Foundation awards CNS-1064646, NSF SaTC 1314935, and
FA8650-15-C-7565. The views and conclusions contained in
this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed
or implied, of the National Science Foundation or the U.S.
Government.

REFERENCES

[1] Google Play. https://play.google.com/store, September 2013.
[2] McAfee. http://www.mcafee.com/us/resources/reports/rp-mobile-

security-consumer-trends.pdf, 2013.
[3] VirusTotal. https://www.virustotal.com/en/#url, Sept. 2013.
[4] Web of Trust. http://www.mywot.com/, Sept. 2013.
[5] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.

Android Permissions: User Attention, Comprehension, and Behavior.
In SOUPS, 2012.

[6] A.P.Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
Permissions Demystified. In ACM CCS, 2011.

[7] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer. Falling
asleep with angry birds, facebook and kindle: a large scale study on
mobile application usage. In MobileHCI ’11, pages 47–56.

[8] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing Inter-
Application Communication in Android. In ACM MobiSys, 2011.

[9] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin.
A First Look at Traffic on Smartphones. In ACM IMC, 2010.

[10] M. Conti, E. Fernandes, J. Paupore, A. Prakash, and D. Simionato.
OASIS: Operational Access Sandboxes for Information Security. In
ACM SPSM, 2014.

[11] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy
Leaks in iOS Applications. In NDSS, 2011.

[12] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang. RiskRanker: Scalable
and Accurate Zero-day Android Malware Detection. In ACM MobiSys,
2012.

[13] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These
aren’t the Droids you’re looking for: Retrofitting Android to protect
data from imperious applications. In ACM CCS, 2011.

[14] Q. Xu, J. Erman, A. Gerber, Z. Morley Mao, J. Pang, and S. Venkatara-
man. Identify Diverse Usage Behaviors of Smartphone Apps. In IMC,
2011.

[15] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X.
Wang. Soundcomber: A Stealthy and Context-Aware Sound Trojan for
Smartphones. In NDSS, 2011.

[16] S. Fahl, M. Harbach, T. Muders, L. Baumgartner, B. Freisleben, and
Matthew Smith. Why eve and mallory love android: an analysis of
android SSL (in)security. In ACM CCS, 2012.

[17] T. Azim and I. Neamtiu. Targeted and Depth-first Exploration for
Systematic Testing of Android Apps . In OOPSLA, 2013.

[18] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A Study of
Android Application Security. In USENIX Security Symposium, 2011.

[19] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A.
N. Sheth. Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In OSDI, 2010.

[20] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. ProfileDroid: Multi-
layer Profiling of Android Applications . In ACM MobiCom, 2012.

[21] Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization
and Evolution. In IEEE S&P, 2012.

[22] Y. Zhou, Z. Wang, Wu Zhou and X. Jiang. Hey, You, Get off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets . In NDSS, 2012.

[23] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged smart-
phone applications in third-party android marketplaces. In CODASPY,
pages 317–326, 2012.

