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Abstract—We exploit recent advances in analysis of graph
topology to better understand software evolution, and to
construct predictors that facilitate software development and
maintenance. Managing an evolving, collaborative software
system is a complex and expensive process, which still cannot
ensure software reliability. Emerging techniques in graph
mining have revolutionized the modeling of many complex
systems and processes. We show how we can use a graph-based
characterization of a software system to capture its evolution
and facilitate development, by helping us estimate bug severity,
prioritize refactoring efforts, and predict defect-prone releases.
Our work consists of three main thrusts. First, we construct
graphs that capture software structure at two different levels:
(a) the product, i.e., source code and module level, and (b) the
process, i.e., developer collaboration level. We identify a set
of graph metrics that capture interesting properties of these
graphs. Second, we study the evolution of eleven open source
programs, including Firefox, Eclipse, MySQL, over the lifespan
of the programs, typically a decade or more. Third, we show
how our graph metrics can be used to construct predictors
for bug severity, high-maintenance software parts, and failure-
prone releases. Our work strongly suggests that using graph
topology analysis concepts can open many actionable avenues
in software engineering research and practice.

Keywords-Graph science; software evolution; software qual-
ity; defect prediction; productivity metrics; empirical studies

I. INTRODUCTION

Improving software maintenance and development is an
involved and costly task, with direct financial impact. Ac-
cording to Gartner, global software expenditures for 2010
amounted to $229 billion [1], with large vendors such as
Microsoft and IBM reporting multi-billion dollar costs for
software development each year [2], [3]. A large part of
development costs—an estimated 50 to 90 percent of total
costs—is due to software evolution [4], [5], [6], [7]. Despite
these high costs, software is notoriously unreliable, and
software bugs can wreak havoc on software producers and
consumers alike—a NIST survey estimates the annual cost
of software bugs to be about $59.5 billion [8]. At the same
time, understanding and constructing rigorous software evo-
lution models remains a significant research challenge [9].

Recently, graph-based analysis of complex systems has
experienced a resurgence, under the name of Network Sci-
ence (or mining of graph topology). There is a good reason
for this: topology analysis of graphs has revolutionized the
modeling and analysis of complex systems in many dis-

ciplines and practical problems. For example, graph-based
methods have opened new capabilities in classifying network
traffic [10], [11], modeling the topology of networks and
the Web [12], [13], and understanding biological systems
[14], [13]. What these approaches have in common is the
creation of graph-based models to represent communication
patterns, topology or relationships. Given a graph model, one
can unleash a variety of techniques to discover patterns and
communities, detect abnormalities and outliers, or predict
trends.

The overarching goal of this work is to find whether
graph-based methods facilitate software engineering tasks.
Specifically, we use two fundamental questions to drive our
work:

(a) How can we improve maintenance by identifying
which components to debug, test, or refactor first?, and

(b) Can we predict the defect count of an upcoming
software release?

Note that our intention is not to find the best possible
method for each question, but to examine if a graph-based
method can help, through the use of an appropriately-
constructed graph model of the software system. While we
use these two indicative questions here, we believe there
could be other questions that can be addressed with graph-
based approaches.

Our thesis is that graph-based approaches can help to bet-
ter understand software evolution, and to construct predictors
that facilitate development and maintenance. To substantiate,
we show how we can create graph-based models that capture
important properties of an evolving software system. We
analyze eleven open-source software programs, including
Firefox, Eclipse, MySQL, Samba, over their documented
lifespans, typically a decade or more. Our results show that
our graph metrics can detect significant structural changes,
and can help us estimate bug severity, prioritize debugging
efforts, and predict defect-prone releases.

Our contributions can be grouped in three thrusts.
a. Topological analysis of software-based graphs can

reveal properties about software process. We propose the
use of graphs to model software at two different levels and
for each level, we propose two different granularities.

At the software product level, we model the software
structure, at the granularity of functions (function-level
interaction) and modules (module-level interaction).



At the software process level, we model the interac-
tions between developers when fixing bugs and adding
new features. We use two construction methods: the bug-
based developer collaboration, which captures how a bug-
fix is passed among developers, and commit-based devel-
oper collaboration which represents how many developers
collaborated in events other than bug fixes, by analyzing the
commit logs.

b. Graph metrics capture significant events in the software
lifecycle. We study the evolution of the graph models of
these programs over one to two decades. We find that
these graphs exhibit some significant structural differences,
and some fundamental similarities. Specifically, some graph
metrics vary significantly among different programs, while
other metrics captures persistent behaviors and reveal major
evolutionary events across all the examined programs. For
example, our graph metrics have revealed major changes in
software architecture in mid-stream releases (not ending in
“.0”): OpenSSH 3.7, VLC-0.8.2 and Firefox 1.5 show big
changes in graph metrics which, upon inspection, indicate
architectural changes that trump changes observed in “.0”
versions of those programs. Similarly, our edit distance met-
ric has detected a major change in Samba’s code structure
in release 1.9.00 (Jan 22, 1995), due to major bug fixes and
feature additions; the change is not apparent when examining
other metrics such as eLOC.

c. Our graph metrics can be used to predict bug severity,
maintenance effort and defect-prone releases. The corner-
stone of our work is that our graph metrics and models can
be used to suggest, infer, and predict important software
engineering aspects. Apart from helping researchers con-
struct predictors and evolution models, our findings can help
practitioners in tasks such as: identifying the most impor-
tant functions or modules, prioritizing bug fixes, estimating
maintenance effort:

1. We show how NodeRank, a graph metric akin to
PageRank, can predict bug severity.

2. We show how the Modularity Ratio metric can predict
which modules will incur high maintenance effort.

3. We demonstrate that by analyzing the edit distance in
the developer collaboration graphs we can predict failure-
prone releases.

While these predictors might seem intuitive, we are the
first to quantify the magnitude and lag of the predictors.

II. GRAPH CONSTRUCTION

We describe the methodology for graph construction, data
collection, and computing graph metric values. An overview
of our system is presented in Figure 1. We construct graphs
from two main sources: the source code repository and
the bug tracking system. 1 From the code repository, we

1The graph datasets are available online at
http://www.cs.ucr.edu/∼neamtiu/graph-data-icse12
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Figure 1. System overview.

extract commit logs, historic source code versions, patches,
and source code-based developer interaction. From the bug
tracker, we extract bug histories and bug fixing-based de-
veloper interaction. All these artifacts are related, and the
relationships are captured using graph edges. Thus, a series
of graphs emerges. The key observation of our approach
is that information derived from these graphs can be used
to understand how software evolves, and how to construct
effective predictors for software engineering metrics, such
as bug severity, and maintenance effort.
A. Source Code-based Graphs

We use the source code to construct graphs at two abstrac-
tion levels: function (call graph) and module (module col-
laboration graph). To construct these graphs, we extended
CodeViz [15], a static analysis tool, to extract function call
information and global variable usage.

Call graph: The function call graph captures the static
caller-callee relationship. If function A calls function B, the
function call graph contains two nodes, A and B, and a
directed edge from node A to node B. Our data set contains
several applications written in a combination of C and C++;
for virtual C++ methods, we add edges to soundly account
for dynamic dispatch. Function call graphs are essential in
program understanding and have been shown effective for
recovering software architecture for large programs [16].

Module collaboration graph: This graph captures com-
munication between modules, and is coarser-grained than the
function call graph. We construct the module collaboration
graph as follows: if a function in module A calls a function
in module B, the graph contains a directed edge from
A to B. Similarly, if a function in module A accesses a
variable defined in module B, we add an edge from A to
B. Module collaboration graphs help us understand how
software components communicate.
B. Developer Collaboration Graphs

We build developer collaboration graphs to analyze how
developers communicate as software evolves. We build two
kinds of graphs, as described below:



Application Time Re- Lan- Size (kLOC) Use
span lea- guage first last

ses release release
Firefox 1998-2010 92 C,C++ 1,976 3,780 ↗, 1, 2, 3
Blender 2001-2009 28 C,C++ 253 1,144 ↗, 1, 2
VLC 1998-2009 83 C,C++ 144 293 ↗, 1, 2
MySQL 2000-2009 13 C,C++ 815 991 ↗, 1, 2
Samba 1993-2009 78 C 5 1,045 ↗, 1
Bind 2000-2009 171 C 169 321 ↗
Sendmail 1993-2009 55 C 25 87 ↗
OpenSSH 1999-2009 77 C 12 52 ↗, 1
SQLite 2000-2009 169 C 17 65 ↗
Vsftpd 2001-2009 59 C 6 15 ↗
Eclipse 2001-2010 27 Java 828 1,903 3

Table I
APPLICATIONS’ EVOLUTION SPAN, NUMBER OF RELEASES,

PROGRAMMING LANGUAGE, SIZE OF FIRST AND LAST RELEASES.

Bug-based developer collaboration: To build the Bug-
Developer Collaboration graphs, we use the bug tossing
graphs we constructed in previous work [17]. When a bug is
assigned to developer D1 and he/she is unable to resolve it,
the bug is reassigned to developer D2 and we add a directed
edge from D1 to D2 in our graph.

Commit-based developer collaboration: The second
kind of developer collaboration graph, which we term Effort-
Developer Collaboration graphs, traces how developers have
collaborated in events other than bug fixes, by analyzing
commit logs. We add an undirected edge between developers
D1 and D2 if they have worked on the same file.

C. Applications

We base our study on eleven popular open source appli-
cations written mainly in C, or combinations of C and C++.
We select applications that have: (a) long release history, (b)
significant size (in lines of code and modules), (c) a large
set of developers who maintain them, (d) a large user base,
who report bugs and submit patches. The above criteria are
necessary for making meaningful statistical, behavioral, and
evolutionary observations.

Table I lists the wide-range of applications involved in
our study, along with some key properties. Firefox is the
popular web browser from the Mozilla suite. Blender is a 3D
content creation suite. VLC is a cross-platform multimedia
framework, player and server. MySQL is a relational DBMS.
Samba is a tool suite that facilitates Windows-UNIX interop-
erability. Sendmail is the leading email transfer agent today.
BIND is the leading DNS server on the Internet. OpenSSH
is the standard open source suite implementing secure shell
protocols. SQLite is a popular library implementation of an
SQL database engine. Vsftpd is the FTP server in major Unix
distributions. Eclipse is a popular IDE.

The second column shows the time span we consider
for each application, the third column contains the number
of official releases within that time span; we analyzed all
these releases. Column 4 shows the main language(s) the
application was written in; some of the applications have

small parts written in other languages, e.g., JavaScript.
Columns 5 and 6 show application size, in effective LOC, for
the first and last releases. The last column shows the studies
and hypotheses we use each program for:↗ means we have
used that application in the evolution study (Section IV);
the numbers indicate whether we have used that application
when testing hypotheses H1, H2, or H3 (Sections V, VI,
and VII, respectively).

The long time spans we consider—Samba has grown by a
factor of 200x over 16 years— allow us to analyze evolution
rigorously, obtain statistically significant results, and observe
a variety of change patterns in the graphs.

For each application, we have used its website to obtain
the source code of official releases. We used applications’
version control systems for extracting file change histories
and patches. Finally, we extracted bug information from
application-specific bug tracking systems.

III. METRICS

We introduce the graph metrics, and the software engi-
neering concepts, which we will use in our work.

A. Graph Metrics

For each metric, we indicate if it is calculated on a
directed and undirected graph. Our graphs are initially
directed, but can be trivially transformed into undirected
graphs, by ignoring the directivity of the edges.

Average degree (directed graph): In a graph G(V,E),
V denotes the set of nodes and E denotes the set of edges.
The average degree is defined as: k̄ = 2|E|

|V |
Clustering coefficient (undirected graph): The clus-

tering coefficient C(u) of a node u captures the local
connectivity, or the probability that two neighbors of u are
also connected. It is defined as the ratio of the number of
existing edges between all neighbors of u over the maximum
possible number of such edges. Let |{ejk}| be the number
of edges between u’s neighbors and ku be the number of
u’s neighbors. Then, we have:

C(u) =
2|{ejk}|

ku(ku − 1)

The metric is meaningful for nodes with at least two
neighbors. A graph’s average clustering coefficient is the
average clustering coefficient over all the nodes.

NodeRank (directed graph): We define a measure
called NodeRank that assigns a numerical weight to each
node in a graph, to measure the relative importance of that
node in the software—this rank is similar to PageRank [18],
which represents the stationary distribution of the graph
interpreted as a Markov chain. There are several ways for
defining and calculating the PageRank. Here, we use the
following recursive calculation. For a node u, let NR(u) be
its NodeRank, and let the set INu contains all the nodes v
that have an outgoing edge to u. We assign equal NoderRank



values to all nodes initially. In every iteration, the new
NR(u) is the sum over all v ∈ INu:

NR(u) =
∑

v∈INu

NR(v)

OutDegree(v)

We stop the iteration when the NodeRank values converge.
Note that to enable convergence, at the end of every iteration,
we normalize all values so that their sum is equal to one.
Intuitively, the higher the NodeRank of a vertex u, the more
important u is for the program, because many other modules
or functions depend on it (i.e., call it). Similarly, in the
developer collaboration graph, a developer D with a high
NR(D) signifies a reputable developer.

Graph diameter (undirected graph): is the longest
shortest path between any two vertices in the graph.

Assortativity (undirected graph): The assortativity co-
efficient is a correlation coefficient between the degrees of
nodes on two ends of an edge; it quantifies the preference
of a network’s nodes to connect with nodes that are similar
or different, as follows. A positive assortativity coefficient
indicates that nodes tend to link to other nodes with the same
or similar degree. Assortativity has been extensively used
in other Network Science studies. For instance, in social
networks, highly connected nodes tend to be connected
with other high degree nodes [19]. On the other hand,
biological networks typically show disassortativity, as high
degree nodes tend to attach to low degree nodes [20].

Edit distance (directed graph): The metrics we de-
scribed so far characterize a single program release. To find
out how program structure changes over time, we introduce
a metric that captures the number of changes in vertices and
edges between two graphs, in our case between successive
releases. The edit distance ED(G1, G2) between two graphs
G1(V1, E1) and G2(V2, E2) is defined as ED(G1, G2) =
|V1|+ |V2| − 2 ∗ |V1 ∩ V2|+ |E1|+ |E2| − 2 ∗ |E1 ∩ E2|.

Intuitively, if G1 and G2 model software structures for
releases 1 and 2, then high values of ED(G1, G2) indicate
large-scale structural changes between releases.

Modularity ratio (directed graph): Standard software
engineering practice suggests that software design exhibiting
high cohesion and low coupling provides a host of benefits,
as it makes software easy to understand, easy to test, and
easy to evolve [6]. Therefore, we define the modularity
ratio of a module A as the ratio between its cohesion and
its coupling values: ModularityRatio(A) = Cohesion(A)

Coupling(A)

where Cohesion(A) is the total number of intra-module
calls or variable references in A; Coupling(A) is the total
number of inter-module calls or variable references in A.

B. Defects and Effort

Defect density: We use defect density to assess external
application quality. To ensure accuracy, we extract (and
cross-check) information from bug databases and bug infor-
mation extracted from change logs. With the bug information

at hand, we then associate a certain bug to a certain version:
we use release tags, dates the bug was reported, and commit
messages to find the version in which the bug was reported
in, and we attributed the bug to the previous release.

Effort: To measure development and maintenance ef-
fort, we counted the number of commits and the churned
eLOC (sum of the added and changed lines of code) for
each file for a release, similar to previous work by other
researchers [21], [22]. This information is available from the
log files. The defect density and effort computations are not
a contribution of this paper—we extracted this information
in prior work [23]. Nevertheless, everything else, from graph
construction to analysis is new for this work.

IV. A GRAPH-BASED CHARACTERIZATION OF
SOFTWARE STRUCTURE AND EVOLUTION

Most prior work on source code-based graph analysis
has focused on characterizing single releases [24], [25],
[26], [27], [28], [29], [30], [31], [32] or analyzing limited
evolution time spans [33], or a longer evolution time span
for a single program [34]. Therefore, one of the objectives of
our study was to analyze complete lifespans of large projects
and observe how the graphs evolve over time. This puts us
in a position to answer questions such as:

Can graph metrics detect non-obvious “pivotal” moments
in a program’s evolution?

Are there invariants, metric values and evolution trends
that hold across all programs?

We now proceed to showing how these metrics evolve
over time for our examined applications and discuss how
these changes and trends in graph metrics could affect
various software engineering aspects, both for the product
and for the process. The numeric results, i.e., metric values
for the first and last releases, are shown in Table II. The
evolution charts are in Figure 2. The data and figures refer
to function call graphs.

Nodes and edges: The initial and final number of nodes
and edges are presented in Table II. Due to lack of space, we
do not present evolution charts. However, we have observed
that some programs exhibit linear growth (Bind, SQLite,
OpenSSH, MySQL) and some super linear growth (Blender
Samba, VLC) in terms of number of nodes over time. The
same observation holds for the evolution of the number of
edges. This is intuitive, since, as shown in Table I, program
size (eLOC) grows over the studied spans for all programs.

The only outlier was Sendmail where we noticed that
neither the number of nodes, nor the number of edges
increase, although eLOC increases (cf. Table I). We believe
this to be due to the maturity of Sendmail—code is added
to existing functions, rather than new functions being added,
hence the increase in the size (in eLOC) of each function
but no increase in the number of functions. The number of
eLOC per node differ significantly across programs, from
10 to 323; the number of eLOC per edge ranged from 5



Application Metric values
Nodes Edges Avg. degree Clust. coeff. Diameter Assortativity

first last first last first last first last first last first last
Firefox 9,332 28,631 89,045 787,297 19.08 54.39 0.062 0.111 12 16 -0.022 -0.07
Blender 5,525 30,955 14,567 80,304 5.27 5.18 0.094 0.091 17 30 -0.126 -0.097
VLC 445 5,049 961 15,131 4.31 5.99 0.122 0.095 10 14 -0.194 -0.086
MySQL 4,980 6,631 19,291 29,707 7.47 5.34 0.114 0.082 18 17 -0.113 -0.142
Samba 110 11,674 408 51,136 7.41 8.76 0.146 0.128 7 12 -0.287 -0.181
Bind 5,133 6,718 10,337 15,573 4.02 7.80 0 0.110 21 17 -0.165 -0.12
Sendmail 1,072 599 3,089 1,435 5.76 4.79 0 0 9 11 -0.198 -0.201
OpenSSH 214 1,030 773 4,056 7.22 7.87 0.187 0.141 6 12 -0.181 -0.224
SQLite 290 2,046 496 4,241 3.42 4.16 0 0 12 15 -0.245 -0.126
Vsftpd 597 982 921 1,712 3.08 3.48 0 0 11 12 -0.202 -0.206

Table II
METRIC VALUES (FUNCTION CALL GRAPHS) FOR first AND last RELEASES.

to 150. Values of both metrics decrease with evolution for
Firefox, Blender, VLC, MySQL, OpenSSH and SQLite; and
increase for Samba, Bind, Sendmail and Vsftpd.

Average degree: Intuitively, the degree of a function
or module indicates its popularity. The average degree of a
graph helps quantify coarseness: graphs with high average
degrees tend to be tightly connected [35]. In Figure 2 we
show the evolution of this metric for each program. We
find that for all programs but MySQL, the average degree
increases with time, albeit this increase tends to be slight,
and the value range is 2–10. One interesting aspect to note is
the average degree of Firefox, which is orders of magnitude
higher, ranging from 20 to 60.

On further investigation we found that the graph topology
for Firefox differs significantly from the remaining projects.
The three notable observations are: (1) the majority of the
nodes have low degree (average degree less than 20) and they
are not connected with each other, (2) a large group of high-
degree nodes (average degree 200–800) are interconnected
with each other and form a dense core in the graph, and (3)
most of the low degree nodes are connected with this dense
core. We found that this group of nodes with high degree
and high interconnectivity are part of the common library
in Mozilla used by the majority of the products, including
Firefox. On the contrary, in the other projects where the
average degree is low, we found that: (1) the majority of
nodes have degree close to the average degree of the graph,
and (2) there are very few nodes of high degree and very
few of them connect with each other.

Clustering coefficient: As defined in Section III-A, the
clustering coefficient is a measure of how well-connected
the local neighborhoods are in a graph. Zero values of
this coefficient indicate a bipartite graph. High values of
clustering coefficient indicate tight connectivity and violate
good software engineering practice, because graph nodes do
not form a hierarchy of levels of abstraction (due to the pres-
ence of horizontal and backward edges), which complicates
program understanding, testing, and evolution [6], [36].

In our case (Table II), we found that for Vsftpd, SQLite,
Sendmail and all but the last release of Bind, the clustering

coefficient values are zero throughout the project’s lifetime,
suggesting bipartite graphs; we verified that indeed these
programs have bipartite call graphs. In the case of VLC,
we found that in version 0.7.0 there was a sudden rise
in the clustering coefficient value. On further investigation
we found that the Flac demuxer code was rewritten for
this version; although the function signatures remained the
same from the previous version, there was a significant
change in intra-module calls in the demuxer module leading
to an increase in clustering coefficient. For the remaining
programs, we find that clustering coefficients are remarkably
similar: their range is 0.08–0.20 and values decrease over
time, with the exception of Firefox.

Number of nodes in cycles: Cycles in software structure
affect software quality negatively. For example, cycles in
the module collaboration graph indicate circular module
dependencies, hence modules that are hard to understand and
hard to test: “nothing works until everything works, ” as per
standard software engineering literature [36], [6]. Cycles in
the call graph indicate a chain of mutually recursive func-
tions, which again are hard to understand, test, and require a
carefully orchestrated end-recursion condition. An increase
in the number of nodes in cycles from one release to another
would signify decrease in software quality, and indicate the
need for refactoring. We observed that for Samba, MySQL,
and Blender the number of nodes in cycles increases linearly
with time, for OpenSSH, Bind, SQLite, and Vsftpd the
number remains approximately constant with time, whereas
for VLC and Sendmail there is no clear trend. For MySQL, a
sudden increase in number of nodes in cycles is noticeable in
version 5.0 (Oct. 2005); on further investigation we found
that newly-added functions in the InnoDB storage engine
code form strongly connected components in the graph,
leading to an increase in the number of nodes in cycles.
For reasons mentioned above, even a constant number of
nodes in cycles (let alone an increasing one) is undesirable.

Graph diameter: From a maintenance standpoint,
graphs of high diameter are undesirable. As the diameter
measures distance between nodes, graphs with large diam-
eter are more likely to result in deep runtime stacks, which
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Figure 2. A graph-based characterization of software evolution; x-axis represents time.



hinder debugging and program understanding. As shown in
Table II (columns 10 and 11) and in Figure 2, we notice
that for our programs the diameter tends to stay constant or
vary slightly, and the typical value range (10–20) is similar
across all programs.

Assortativity: As explained in Section III-A, high val-
ues of assortativity indicate that high-degree nodes tend to
be connected with other high degree nodes; low assortativity
values indicate that high-degree nodes tend to connect with
low-degree nodes [20]. As shown in Table II (columns 12
and 13) and in Figure 2, we notice that all the values of
assortativity for all the programs are negative, which im-
plies that, similar to biological networks, software networks
exhibit disassortative mixing, i.e., high degree nodes tend to
connect to low degree nodes and vice versa.

In Firefox, low assortativity stems from code reuse.
Mozilla has its own function libraries for, e.g., memory
management, and these functions were used by many other
nodes. As a result library functions and modules exhibit very
high degrees, and connect to many low degree nodes, hence
contributing to low assortativity. In the future, we intend to
further investigate the relationship between assortativity and
code reuse.

Edit distance: This metric, as defined in Section III-A,
captures the dynamic of graph structure changes, i.e., how
much of the graph topology changes with each version. In
Figure 2 we show how the graph edit distance changes over
time. We find the same pattern for all programs: after a steep
rise, the edit distance plateaus or increase slightly, i.e., is a
step-function. This observation strengthens the conclusions
of prior research [33], namely that software structure stabi-
lizes over time, and the only tumultuous period is toward
the beginning. We found that these steep edit distance rises
are due to major changes and they indicate that software
has reached structural maturity. For example, the pivotal
moment for Samba is release 1.9.00 (Jan 22, 1995), where
131 modification requests were carried out, whereas for the
versions prior to 1.9.00, the average number of modification
requests per release was 15. We also computed the eLOC
difference for release 1.9.00 and found it to be 2kLOC, less
than the 3kLOC average of the previous releases, which
shows how graph-based metrics can reveal changes that
would go undetected when using LOC measures.

Modularity ratio: This metric reveals whether projects
follow good software engineering practice, i.e., whether,
over time, the cohesion/coupling ratio increases, indicating
better modularity. This turned out to be the case for all pro-
grams, except Firefox version 1.5 (see bottom of Figure 2,
and Figure 4; we show VLC, Blender, MySQL and Firefox
in a separate figure because we used modularity ratio for
prediction).

Discussion: We are now in a position to answer the
questions posed at the beginning of this section. We have
observed that indeed, software structure is surprisingly sim-

Bug Severity Description Rank
Blocker Blocks development testing work 6
Critical Crashes, loss of data, severe memory leak 5
Major Major loss of function 4
Normal Regular issue, some loss of functionality 3
Minor Minor loss of function 2
Trivial Cosmetic problem 1
Enhancement Request for enhancement 0

Table III
BUG SEVERITY: DESCRIPTIONS AND RANKS.

ilar across programs, in absolute numbers (see the similar
ranges for average degree, clustering coefficient, graph di-
ameter), which suggests intrinsic lower and upper bounds
on variation in software structure. There are also similarities
in trends and change patterns (cf. edit distance, clustering
coefficient, modularity ratio) which suggest that programs
follow common evolution laws. For those releases where
graph metrics change significantly, we found evidence that
supports the “pivotal moment” hypothesis. For example,
in Firefox, we find significant changes in average degree,
clustering coefficient, and edit distance for release 2.0 (Oct.
2006); indeed, release notes confirm many architectural and
feature enhancements introduced in that version. Similarly,
for OpenSSH we found that one such moment was release
2.0.0beta1 (May 2000), a major version bump from prior
release (1.2.3), that incorporated 143 modification requests,
whereas the average modification requests per release until
that point was 27 and this change is reflected in significant
change of values for clustering coefficient, edit distance, and
assortativity metric. This evidence strengthens our argument
that graph metrics are good measures that can reveal events
in evolution.

So far our discussion has centered on changes in structural
(graph) metrics and understanding how software structure
evolves. We now move on to discussing how structural
metrics can be used to predict non-structural attributes such
as bug severity, effort, and defect count.

V. PREDICTING BUG SEVERITY

We present a novel approach that uses graph-based metrics
associated with a function or module to predict the severity
of bugs in that function or module. When a bug is reported,
the administrators first review it and then assign it a severity
rank based on how severely it affects the program. Table III
shows levels of bug severity and their ranks in the Bugzilla
bug tracking system. A top priority for software providers is
to not only minimize the total number of bugs, but to also
try to ensure that those bugs that do occur are low-severity,
rather than Blocker or Critical. Moreover, providers have
to do this with limited numbers of developers and testers.
Therefore, a bug severity predictor would directly improve
software quality and robustness by focusing the testing and
verification efforts on highest-severity parts.

We use NodeRank to help identify critical functions
and modules, i.e., functions or modules that, when buggy,



are likely to exhibit high-severity bugs. As discussed in
Section III-A, NodeRank measures the relative importance
of a node—function or module—in the function call or
module collaboration graphs, respectively. By looking up
the NodeRank, maintainers have a fast and accurate way of
identifying how critical a function or module is. We now
state our hypothesis formally:

H1: Functions and modules of higher NodeRank will
be prone to bugs of higher severity.

Data set: We used six programs: Blender, Firefox,
VLC, MySQL, Samba, and OpenSSH for this analysis. We
collected the bug severity information from bug reports. For
each bug report we collected the patches associated with it
and from each patch we found out the list of functions that
were changed in the bug fix. Therefore, we have information
about how many times a function has been found buggy, and
what the median severity of those bugs was.

Results: We were able to validate H1 for our study.
We correlated the median bug severity of each function and
module with its NodeRank. The results are shown in column
2 of Tables IV (for functions) and V (for modules). As a first
step, we focus on nodes with a NodeRank in Top 1% since
bug severity for functions and modules exhibit a skewed dis-
tribution where Top 1% of the nodes are affected by majority
of the bugs. Note that for sizable programs such as Firefox,
the number of nodes exceeds 25,000, hence even Top 1%
can mean more than 250 functions. We find the correlation
between NodeRank and BugSeverity to be high: 0.6—0.86.
This suggests that NodeRank is an effective predictor of bug
severity, and can be used to identify “critical” functions or
modules. We have also computed correlation values between
function bug severity and standard software engineering
quality metrics (cyclomatic complexity2, interface complex-
ity3). As can be seen in columns 3–4 of Table IV we found
these values to be close to zero, meaning that these metrics
are not effective in identifying critical functions.

The node degree is not a good predictor of bug severity.
We investigated if the node degree could be just as good a
severity predictor as the NodeRank. The answer was no. We
compute the correlations between bug severity and node in-
and out-degrees. The results are shown in Table IV, columns
5–6 (functions), and Table V, columns 3–4 (modules); note
how in- and out-degrees are poor bug severity predictors.

We also compute the NodeRank–BugSeverity correlation
for the remaining 99% of the nodes and found similar trends.
As expected, in the lower end of the NodeRank, there is
significant statistical noise, which makes estimating a corre-
lation coefficient difficult. However, there is definitely a clear
high level trend between NodeRank and BugSeverity even
in the absence of a well-defined linear correlation. Overall,

2McCabe’s cyclomatic complexity is the number of logical pathways
through a function [37].

3Computed as the sum of number of input parameters to a function and
the number of return states from that function [38].

arena_ralloc () 

free () huge_ralloc ()

idalloc () 

Figure 3. Firefox call graph and bug severity (excerpt).

our work suggests a useful practical approach: in a resource-
constrained testing and verification setting, one should start
with the nodes with high NodeRank value. We observe
that the correlation coefficients between BugSeverity and
NodeRank for Firefox’s function-call graphs are smaller than
in other projects. Firefox shares some bugs (rooted in shared
functions, and to a lesser extent, shared modules) with other
Mozilla projects (e.g., Thunderbird) which makes attributing
a bug to Firefox alone difficult; this noise in the data set
counts for the slightly lower correlation compared to other
projects.

To illustrate this correlation, in Figure 3 we present
an excerpt from Firefox’s call graph. Within each node
(function) we indicate that node’s NodeRank, as well as the
average BugSeverity for past bugs in that function. As we
can see, verification efforts should focus on functions free ()
and idalloc () , as their NodeRanks are high, which indicates
that the next bugs in these functions will be high-severity, in
contrast to functions arena ralloc() and huge ralloc() that have
low NodeRanks and low BugSeverity.

Program NodeRank Cyclom. Interface In Out
complex. complex. degree degree

Blender 0.60 0.07 0.17 0.10 0.05
VLC 0.83 0.19 -0.06 -0.09 -0.003
MySQL 0.77 -0.05 -0.11 -0.06 -0.06
Samba 0.65 -0.207 -0.19 0.23 -0.06
OpenSSH 0.86 0.003 0.12 0.04 -0.34
Firefox 0.48 0.16 -0.28 0.18 -0.26

Table IV
CORRELATION OF BugSeverity WITH OTHER METRICS FOR TOP 1%

NodeRank FUNCTIONS (P-VALUE = 0.01).

Program NodeRank In Out
degree degree

Blender 0.79 -0.04 -0.0008
VLC 0.82 0.21 -0.11
MySQL 0.73 -0.20 -0.24
Samba 0.78 -0.02 -0.10
OpenSSH 0.65 -0.22 -0.19
Firefox 0.704 -0.17 -0.38

Table V
CORRELATION OF BugSeverity WITH OTHER METRICS FOR TOP 1%

NodeRank MODULES (P-VALUE = 0.01).

VI. PREDICTING EFFORT

A leading cause of high software maintenance costs is
the difficulty associated with changing the source code,
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Figure 4. Change in ModularityRatio with change in Effort; x-axis represents time.

Program Lag F-prob
Blender 1 0.0000015
VLC 3 0.3673
Firefox 1 0.00056

Table VI
GRANGER CAUSALITY TEST RESULTS FOR H2.

e.g., for adding new functionality or refactoring. We pro-
pose to identify difficult-to-change modules using the novel
module-level metric called Modularity Ratio, defined in
Section III. Intuitively, a module A’s modularity ratio, i.e.,
Cohesion(A)/Coupling(A) indicates how easy it is to
change that module. To quantify maintenance effort, the
number of commits is divided by the churned eLOC for
each module in each release—-this is a widely used metric
for effort [23]. Therefore, our hypothesis is formulated as
follows:

H2: Modules with higher ModularityRatio have
lower associated maintenance effort.

Data set: We used four programs, Blender, Firefox,
VLC and MySQL for this analysis. The effort data for these
programs is available from our prior work [23].

Results: We were able to validate H2 for our study. We
found that, as the ModularityRatio increases for a module,
there is an associated decrease in maintenance effort for
that module, which means the software structure improves.
In Figure 4 we plot the results for each program. The
x-axis represents the version; for each version, in gray we
have the mean modularity ratio, and in blue we have mean
maintenance effort. We ran a Granger causality test4 on
the data in the graph. We use causality testing instead of
correlation because of the presence of time lag; i.e., our
hypothesis is that changes in modularity ratio for one release
would trigger a change in effort in one of the future releases.
As shown in Table VI, we obtained statistically significant
values of F-prob for the Granger causality test on modularity
ratio and effort.5 The lag value indicates that a change in
modularity ratio will determine a change in effort in the next
release (Blender, Firefox) or in three releases (VLC).

VII. PREDICTING DEFECT COUNT

Intuitively, a stable, highly cohesive development team
will produce higher-quality software than software produced

4The Granger causality test is a statistical hypothesis test for determining
whether one time series is useful in forecasting another.

5We cannot claim statistically significant results for MySQL due to small
sample size; effort values for only 4 versions of MySQL were available.

by a disconnected, high-turnover team [39]. Therefore, we
are interested in studying whether stable team composition
and structure will lead to higher levels of collaboration,
which in turn translates into higher quality software. We are
in a good position to characterize team stability by looking at
the evolution of developer collaboration graphs. To measure
how much graph structure changes over time we use the
edit distance metric defined in Section III-A. Concretely,
we hypothesize that periods in software development that
show stable development teams will result in periods of low
defect count. To test this, we form the following hypothesis:

H3: An increase in edit distance in Bug-based De-
veloper Collaboration graphs will result in an
increase in defect count.

Data Set: We used the Firefox and Eclipse bug reports
to build the developer collaboration graphs. For Firefox, we
analyzed 129,053 bug reports (May 1998 to March 2010).
For Eclipse, we considered bugs numbers from 1 to 306,296
(October 2001 to March 2010).

Results: We were able to validate H3 for our study.
From bug reports, we constructed Bug-based Developer
Collaboration graphs as explained in Section II-B. We
constructed these graphs for each year, rather than for each
release, as some releases have a small number of bugs. Next,
we computed the graph edit distance from year to year and
ran a correlation analysis between edit distance for year Y
and defect count at the end of year Y . We found that there
is a strong positive correlation between these two measures,
as shown in Figure 5. This shows that team stability affects
bug count; our intuition is that, when developers collaborate
with people they have worked with before, they tend to be
more productive than when they work with new teammates.
A similar finding has been reported by Begel et al. [40]
for commercial work environments: working with known
teammates increases developer productivity. Although open
source projects lack any social structure and central man-
agement, team collaboration does affect software quality.

Bug-tossing based collaboration is a better defect
predictor than commit-based collaboration. We have also
tested the same hypothesis with commit-based developer
collaboration graphs; however we did not find any cor-
relation between edit distance in those graphs and effort,
which suggests that bug-tossing graphs are more useful than
commit-exchanges for studying developer relationships in
open source projects.



 0

 50000

 100000

 150000

 2000  2005  2010

Time

Edit Distance
Bug Count

(a) Eclipse, correlation = 0.504

 0

 20000

 40000

 60000

 80000

 2000  2008

Time

(b) Firefox, correlation = 0.759

Figure 5. Change in collaboration graph Edit Distance v. Defect Count.

VIII. RELATED WORK

Software Network Structural Properties: Several prior
efforts have examined single-version structural properties;
graphs represent class collaboration [25], [26], [32], [28],
[41], module dependency [24], inheritance and aggrega-
tion [31]; metrics used include degree distribution, degree
correlation, clustering, and verifying power-law relation-
ships. Other efforts have looked at graph motifs [27], motif
stability [29], and structural complexity [30].

Graphs and Evolution: Vasa et al. [33] studied the type
dependency graphs of 12 Java projects and their evolution
over one year using three degree-based metrics: fan-in, fan-
out and branch count. Wang et al. [34] studied the evolution
of the Linux kernel (223 versions) using complex networks
analysis. They used node degree distribution and average
path length of the call graphs as metrics and found that the
call graphs of file system and drivers modules are scale-
free small-world complex networks and observed strong
preferential attachment growth.

Our study differs from the aforementioned efforts in three
significant ways: (1) we analyze a broad range of large
projects written in C, C++, or both; in addition, we study
multiple releases of the same project which allows us to
analyze the evolution of graph topologies, (2) we use graph-
based metrics as software quality predictors, and (3) we look
at developer-collaboration graphs in two large, widely-used
open source projects which reveal how social networking
among developers affect software quality.

Software Networks for Failure Prediction: Zimmer-
mann et al. [42] construct source code dependency graphs
in Windows Server 2003. They used four different measures
of complexity to describe these dependency graphs and to
predict the failure-proneness of a given source code artifact.
Premraj et al. [43] and Tosun et al. [44] replicated Zimmer-
mann et al.’s approach on open source software. Schroter et
al. [45] performed an empirical study of 52 Eclipse plug-ins
and built a model based on the USES relationships between
software components to predict failure-prone components,
based on its design data and which are the most failure-prone
components in the project. Nagappan et al. [46] showed that
dependency graphs built from software component depen-
dencies can be used as efficient indicators of post-release
failures specifically for Windows Server 2003. Holmes et

al. [47] showed how static and dynamic call graphs of the
same program can be used to predict which functions may
be affected by a modification.

Our study is different from these efforts in two significant
ways: (1) we analyze multiple releases of the same project
which allows us to analyze the evolution in the topologies of
these graphs, (2) we propose NodeRank, a metric which is
powerful in identifying critical spots in the software. Addi-
tionally, our ModularityRatio metric is capable of predicting
maintenance effort.

Bug Severity Prediction: Menzies et al. [48] and
Lamkanfi et al. [49] used text classification to predict the
severity of a bug from the text of its bug report, which yields
up to 90% and 65–85% accuracy, respectively. In contrast,
our NodeRank works at both function and module level and
can predict bug severity before a bug report is filed.

Developer Collaboration: Abreu et al. [50] studied
developer communication frequency for Eclipse JDT and
found that this frequency is positively correlated with the
number of bugs in the project. Bird et al. [51] studied
coordination among developers by analyzing 7 years of
the Apache developer mailing list, and found a strong
relationship between the levels of email activity and source
code activity for a developer. Pinzger et al. [52] used a het-
erogeneous graph that associates developers and module for
Microsoft Windows Vista and found that modules located in
periphery of the network are less error prone. Their analysis
also shows that the number of developers and number of
commits are significant predictors for the probability of post-
release failures.

Our work differs in two ways from these prior efforts: (1)
we look at multiple versions of developer collaboration by
constructing these graphs for each year and analyzing how
they change over time, and (2) we show that there exists
a high positive correlation between edit distance between
these successive developer graphs and the defect count.

IX. CONCLUSIONS

We have provided a graph construction method and a
set of metrics that capture the structure and evolution of
software products and processes. Using a longitudinal study
on large open source programs, we have demonstrated that
source code-based graph metrics can reveal differences and
similarities in structure and evolution across programs, as
well as point out significant events in software evolution that
other metrics might miss. We have also shown that graph
metrics can be used to predict bug severity, maintenance
effort and defect-prone releases.
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