
RERAN: Timing- and Touch-Sensitive
Record and Replay for Android

Lorenzo Gomez
University of California

Los Angeles, USA
lorenzo@cs.ucla.edu

Iulian Neamtiu
University of California

Riverside, USA
neamtiu@cs.ucr.edu

Tanzirul Azim
University of California

Riverside, USA
mazim002@cs.ucr.edu

Todd Millstein
University of California

Los Angeles, USA
todd@cs.ucla.edu

Abstract—Touchscreen-based devices such as smartphones and
tablets are gaining popularity, but their rich input capabilities
pose new development and testing complications. To alleviate
this problem, we present an approach and tool named RERAN
that permits record-and-replay for the Android smartphone
platform. Existing GUI-level record-and-replay approaches are
inadequate due to the expressiveness of the smartphone domain,
in which applications support sophisticated GUI gestures, depend
on inputs from a variety of sensors on the device, and have precise
timing requirements among the various input events. We address
these challenges by directly capturing the low-level event stream
on the phone, which includes both GUI events and sensor events,
and replaying it with microsecond accuracy. Moreover, RERAN
does not require access to app source code, perform any app
rewriting, or perform any modifications to the virtual machine
or Android platform. We demonstrate RERAN’s applicability in a
variety of scenarios, including (a) replaying 86 out of the Top-100
Android apps on Google Play; (b) reproducing bugs in popular
apps, e.g., Firefox, Facebook, Quickoffice; and (c) fast-forwarding
executions. We believe that our versatile approach can help both
Android developers and researchers.

Index Terms: Record-and-replay, Google Android.

I. INTRODUCTION

Smartphones and tablets have become powerful and increas-
ingly popular platforms for a host of software applications
(apps), ranging from office suites to games to social network-
ing tools. The appeal of these new platforms stems in part from
the rich capabilities for user interaction via touchscreens, as
well as the diverse set of sensors (e.g., accelerometer, compass,
GPS) that can be leveraged to drive app behavior. However,
these new features also pose important challenges for software
development, testing, and maintenance.

In this paper we focus on the challenge of accurately record-
ing an app’s execution in order to support automatic replay.
Record-and-replay systems can be valuable tools for many
software engineering tasks, including program debugging,
testing, and understanding. Unfortunately, past approaches to
record-and-replay for GUI-based applications are not adequate
on smartphones. These tools capture user activity in terms
of discrete high-level actions, which cannot easily express
complex gestures and do not support capture and replay for
events from other sensors.

For illustration, consider the task of recording and replaying
the popular game Angry Birds—a fully graphical app with
no standard GUI elements, and very timing sensitive. Our

approach has no trouble carrying out this task; the reader is in-
vited to watch our YouTube videos [1] showing RERAN doing
a record-and-replay of Angry Birds. In fact, our approach can
successfully replay 86 out of the Top-100 free Android apps
on Google Play. However, existing GUI-level approaches have
multiple difficulties achieving record and replay for such apps,
as explained next.

First, GUI-level tools (e.g., Android GUITAR [2], Ab-
bot [3], HP WinRunner [4], IBM Rational Robot [5] and GUI
crawler [6]) typically employ the keyword action paradigm
in order to replay user-interface events. In this paradigm,
input events are abstracted from the concrete GUI level to
a higher-level representation that uses a GUI object’s handle
or name within the system to interact with it, e.g., click

TextBox1 or type ‘‘Test123’’. Angry Birds, however,
has a single Activity (screen) so there are no GUI elements
such as multiple screens, frames, menus, and input boxes that
a keyword action tool can “hook” into.

Second, while the aforementioned tools can work well for
discrete desktop point-and-click GUIs, touchscreen platforms
use a much richer GUI paradigm based on continuous gestures
such as swipe, zoom, and pinch. Even assuming an app has
multiple screens and menus that a GUI recorder can hook into,
touchscreen gestures are difficult to capture and represent as
keyword-actions, since they can occur at arbitrary parts of
the GUI (e.g., to zoom in on a map), and/or can require
low-level precision in order to accurately replay (e.g., to
slingshot a bird in Angry Birds). This precision is required
during record and replay both spatially (input coordinates) and
temporally (event timing). For example, it would be difficult
to capture, represent, and replay a complicated non-discrete
gesture such as circular bird swipe with increasing

slingshot tension in Angry Birds. The problem is even
more acute in the presence of multi-touch gestures. To quantify
the importance of replaying gestures, in Figure 1, we show the
distribution of the number of touchscreen gestures used during
a 5-minute run for the 86 apps RERAN can replay: note that
84 out of 86 replayable apps contain gestures and hence would
not be fully replayable with prior approaches.

Third, it is insufficient to capture only the user-interface
events. Rather, accurate replay requires capturing the multitude
of external events that arise from sensors on the device. For
example, inputs from the accelerometer and compass are used

to drive many games and navigation apps, but these sensors
are not exposed at the GUI level. One such app is Google
Maps Street View, which uses the compass sensor to detect
phone orientation (with respect to magnetic North) in order to
orient the on-screen map correctly.

Finally, the accuracy of event timing during both capture
and replay is crucial. For example, a swipe that is captured
too slowly will replay as a sequence of button presses, and the
timing between external events and user-interface actions can
be similarly crucial. Indeed, we found that delays as short as
milliseconds can adversely impact the replay process.

In this paper we present RERAN (REcord and Replay
for ANdroid), a record-and-replay tool that addresses these
challenges in the context of Android applications. RERAN
directly captures and replays the low-level events that are
triggered on the device. This approach allows RERAN to
capture and playback GUI events, i.e., touchscreen gestures
(e.g., tap, swipe, pinch, zoom), as well as those from other
sensor input devices (e.g., accelerometer, light sensor, com-
pass). In contrast, prior replay tools for Android [2], [6], [7],
which are based on the keyword action paradigm, only replay
touchscreen presses and cannot handle touchscreen gestures
or other sensor inputs.

RERAN works in a natural,1 non-intrusive, and low-effort
way: during record, a capture component reads the events,
with no noticeable impact on execution. This contrasts with
many keyword-action-based approaches, which require manual
scripting of test cases rather than direct trace collection [3]–
[5]. During replay, a phone-based replay agent feeds the events
to the phone, and the phone acts as it would if the sensor
input came from user or environment interaction. RERAN is
carefully designed to manage the large number of low-level
events that occur during execution and to record and replay
them with precise timings.

RERAN is currently unable to replay sensors whose events
are made available to applications through system services
rather than through the low-level event interface (e.g., camera
and GPS). RERAN also does not capture other sources of
nondeterminism in applications, for example use of random-
number generators and access to the file system. Providing
fully deterministic replay would require a significantly more
heavyweight solution, for example, involving modifications to
the virtual machine and/or complete interposition between the
app and the underlying platform.

Despite these limitations, we demonstrate that RERAN is
useful in several ways. First, we were able to record and
successfully replay execution traces for 86 out of the Top-
100 free Android apps on Google Play (the main Android
app distribution channel). Moreover, RERAN replays in nearly
real time, with an overhead of just over 1% compared to the
original execution.

Second, RERAN is a powerful debugging aid because it can
capture and replay event sequences that lead to crashes in

1RERAN requires the device to be “rooted” in order to execute the replay
agent, which we believe is a reasonable assumption for the intended users of
RERAN, researchers and developers.

0 1−20 21−40 41−60 61−80 81−100 101−120 121−140 141−160 161−180 181−200
0

5

10

15

20

25

30

Number of Gestures

N
u
m

b
e
r

o
f
R

e
p
la

ya
b
le

 A
p
p
s

Fig. 1. Distribution of gestures in the 86 apps replayable with RERAN.

apps, which helps developers inspect system state around a
crash point. In particular, we demonstrate how, using RERAN,
we were able to reproduce and replay bugs in widely-used
apps including Firefox, Facebook, K-9 Mail, and Quickoffice.

Third, RERAN has support for time warping which allows
the execution of certain apps to be fast-forwarded in order to
reach a specific app state faster than in the original execution,
and without any additional manual input. We found that the
replay time for time-warpable apps can be reduced by 22 to
68 percent compared to the original execution.

The remainder of this paper is organized as follows. Sec-
tion II introduces the Android input events and sensor classes,
as well as event generation, delivery, and processing. Sec-
tion III provides an overview of our approach and the chal-
lenges that accurate record-and-replay pose for touchscreen-
based smartphones. In Section IV we discuss the experimental
methodology we followed, the implementation of RERAN,
results of running it on Top-100 Google Play apps, and
performance overhead. Section V presents three applications
of using RERAN for research and development tasks: repeata-
bility, reproducing bugs, and time warping. In Section VI we
discuss limitations of our approach and record-and-replay on
Android in general. Section VII discusses related work, and
in Section VIII we present our conclusions.

II. ANDROID INPUTS

In this section we describe the diverse kinds of inputs that
Android apps can accept, as well as how these inputs are
represented internally as events.

A. Touchscreen User Actions

Smartphone apps are distinguished in part by the expressive
variety of user actions possible through touchscreens. We
briefly describe the most common ones:

Press-and-Release: The primary input action is the sim-
ple press, in which the user taps an area on the screen and
releases quickly, e.g., clicking a button or typing text with the
on-screen keyboard.

Press-and-Hold: The press and hold consists of the user
tapping an area on the screen and releasing after holding, in the
same position, past some threshold amount of time. This action
can be used to access secondary menus or hidden options.

Swipe: Swiping on the touchscreen occurs when a user
presses down on the screen from position (x1, y1) and, while
continuing to hold down on the screen, moves to a new
position (x2, y2), and releases. Swiping is used in many apps,
e.g., to scroll through text in a Web browser or slingshot a
bird in Angry Birds.

Zoom-and-Pinch: Multi-touch gestures involve pressing
the touchscreen through more than one contact point, e.g., us-
ing two or more fingers. The most common multi-touch usages
are zooming and pinching; when apps support such gestures,
they usually correspond to changing the magnification level of
the content being viewed, e.g., in Google Maps zooming and
pinching change the level of detail.

Of the four user actions listed above, three are considered
gestures: press-and-hold, swipes, and zoom-and-pinch. Ges-
tures require a large group of underlying touchscreen events
to provide their perceived functionality, as explained shortly.
The press-and-release user action requires a much smaller
grouping of events, and, as described in Section VII, has
been successfully replayed using other methods. As shown
in Figure 1, touchscreen gestures in apps are very frequent;
we collected these results based on a 5-minute run of the app
from a single user. Note that the majority of apps (60 out of
86) had anywhere from 20 to 100 gestures during the session,
whereas only 2 apps did not contain any gestures (Uno Free
and Brightest Flashlight Free).

Aside from the touchscreen, users can provide input through
physical buttons on the phone. Our test devices did not have a
physical keyboard, but they have several buttons with various
usages, e.g., lock the screen, turn off the device, increase or
decrease the speaker volume.

B. Physical Sensors

Android devices typically have several sensors that generate
inputs asynchronously. Sensor data is generated by hardware
components that measure changes in the physical properties
of the phone. We describe the most common sensors and their
uses in Android apps. Note that GPS location is attained from
an Android service rather than directly from a physical sensor,
so we cannot currently replay its events.

The accelerometer allows an application to detect whether
the phone has changed its speed and can also be used to detect
phone tilting and rotation [8]. This is the mechanism used to
change the screen layout from portrait to landscape mode, and
some games use the accelerometer as a primary means of user
input, e.g., to roll a ball through a maze or shake a magic eight
ball.

The proximity (light) sensor allows applications to detect
how close the user is from the phone [8]. This sensor is
primarily used to dim the screen as well as protect the user
from accidental button presses when the phone is close to the
user’s ear during a phone call.

The compass reports the phone’s orientation relative to the
magnetic North. The compass is frequently used in mapping
and navigation apps to provide a direction perspective.

C. Android Events

The Android software stack consists of a custom Linux
kernel and libraries, the Dalvik Virtual Machine (VM), and
apps running on top of the VM. When users interact with an
Android app, the Android device’s sensors generate and send
events to the kernel via the /dev/input/event* device
files. Events have a standard, five-field format (timestamp:
device: type code value), where timestamp represents the time
elapsed from the last system restart, device names the input
device that has created the event, and the remaining fields
depend on the specific event type.

Touchscreen gestures are encoded as a stream of touch-
screen events in the above format, with no labeling as to which
gesture was performed. For example, one such event could
look as follows:

40-719451: /dev/input/event4: 0003 0035 0000011f
Here the timestamp indicates the event was generated 40
seconds and 719,451 microseconds since system restart, and
the input device is event4, which corresponds to the touch-
screen (for our device). The next three columns provide
position information: 0035 corresponds to the x position of
the event and 0000011f (hex) corresponds to coordinate 287
(decimal) of the screen. However, this single event alone
is not enough information for reconstituting the high-level
gesture: for instance, a single press usually involves roughly
18 touchscreen events, while a swipe usually involves roughly
50 touchscreen events.

In Figure 2 we show a subset of events involved in a single
typical gesture—a swipe. The left side of the figure shows
the raw stream of 54 events, while the right side shows the
high-level semantics of event clusters: press, move, release.
The sample event explained previously is actually event 3 in
the stream. Note how the timing information reveals that, in
order to successfully replay the swipe, the 54 events have
to be replayed accurately within 179 milliseconds (between
timestamps 40-719421 and 40-898681).

To provide an illustration of the event flux in a real-world
app that uses multiple sensors, in Figure 3 we show the stream
of events in the GasBuddy app (the app displays gas prices on
a map), over the first 80 seconds of a normal run. The x-axis
shows the time, in seconds, and the y-axis shows the number
of events. The graphs show the number of events at 5-second
granularity: the top curve, in red, shows the touchscreen
events, while the bottom curve, in light blue, shows events
coming from the compass. The text on top indicates the distinct
phases in the execution. First, the user inputs the geographical
location—Los Angeles—using the touchpad (seconds 0–10);
notice how the compass is not used in this phase. Next, the
app loads the gas station maps in the vicinity of Los Angeles
and uses the compass to orient the map; notice how the user
waits at this point as indicated by the absence of user events
(seconds 11–25). In the third phase, the map has been loaded
and the user navigates on the map using pinch and zoom,
indicated by the high number of touchscreen events (seconds
26–45); the compass is still used to keep the correct map

0"

200"

400"

600"

800"

1000"

1200"

1400"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70" 75" 80"

N
um

be
r'o

f'E
ve
nt
s'

Time'(seconds)'

Compass'events'

Touchscreen'events'

Enter location:!
Los Angeles!

Map loaded, 
navigate via  
pinch & zoom!

Browse individual  
gas station via scroll!

Navigate through  
stations’ map via  
pinch & zoom!

App  
loads 
station  
map!

Fig. 3. Time series of events in Gas Buddy.

1. 40-719421: /dev/input/event4: 0003 0030 0000001e

2. 40-719451: /dev/input/event4: 0003 0032 00000003

3. 40-719451: /dev/input/event4: 0003 0035 0000011f

4. 40-719482: /dev/input/event4: 0003 0036 000001d9

5. 40-719482: /dev/input/event4: 0000 0002 00000000

6. 40-719482: /dev/input/event4: 0000 0000 00000000

7. 40-764251: /dev/input/event4: 0003 0030 0000001e

8. 40-764282: /dev/input/event4: 0003 0032 00000002

9. 40-764282: /dev/input/event4: 0003 0035 0000016e

10. 40-764282: /dev/input/event4: 0003 0036 000001d2

11. 40-764282: /dev/input/event4: 0000 0002 00000000

12. 40-764282: /dev/input/event4: 0000 0000 00000000

 ...

49. 40-898590: /dev/input/event4: 0003 0030 00000000

50. 40-898620: /dev/input/event4: 0003 0032 00000004

51. 40-898620: /dev/input/event4: 0003 0035 00000205

52. 40-898651: /dev/input/event4: 0003 0036 000001d2

53. 40-898681: /dev/input/event4: 0000 0002 00000000

54. 40-898681: /dev/input/event4: 0000 0000 00000000

 Xi, Yi Press

 Xm, Ym Move

 Xf, Yf Release

sec-µs device sensor values

SW
IP

E

Fig. 2. Series of events representing a swipe; Xi, Yi are the initial starting
coordinates, Xm, Ym are the coordinates during moving (still holding down),
and Xf , Yf are the final coordinates.

orientation. In the fourth phase, the user browses gas prices for
an individual station (seconds 46–60), which requires scrolling
and no compass. Finally (seconds 61+) the user navigates
again through the stations map using pinch and zoom, which
generates both touchscreen and compass events.

The time series reveals several key requirements for success-
ful replay: events from all sensors, not only the touchscreen,
must be captured and delivered, as they influence app behavior;
and events must be captured and delivered at high throughput.

We provide a broader quantitative assessment of typical
event volume in Table I. The table shows the total number
of events received from three input devices, captured during a
5-minute run of the app listed. Touchscreen events dominate,

TABLE I
NUMBER OF INPUT EVENTS PER INPUT DEVICE DURING A 5-MINUTE RUN.

App name Touchscreen Proximity sensor Accelerometer
Facebook 6,199 701 6

Angry Birds 5,895 675 3
GasBuddy 4,723 273 15
Amazon 4,831 779 4

however there are also a significant number of events from
sensors. For all apps the phone was kept flat on a table during
execution, which accounts for the small number of reported
accelerometer events.

III. APPROACH OVERVIEW

We now present an overview of our approach, its technical
challenges, and its advantages over prior record-and-replay ap-
proaches. Google provides the Android Software Development
Kit (SDK), which contains various tools to aid app developers
in implementation, testing, and debugging. Several of these
tools were used in the development of RERAN.

The high-level view is presented in Figure 4. Record or
replay can be started from either the phone, using the Android
Terminal Emulator [9] app available for free on Google Play,
or from a computer connected to the phone via a USB cable.
The Android Debug Bridge (ADB), accessible through the
adb command in the Android SDK, and Android Terminal
Emulator act as the interface between RERAN and the smart-
phone. Commands can be issued to the smartphone’s OS via
these shells. We used this ability both to record events and to
replay them.

A. Record

We use the Android SDK’s getevent tool, which reads
the /dev/input/event* files in order to provide a live
log (trace) of the input events on the phone, as shown on the
top of Figure 4. The performance of the app is unaffected
during logging. Once logging has ended, RERAN’s record
phase translates the captured trace and creates the event trace
file that is ready to be replayed. During translation, all the

/de
v/i

nput/e
ven

t*

Replay
Agent

/de
v/i

nput/e
ven

t*

Event
Trace

Event
Trace

RECORD

REPLAY

Record input
events

Inject
Events

Fig. 4. Overview of RERAN.

captured event information is converted to a concise form and
time delays are calculated. For implementation reasons, we
currently perform translation offline, on a computer, but we
plan to perform it directly on the phone in future work.

B. Replay

The Android SDK also provides a sendevent tool, which
allows developers to send a single input event to the phone.
Unfortunately, we found that sendevent has a small lag
when used in series, which makes it unable to faithfully
replay recorded event streams. There are several negative
consequences if accurate timing is not preserved during replay.
For example, delays in the middle of a swipe will make the
swipe appear to be a series of presses, delaying the release
that marks the end of press will make the press act as a press-
and-hold, etc.

Therefore, delivering events with exact timings was a key
technical challenge. As mentioned earlier, recreating a swipe
usually requires 50 or more events to be replayed. Further,
each swipe is usually less than a second, and the time
between individual events in the swipe is typically less than
60 microseconds.

Because of the sensitive time dependency between events
we had to refine our approach to replay. Rather than employ
sendevent, we implemented our own replay agent that runs
on the phone and directly injects events into the phone’s
event stream (as shown on the bottom of Figure 4). This
approach also allowed us to inject multiple events at the
same time, thereby seamlessly handling events that occurred
simultaneously during recording.

During replay, the replay agent on the phone appears as
an external user generating events through the phone’s input
devices. While in theory there is potential for conflicts with
other events occurring during a replay session, in practice we
did not find this to be a problem—because of our testing setup

(see Section IV-B) the phone gracefully accepts and processes
events from all sources, and there was no noticeable difference
in behavior for the apps in our test suite.

C. Comparison with Keyword Action Approaches

By performing record-and-replay at the level of individual
events, our tool can replay sophisticated touchscreen gestures
while being unaware of their high-level action meaning. Fur-
thermore, our approach naturally generalizes to handle new
touchscreen gestures that are available in the future, as well
as new kinds of sensors. All that is necessary is that these
actions can be represented as low-level events.

In contrast, approaches based on the keyword action
paradigm represent high-level actions directly. This can be
useful in conveying more semantic information to users.
However, it requires that the high-level taxonomy be updated
each time a new kind of gesture or sensor becomes available.
Furthermore, this approach requires a method for inferring
the high-level actions from the individual low-level events,
which may not always be straightforward. Finally, the many
degrees of freedom involved in touchscreen gestures make
the keyword action style relatively unnatural. For instance, a
swipe’s behavior may depend not only on the start and end
positions but also by the time taken, the trajectory followed
between the two positions, the amount of pressure used, etc.

IV. IMPLEMENTATION DETAILS AND PERFORMANCE

This section provides further details of RERAN’s imple-
mentation and experimental setup, and evaluate the tool’s
performance.

A. Physical Devices

The Android devices used to develop the replay tool were
Motorola Droid Bionic phones, which have dual-core ARM
Cortex-A9 processors running at 1GHz. The phones were
released on released September 8, 2011 and run Android
version 2.3.4 with Linux kernel version 2.6.35.

B. Testing Environment

Our phones did not have cellular service; we did not use
them for related tasks such as sending SMS messages and
making phone calls. In order to minimize the impact of poor
wireless link quality on apps, we used WiFi in strong signal
conditions. If tested apps did not require the device to be
physically moved, the phone was placed on a flat surface
when collecting traces; this reduces the flux of “always-on”
sensor events, e.g., the accelerometer and light sensor, without
affecting app behavior.

C. Replay Agent

We wrote the replay agent in C and compiled it with
arm-elf-gcc. We used the source code of Android’s
sendevent tool as a guide to determine how to interact with
the device directly, i.e., write to /dev/input/event*. In
the early stages of this research, the replay agent was running
on the computer as a Java program that used the Android shell
command sendevent to send a series of input events into

TABLE II
THE 86 OUT OF TOP-100 APPS IN THE U.S. VIEW OF GOOGLE PLAY (AS OF MAY 6, 2012) THAT RERAN CAN REPLAY.

App name
Adobe AIR Craigslist Mobile Feed Your Dino Free IMDB Running Fred Visual Anatomy
Adobe Flash Player Crime City Gas Buddy Instagram Sincerely Ink Cards Weather Bug
Adobe Reader Daily Horoscope Google Drive Kindle Sky Map Weather Channel
Amazon Mobile Dance Legend Google Earth Maps Skype WhatsApp Messenger
Angry Birds Rio Death Rally Free Google Maps Street View MotoPrint Slacker Radio Where’s My Water
Angry Birds Seasons Dictionary Google Play Books Movies by Flixster Slot City Machines Word Search
Angry Birds Space Documents ToGo Google Play Music MP3 Ringtone Maker Stick Man BMX Stunts Yellow Pages
Background HD Wallpapers Drag Racing Google Play Movies Myxer Talking Tom 2 Yelp
Baseball Superstars 2012 Drag Racing-Bike Racing Google Plus Netflix TED YouTube
BBC News Draw Something Google Search NBA Gametime Textgram Zedge
Bible Easy Battery Saver Google Translate One Touch Drawing TouchNote PostCards Zinio
BMX Boy eBay Groupon Picsart Tunewiki
Brightest Flashlight ESPN Score Center HeartRadio Pool Master Pro Twitter
Bubble Shoot Evernote How to Read Thoughts PulseNews Unblock Me Free
Color Note Facebook iFunny Recipe Search Unicorn Dash

TABLE III
THE PERFORMANCE AND SPACE OVERHEAD OF RERAN ON 4 POPULAR

APPS AVERAGED OVER 5 USER SESSIONS.

App name Run-time overhead Trace size
Original Replay Overhead

(seconds) (seconds) (%) (KB)
Facebook 291.04 294.12 1.05 260.43

Angry Birds 296.81 300.05 1.08 359.76
Dictionary 262.83 264.11 0.48 117.85
Gas Buddy 254.14 256.81 1.04 244.62

the phone via adb. However, as described earlier, that solution
did not achieve the microsecond accuracy needed for gestures.

RERAN supports selective replay, whereby the user can
suppress entire classes of events. This can be especially helpful
when the user is trying to isolate the root cause of a bug. It
can also reduce overhead when replaying an app that never
uses a particular sensor input, such as the accelerometer.

The compiled replay agent is uploaded to the phone via adb
and takes a trace file (event set and their timing) as argument.
In order to execute on the phone, system permissions must be
changed, which requires the phone to be rooted. The replay
agent runs in a separate process from the replayed app.

D. Achievements

Of the Top-100 apps on Google Play, we were able to
successfully replay 86; we list the names of these 86 apps
in Table II. Note that these apps span a variety of categories
from Social Media to Productivity to Games, demonstrating
the wide scope of RERAN’s practical utility. In Section VI
we discuss the reasons why replay is not possible for the
remaining 14 apps in Top-100.

E. Time and Space Overhead

We measured time and space overheads for 4 sample apps,
using traces from 5 different users. We present the results in
Table III. First, we compared the completion time of original
executions with the completion time of replayed executions.
Columns 2 and 3 show the average run time, across the 5
executions, of the original run and of the replayed run; column
4 shows the time overhead, near 1% in all cases. We believe the
replay overhead is largely due to the fact that event injection is

not instantaneous. During capture, sometimes an input device
reports events as occuring simultaneously, i.e., with the same
timestamp. We were able to mimic this by writing multiple
events into the stream at once. However, because the events
are being injected programatically, rather than being generated
by the physical device, captured simultaneous events are only
replayed within 500 microseconds of each other. Despite the
lag, it caused no noticeable differences in app behavior.

The last column shows the average log size of the events
captured. As expected, for the more interactive apps that use
many gestures, e.g., Angry Birds, the log size is higher than
less interactive apps, e.g., Dictionary. All tests were conducted
on the physical devices described in Section IV-A.

V. REPLAY USES

The ability to replay a recorded execution has myriad
applications. In this section we illustrate several scenarios of
how RERAN’s record-and-replay capabilities can be beneficial
to developers and researchers.

A. Repeatability through Trace Replay

RERAN is able to play back a set of input events of a
specific session exactly in the same way as it was originally
recorded. This includes touchscreen events, user proximity
events, as well as changes in phone orientation sensed by
the accelerometer and compass. In contrast, if a user were
to manually repeat a session trying to replicate the same
actions as the previous run, there could be inconsistencies
and abnormalities when compared to the original run due to
human error and inconsistent timing; this could in turn lead
to unfaithful results or an undesired outcome.

Replay can greatly help developers and researchers who
wish to eliminate inaccurate and time-consuming app testing
when repetition of a sequence is needed. In fact, in our
prior research [10], we used a preliminary version of RERAN
to eliminate the need for constant interaction with testers:
to profile network traffic and other app characteristics, we
examined 10 functionally identical executions of the same app
by recording a user’s interaction (execution #1) and replaying
it 9 times (executions #2 through #10).

TABLE IV
REPRODUCIBLE APP BUGS THAT ARE REPLAYABLE.

Category App name
File format Ankidroid 0.7b3

APV PDF viewer 0.2.7
Quickoffice 4.1.80
Soundcloud 1.2.2

Invalid input K-9 Mail 4.0.0.3
Stress NPR News 2.1b
Scripts/plugins Firefox 14.0
App logic Home Switcher 1.6

Facebook 1.7.1

Varying Environments: Trace replay can also be used
to test the effect of various environmental conditions on app
behavior. For example, in prior work on network profiling we
replayed the same app trace at different times of day to obtain
a wider range of app behaviors [10]. Similarly, developers
can choose to vary conditions such as network connectivity or
phone position during a replayed execution and observe the
impact of these variations on app behavior.

B. Reproducing Bugs

Reproducibility is key to bug fixing. RERAN provides
significant help for reproducing bugs by recording executions
until a bug is encountered and then replaying the trace. We
tested RERAN’s bug reproducing capabilities using actual bugs
in popular Android apps. We first gathered sample bugs2 from
a variety of sources: Google Code, Mozilla’s Bugzilla bug
tracker, and the Web. We manually tried to reproduce the
bug by following the provided steps to reproduce it, while
recording our input actions with RERAN. When we were
able to reproduce the bug in a manual run, we replayed
the collected trace using RERAN. All 9 bugs that we were
able to reproduce manually could be replayed, in that during
the replayed execution, the bug manifested itself. To ensure
the consistency of our results, we replayed the bug trace 5
additional times, and each time the bug was reproduced.

The bug category, along with the names and version of each
app, is provided in Table IV. Video demos of RERAN replaying
bugs are available on YouTube [1]. We now provide a detailed
characterization of the bugs.

1) Bugs stemming from incorrect file formats (e.g., cor-
rupted files, inappropriate file extension, unsupported
files, etc.). For example, APV PDF Viewer version 0.2.7
and Quickoffice version 4.1.80 crash if a corrupt PDF
file is loaded, while the Soundcloud 1.2.2 app crashes
if an unsupported file format (e.g., .ogg) is uploaded.
The Ankidroid flash card app (version 0.7b3) crashed
when it opened a specific custom card template.

2) Bugs that are created by entering invalid or wrong input.
For example, in the K-9 Mail 4.0.0.3 app, when IP

2We searched the Google Code and Mozilla Bugzilla bug repositories with
the keywords “Steps to reproduce”, “Stack trace”, “Observed behavior”, “Test
cases”, “Error report”, “Error message”, “Code sample”. Of the returned
results that were not device-specific and did not require phone service, we
installed the version of the app that contained the bug.

addresses are inserted in place of the corresponding
domain name, and the preferences are saved, the ap-
plication crashes.

3) Bugs in browser applications, which can be due to
unresponsive scripts, erroneous plug-ins, and malformed
HTML pages. One example is version 14.0 of the pop-
ular browser Mozilla Firefox; it crashes while handling
certain XML files and external scripts.

4) Bugs caused by stress testing (i.e., doing the same
thing or generating the same sequence of events over
and over.) For example, the NPR News reader app
(version 2.1b) crashes if the hourly news update feature
is exercised repeatedly.

5) Bugs caused by transitioning among app states. The
Home Switcher app allows the user to change the
system-wide theme of the user interface. Sometimes
transitioning from a particular third-party theme to an-
other theme causes the app (version 1.6) to crash. Face-
book version 1.7.1 crashed after removing the Internet
connection and attempting to log in.

Note that RERAN enables reproducing bugs that contain
gestures, whereas other Android testing tools cannot handle
gestures. For example, AndroidGUITAR [2] (which we com-
pare with extensively in Section VII) could reach the point of
the crash in those apps that did not contain input gestures such
as swipes. However, for apps that did contain gestures (e.g.,
Ankidroid, Quickoffice, APV PDF Viewer, and Soundcloud),
AndroidGUITAR is unable to reproduce the bugs.

Debugging: RERAN can be used in combination with
debuggers to drives the app to a certain state and then,
using a breakpoint, the debugger helps examine that state to
facilitate bug finding and fixing. For example, we used RERAN
in conjunction with the Eclipse integrated debugger, which
communicates with the VM on the smartphone via the Java
Debugger (JDB), to inspect app state during execution and just
before a crash.

C. Time Warping

With RERAN, we can time-warp the GUI events of an event
trace to alter timing during replay while still going through
the same execution states. Time warping is accomplished
by increasing or decreasing the time delays (TD, for short)
between consecutive events of a trace without changing the
original path captured. We have focused on fast-forwarding,
but we imagine that a similar approach could be used to slow
down execution, which could be used as another debugging
tool in a testing suite. For example, the TDs could be increased
to give the developer more time to examine the state of the
app before the next interaction occurs.

We do not attempt to manipulate the speed of touchscreen
presses or gestures. As we have discussed, such time warping
can easily modify the gesture’s effect or convert it to a different
action or set of actions. However, we have identified two
cases when significant TDs occur that can be targeted for fast-
forwarding: (1) during data entry and (2) when the user is
processing content. Data entry refers to the user typing on the

virtual or physical keypad and clicking buttons. These events
occur on human timescales and thus have significant room for
speed-ups. Processing content refers to the user examining
content on the screen, and deciding which action to perform
next, e.g., press a button. Processing content can also take
place after accessing data on external servers via the Internet
(e.g., the CNN and Facebook apps). These situations can be
fast-forwarded because there is a lag between the time that
the content has loaded and the time the user performs the
next input action.

We fast-forward using three rules that we have derived
empirically for our phones and test apps, but we expect the
general principle to hold for other setups.

The rules are as follows: (a) if the TD is less than 0.7
seconds, then we compress the delay to 0.001 seconds; (b) if
the delay is greater than 3.0 seconds, we compress the delay
to 3.0 seconds, and (c) any delay between 0.7 and 3.0 seconds
is unchanged.

Rule (a) tries to identify and fast-forward data entry from
the user. This rule, for example, allows data entry to be greatly
sped up in apps requiring heavy text input such as Dictionary
and Google Translate.

Rule (b) accounts for the long TDs during execution that can
occur when a user is viewing content on the screen or deciding
where to navigate to next. For example, this optimization can
be seen in the gas station finder Gas Buddy, in which the user
views a map of gas prices before selecting one, creating long
periods of delay.

Rule (c) preserves the speed of the execution in all other
situations.

Despite the simplicity of these rules, we were able to use
them successfully to time-warp many apps. Video demos of
RERAN fast-forwarding are available on YouTube [1].

We present the results of fast-forwarding in Table V. For
each app, in column 2 we present the original run-time, in
column 3 we present the run-time when fast-forwarding, while
column 4 shows the run-time reduction as a percentage. Note
that, in general, apps can be sped up anywhere from 4% to
68%. Certain apps, however (Quickoffice, NPR News, Home
Switcher), could not be fast-forwarded due to reasons that we
will explain next.

Uses of Fast-forwarding: Fast-forwarding can shorten the
time to reach a certain point in the app without requiring
manual input. For example, while testing a feature added to
one of the app’s screens, a developer could use fast-forwarding
to greatly reduce the time required to get to that screen. Fast-
forwarding can also be used in combination with RERAN’s
ability to reproduce bugs in order to speed up debugging time.
By fast-forwarding the replay, the amount of time to reproduce
the crash, i.e., replay the steps to reproduce, will be reduced,
thus saving the developer time. As shown in Table V, we also
fast-forwarded the 9 apps that had reproducible bug crashes. In
each, we ran our time-warped replay and found that 5 apps had
reduced running time. The remaining 3 apps saw no reduction
and kept their previous running time. This is due to the apps
not having data entry or long delays (so we could not apply

TABLE V
APP RUN TIME, IN THE ORIGINAL EXECUTION AND REPLAYED USING

FAST-FORWARDING. BUGS REPRODUCED ARE SHOWN IN GRAY.

App name Run-time Reduction
Original Fast-forwarded
(seconds) (seconds) (%)

Facebook 1.9 249.71 162.93 34.75
Dictionary 238.49 144.31 39.49
Gas Buddy 263.06 84.72 67.79
BBC News 277.31 120.32 56.61
Craigslist 308.92 239.54 22.46

ESPN Score 314.22 244.95 22.05
Amazon 298.69 109.15 63.46
Movies 286.16 197.09 31.13

Google Translate 308.66 211.63 31.44
Ankidroid 8.66 8.35 3.58

APV PDF viewer 10.93 8.17 25.25
Firefox 64.22 29.55 53.99

Soundcloud 29.34 25.79 12.10
K-9 Mail 32.23 24.84 22.93

Facebook 1.7.1 30.31 18.69 38.34
Quickoffice 3.12 3.12 0.00
NPR News 9.91 9.91 0.00

Home Switcher 7.99 7.99 0.00

TABLE VI
THE 14 OUT OF TOP-100 APPS THAT RERAN CANNOT REPLAY.

Non-replayable reason App name
Requires Android sensor service Barcode Scanner, Tango Video Calls
(e.g., camera, microphone) Voice Search, Voxer Walkie-Talkie
Dynamic or random elements Pandora, Boxing Game, Fruit Ninja
(i.e., nondeterminism) Jewels Star, Shoot Bubble Deluxe

Solitare, Temple Run, Tetris
Uno Free, Words with Friends

rules (a) or (b)), and instead the TDs stayed in the range of
our do-not-alter rule (rule (c)), which kept the original TD.

VI. LIMITATIONS

As mentioned in Section IV-D, RERAN could replay 86
of the Top 100-apps on Google Play. However, there were
14 apps we could not replay. These apps fell into two main
categories: apps which required an Android sensor service and
apps that contain dynamic or random elements, as shown in
Table VI. We now discuss the main reasons why these apps
cannot be replayed.

Requires Android sensor service: Some apps require sen-
sor input that RERAN does not record. For example, we cannot
replay the Barcode Scanner app properly without capturing the
identical barcode image that is fed as input from the camera.
Similarily, we cannot replay Voxer Walkie-Talkie because the
app requires capturing audio data from the microphone. In
Android, these types of input come from sensors that are
not instrumented in the same way as the touchscreen and
accelerometer (that use /dev/input/event*). Instead,
due to privacy and security issues, these sensors are not
openly accessible for capturing and are protected by system
permissions, e.g., the device’s camera, microphone, and GPS
location. Currently, we do not capture such sensors, as tapping
into such sources would require a non-trivial extension to our
system, a task we leave to future work.

Dynamic or random: Similarly, we do not capture
sources of nondeterminism, for example arising through dy-
namic layouts or popup windows [11], network connectivity
changes [12], or internal nondeterminism such as the use of
a random number generator. As can be seen in Table VI, the
majority of these dynamic or random apps are games, e.g.,
the popular game Temple Run randomly generates levels each
time a user plays, making replay with RERAN impossible. In
general, handling these sources of nondeterminism requires
capturing the results of system calls as well as calls to nonde-
terministic APIs and providing customized versions of these
APIs for replay [13], which requires instrumenting apps and/or
the VM. RERAN’s simple design loses this expressiveness but
can still replay the vast majority of apps in the Top 100.

VII. RELATED WORK

Record-and-replay techniques have been explored by a rich
body of prior work, on a range of platforms including Android.
Most closely related to our line of work are approaches that
implement record and replay at the GUI level; they usually do
so using two methods, a keyword action approach, in which
the GUI components are accessed and changed via scripts,
and an event-driven approach in which input device events are
captured and replayed. We first survey general-purpose GUI
testing tools and then Android-specific approaches.

A. GUI Testing for Desktop Applications

Some JUnit-based capture-and-replay tools, e.g.,
Jacareto [14] or Pounder [15], are event-driven and capture
coordinates in a manner similar to RERAN. They record the
(x, y) coordinates of mouse clicks and keyboard strokes,
and during replay, create new mouse and keyboard events
with the captured information. These tools, even though
they are at a higher level of abstraction than RERAN,
are also susceptible to errors when changes in the GUI
occur, e.g., Button1 changes position between application
versions. Some of these tools also offer support for mouse
drags [11]. However, mouse drags differ from swipes in
that the individual events being sent by other platforms are
usually being detected as mouse presses (which already
contain positioning information). In contrast, in Android, as
shown in Figure 2, a down-press corresponds to a group of
6 single precisely-timed events. Therefore, timing accuracy
for mouse drags on other platforms is not as critical as in
Android.

Marathon [16], HP WinRunner [4], Abbot [3], and Rational
Robot [5] offer support for record and replay for desktop
or server applications, but in a different manner. Instead
of capturing raw position coordinates they use a keyword
action technique that works at a higher level of abstraction
by capturing GUI objects. By capturing the GUI components
themselves, they are able to refer to objects by name in their
traces; however, they rely on the existence of a GUI layout
in the first place, an assumption which might not hold, e.g.,
in the Angry Birds case. Finding appropriate object handles
to use [17] can be alleviated with techniques such as GUI

mapping [18] or creating unique identifiers based on the thread
creating the GUI object [19]. Once a script has been created,
the GUI interaction is replayed by accessing the GUI objects
and updating their properties.

Tools following the keyword action technique often require
users to manually write test scripts rather than capturing
user interaction directly as in RERAN, because their focus is
creating test cases, rather than replay. This type of testing is
not as fragile as coordinate-based testing when changing GUI
components; however modifications made to the GUI API,
e.g., changes, additions, or deletions of GUI classes, might
also require the scripts to be changed [6], [17].

All the aforementioned approaches were built targeting
traditional desktop interfaces, and none of them offer support
for touchscreens. Attempts for touch-based replay outside of
mobile devices, e.g., DART [20] and Microsoft Surface SDK
for tabletop applications [21], are usually built to function
solely with the hardware and API’s of the targeted platform.
Recent work has moved towards creating a universal interface
for multi-touch devices [22], [23].

B. Android GUI Testing

The Android SDK provides the Monkey tool [24], which
can generate random touchscreen presses and gestures and
other system-level events, and feed them into an application.
Monkey also supports event sequence scripts to be fed into
an application, however it is not supported by Google, which
lists its purpose solely as a stress-tester. Monkey scripts can
contain Android MotionEvents, allowing it to handle presses.
However, based on our initial attempts when developing
RERAN, scripting presses is very labor-intensive, e.g., besides
the (x, y) position, each press requires 11 additional param-
eters to be specified including pressure, precision, and size.
In addition, Monkey scripting does not support touchscreen
gestures. RERAN alleviates the need for such complex and
time-consuming scripting via recording, that allows the user
to interact naturally with an app.

Google also provides a similar tool, Monkeyrunner [25],
which brings the keyword action technique to Android by
providing an API for replaying scripts that drive the Android
device or emulator. The tool allows users to view the ending
state as a screenshot. Robotium [26], a framework based on
JUnit, provides a similar approach as Monkeyrunner, but also
allows for automatic black-box testing of Android applications
by invoking GUI elements, e.g., button names and menus, to
navigate the application. Both tools heavily depend on the app
layout being structured in a way that allows them to easily
retrieve GUI components. However, deciding how to structure
a layout is very much at the discretion of the individual
Android app developers who can either (a) provide an XML
layout file, or (b) create layout elements at run-time [21].
RERAN’s testing is independent of layouts and limitations of
user-defined GUI elements. This enables RERAN to be able
to record and replay applications no matter how the layout is
structured.

GUITAR [27] is a GUI testing framework for Java and
Windows applications. GUITAR generates event sequence-
based test cases for GUI applications. Their technique can
generate test cases automatically using a structural event
generation graph. While GUITAR primarily targets Java desk-
top applications, it has recently been ported to Android by
extending Android SDK’s Monkeyrunner tool to allow users
to create their own test cases with a point-and-click interface
that captures press events. However, GUITAR does not support
touchscreen gestures, e.g., swipe and zoom, or other input de-
vices, e.g., accelerometer and compass. In the past, navigating
through a program by pointing and clicking was sufficient
and useful—outside of the mobile world, the primary input
devices captured have been mouse movement and keyboard
keystrokes. However, as smartphones become more advanced,
offering greater features and interactivity through added device
sensors and their uses, we argue that in order to faithfully
replay user interaction all these sensors must be accounted
for, not only a subset of one device, i.e., touchscreen presses.

C. Deterministic Replay

A substantial body of work has focused on deterministic
replay by capturing and replaying events at the hardware [28],
operating system [29], or virtual machine [30] levels. These
approaches log events that might introduce non-determinism
(I/O, thread scheduling, memory accesses, etc.) and deliver
the events in the right order during replay to ensure that
the replayed execution is (quasi) identical to the original
run. Logging overhead varies depending on the nature of
the benchmark, and adding record and replay capabilities
to an existing system might be quite intrusive. We explore
a different point in the design space: we do not aim to
achieve deterministic replay, but instead focus on an effective
approach and tool that uses standard software, hardware, and
is minimally intrusive, yet nevertheless can replay 86 out of
the Top-100 popular apps.

VIII. CONCLUSIONS

We have presented RERAN, an approach to record-and-
replay for the Android platform. Our research was moti-
vated by the novelty and popularity of touchscreen-based
platforms and apps, the unique challenges associated with
replaying these apps, and the broad applicability of record-
and-replay techniques when tackling research and practical
tasks on Android. By directly capturing the low-level event
stream on the phone and replaying it with precise timing,
RERAN can easily reproduce complex GUI gestures as well
as other sensor inputs. The result is a noninvasive yet very
effective record-and-replay approach that works for the vast
majority of popular, real-world apps in Google Play’s Top-
100. Moreover, we have demonstrated that the approach can
be applied successfully for repeatability, bug reproducibility,
and execution time-warping.

ACKNOWLEDGMENTS

We thank Shashank Kothapalli for his assistance in collect-
ing user traces. This work was supported in part by National

Science Foundation awards CNS-1064646, CNS-1064844, and
CNS-1143627, and by a Google Research Award.

REFERENCES

[1] “RERAN: Record and Replay for Android Video Demo,” August 2012,
http://www.youtube.com/user/RERAN2012.

[2] SourceForge, “Android GUITAR,” August 2012, http://sourceforge.net/
apps/mediawiki/guitar/index.php?title=Android GUITAR.

[3] Timothy Wall, “Abbot framework for automated testing of Java GUI
components and programs,” August 2012, http://abbot.sourceforge.net.

[4] Hewlet-Packard Company, “HP Functional Testing,” August 2012.
[5] IBM, “Rational Robot,” August 2012, www.ibm.com/software/awdtools/

tester/robot/.
[6] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A gui crawling-

based technique for android mobile application testing,” in ICSTW’11,
pp. 252–261.

[7] Nodobo, “Nodobo Capture: Mobile Data Recording for Analysing User
Interactions in Context,” 2011.

[8] Android Developers, “SensorEvent,” August 2012, http://developer.
android.com/reference/android/hardware/SensorEvent.html#values.

[9] Google Play Android apps, “Android Terminal Emulator,” August 2012,
https://play.google.com/store/apps/details?id=jackpal.androidterm.

[10] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid: multi-
layer profiling of android applications,” in MobiCom’12, pp. 137–148.

[11] M. Jovic, A. Adamoli, D. Zaparanuks, and M. Hauswirth, “Automating
performance testing of interactive java applications,” in AST’10, pp. 8–
15.

[12] J. Flinn and Z. M. Mao, “Can deterministic replay be an enabling tool
for mobile computing?” in HotMobile ’11, pp. 84–89.

[13] J. Mickens, J. Elson, and J. Howell, “Mugshot: deterministic capture
and replay for javascript applications,” in NSDI’10, pp. 159–174.

[14] Daniel Herding and Christian Spannagel, “Jacareto,” August 2012, http:
//sourceforge.net/apps/mediawiki/jacareto/.

[15] Matthew Pekar, “Pounder - Java GUI Testing Utility,” August 2012,
http://pounder.sourceforge.net/.

[16] Dakshinamurthy Karra, “Marathon,” August 2012, http:
//www.marathontesting.com/.

[17] P. A. Brooks and A. M. Memon, “Automated gui testing guided by usage
profiles,” in ASE’07, pp. 333–342.

[18] A. C. R. Paiva, J. a. C. P. Faria, N. Tillmann, and R. A. M. Vidal, “A
model-to-implementation mapping tool for automated model-based gui
testing,” in Proceedings of the 7th international conference on Formal
Methods and Software Engineering, pp. 450–464.

[19] J. Steven, P. Chandra, B. Fleck, and A. Podgurski, “jrapture: A cap-
ture/replay tool for observation-based testing,” in ISSTA’00, pp. 158–
167.

[20] L. B. Kara and T. F. Stahovich, “An image-based, trainable symbol
recognizer for hand-drawn sketches,” in Computers & Graphics, vol.
29, no. 4, pp. 501-517, 2005.

[21] Android Developers, “Layouts,” August 2012, http://developer.android.
com/guide/topics/ui/declaring-layout.html.

[22] S. H. Khandkar, S. M. Sohan, J. Sillito, and F. Maurer, “Tool Support
for Testing Complex Multi-Touch Gestures,” in ACM International
Conference on Interactive Tabletops and Surfaces, pp. 59–68.

[23] S. H. Khandkar and F. Maurer, “A Domain Specific Language to Define
Gestures for Multi-Touch Applications,” in Proceedings of the 10th
Workshop on Domain-Specific Modeling, pp. 2:1–2:6.

[24] Android Developers, “UI/Application Exerciser Monkey,” August 2012,
http://developer.android.com/tools/help/monkey.html.

[25] ——, “MonkeyRunner,” August 2012, http://developer.android.com/
guide/developing/tools/monkeyrunner concepts.html.

[26] Google Code, “Robotium,” August 2012, http://code.google.com/p/
robotium/.

[27] Atif Memon, “GUITAR,” August 2012, guitar.sourceforge.net/.
[28] S. Narayanasamy, G. Pokam, and B. Calder, “Bugnet: Continuously

recording program execution for deterministic replay debugging,” in
ISCA ’05, pp. 284–295.

[29] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou, “Flashback:
a lightweight extension for rollback and deterministic replay for software
debugging,” in USENIX Annual Technical Conference, 2004, pp. 29–44.

[30] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“Revirt: enabling intrusion analysis through virtual-machine logging and
replay,” in OSDI’02, pp. 211–224.

