Dynamic Slicing for Android

Tanzirul Azim*, Arash Alavi*, Iulian Neamtiu‡ and Rajiv Gupta*
*University of California, Riverside, USA
Email: mazim002@cs.ucr.edu, aalav003@ucr.edu, gupta@cs.ucr.edu
‡New Jersey Institute of Technology
Email: inea@njit.edu

Abstract—Dynamic program slicing is useful for a variety of tasks, from testing to debugging to security. Prior slicing approaches have targeted traditional desktop/server platforms, rather than mobile platforms such as Android. Slicing mobile, event-based systems is challenging due to their asynchronous callback construction and the IPC (interprocess communication)-heavy, sensor-driven, timing-sensitive nature of the platform. To address these problems, we introduce AndroidSlicer†, the first slicing approach for Android. AndroidSlicer combines a novel asynchronous slicing approach for modeling data and control dependences in the presence of callbacks with lightweight and precise instrumentation; this allows slicing for apps running on actual phones, and without requiring the app’s source code. Our slicer is capable of handling a wide array of inputs that Android supports without adding any noticeable overhead. Experiments on 60 apps from Google Play show that AndroidSlicer is effective (reducing the number of instructions to be examined to 0.3% of executed instructions) and efficient (app instrumentation and post-processing combined takes 31 seconds); all while imposing a runtime overhead of just 4%. We present three applications of AndroidSlicer that are particularly relevant in the mobile domain: (1) finding and tracking input parts responsible for an error/crash, (2) fault localization, i.e., finding the instructions responsible for an error/crash, and (3) reducing the regression test suite. Experiments with these applications on an additional set of 18 popular apps indicate that AndroidSlicer is effective for Android testing and debugging.

Index Terms—Mobile apps, Android, Dynamic analysis

I. INTRODUCTION

While mobile platforms have been very successful – Android alone runs on more than 2 billion devices [1] – they are prone to development, testing, and reliability issues that affect users, developers, and manufacturers [2], [3]. We propose an approach for tackling such issues via dynamic slicing, a technique that isolates relevant code and data dependences in an execution. Slicing has proven useful in many contexts, from security (e.g., taint analysis) to debugging (e.g., fault localization) and testing, but prior slicing approaches have not targeted mobile platforms [4]–[6].

The smartphone platform, compared to “traditional” desktop/server platforms, has unique challenges and constraints. This renders traditional slicing approaches inapplicable and has allowed us to design novel solutions. First, reconstructing control flow is difficult – Android apps employ callbacks which process events asynchronously. To cope with this, we introduce the concept of asynchronous dependences to capture control- and data-dependences between callbacks as supernodes in a supergraph. Second, Android apps are time-sensitive: even slight delays in sensor input can change input semantics, perturbing app execution. We use an on-demand static-after-dynamic analysis to permit low-overhead yet precise slicing. Third, Android has a wide range of inputs: multi-touch gestures, sensors, mic, camera, etc. Capturing this input correctly without losing precision is challenging, and introduces significant overhead in other tools, e.g., Pin [7]. We solve this challenge by combining lightweight tracking (AF wrappers) with a layered abstraction (supergraph). Fourth, Android uses IPC heavily for inter- and intra-app communication, which requires tracking dependences from apps, through system calls, to external apps.

Section III presents our model and dependence rules. Section IV describes our approach to handling Android-specific challenges, e.g., sensor input, low overhead, and IPC.

Our implementation, AndroidSlicer, is described in Section V; AndroidSlicer works on Android apps running on actual phones and does not require app source code.

Next, we show how AndroidSlicer serves as a building block for constructing three applications that facilitate bug finding, bug fixing, and testing. First, Failure-inducing Input Analysis, i.e., finding the input parts that are relevant to an error or a crash and tracking their propagation to the error/crash site (Section VI-A). Second, Fault Localization, i.e., finding the part of the code (a set of instructions) responsible for an error or crash (Section VI-B). Third, we show how slicing helps reduce the number of tests for Regression Testing (Section VI-C). Our analyses are robust and scalable: we applied them to isolate causes of real bugs in widely-popular apps such as SoundCloud, Etsy, K9-Mail, and NPR News.

In Section VII we evaluate AndroidSlicer on 60 popular apps from Google Play. Of these, we manually analyzed 10 apps to check AndroidSlicer’s correctness. Experiments indicate that AndroidSlicer is efficient: it typically instruments an app in just 19.1 seconds and slice computation during post-processing typically takes just 11.9 seconds. At most, slice computation took 293.5 seconds for the substantial Twitter app, whose bytecode size is 50.6 MB. Moreover, AndroidSlicer has a low runtime overhead, typically 4%. Finally, AndroidSlicer is effective: it manages to reduce large executions (on average, 14491 instructions) down to small slices (on average, 44 instructions) that are much more manageable for developers. In summary, this work makes four contributions:

†https://github.com/archer29m/AndroidSlicer
1) A novel asynchronous slicing model.
2) A precise approach for slicing Android apps that addresses the specific challenges and constraints of this platform and environment.
3) AndroidSlicer, a tool for slicing Android apps while they run on actual phones.
4) A novel approach to reducing runtime overhead and handling the large array of inputs supported by Android.
5) Three slicing applications that facilitate development, debugging, and testing for Android apps.

II. BACKGROUND

We first present a brief overview of program dependence graphs and program slicing; next, we discuss the Android platform and its event-based model.

Program dependence graph (PDG). A PDG captures a program’s data and control dependences. Each PDG edge represents a data or control dependence between nodes that can either represent an instruction or a basic block. A directed data dependence edge \(n_j \leftarrow_d n_i \) means any computation performed in \(n_i \) depends on the computed value at node \(n_j \). A control dependence edge \(n_j \leftarrow_c n_i \) indicates that the decision to execute \(n_i \) is made by \(n_j \), that is, \(n_j \) contains a predicate whose outcome controls the execution of \(n_i \). A static PDG consists of all possible data and control dependence relations. A dynamic PDG is a subgraph that contains only those nodes and edges that are exercised during a particular run.

Program slicing. Dynamic program slicing, a class of dynamic analysis, was introduced by Korel and Laski [4]. The backward dynamic slice at instruction instance \(s \) with respect to slicing criterion \((t, s, \text{value})\) where \(t \) is a timestamp contains executed instructions that have a direct or indirect effect on \(\text{value} \); more precisely, it is the transitive closure over dynamic data and control dependences in the PDG starting from the slicing criterion. The slicing criterion represents an analysis demand relevant to an application, e.g., for debugging, the criterion means the instruction execution that causes a crash.

Android platform. The Android software stack comprises of: apps; a middleware component named Android Framework (AF) which orchestrates control flow and mediates inter- and intra-app communication, as well as communication between apps and the lower layers; libraries and services; a run-time environment; and the OS, an embedded version of Linux.

Android’s event-based model. Android apps do not have a main() method but rather consist of components (e.g., an app with a GUI consists of screens, named Activities) and one or more entry points. Unlike traditional programs, apps use an event-driven model that dictates control flow. An event can be a user action (e.g., touch), a lifecycle event (e.g., onPause()) or more entry points. Unlike traditional programs, apps use an event-driven model that dictates control flow. An event can be a user action (e.g., touch), a lifecycle event (e.g., onPause())

2 Dalvik VM for Android prior to 5.0; in Android version 5.0 and later, Android uses ART, a runtime system and ahead-of-time compilation. Our implementation (Section V) is on Android 5.1.1.

3 The vast majority of Google Play apps consist of Activities. There are other component types such as Services, Content Providers, and Broadcast Receiver [8] but these are used much more sparsely.

when the app is paused), arrival of sensor data (e.g., GPS), and inter- or intra-app messages. All these traits, from externally-orchestrated control flow to time-sensitive sensor input, render traditional slicing approaches inapplicable to Android.

III. MODEL

In this section we present the model underlying our approach. Slicing precision depends on accurately identifying control and data dependences – these dependences form the PDG. Our callback-centric design achieves low-overhead event capture without sacrificing precision (all input data is captured natively from the framework). Instead of considering a single instruction instance as a node, we collectively define callbacks as a node containing other nodes (instructions) or a supernode. Just like a regular node, callbacks or supernodes can invoke other events/callbacks directly (a control dependence), or by passing an argument to the framework which in turn is passed to another callback (a data dependence). Our model captures both of these dependences for callbacks/supernodes, and instructions/single nodes. We use a “hierarchical” PDG, constructed as follows. High-level supernodes \(N \) represent callbacks and their dynamic context; superedges represent asynchronous control- or data-dependences between supernodes. Within supernodes, we use low-level instruction nodes \(S_{it} \), and edges which capture sequential dependences.

Supernodes \(N \), the core of our model, are defined as:

\[N := \{c, t, a, \{[S_{it} \leftarrow_c S_{jt} \mid S_{it} \leftarrow_d S_{jt}[s]\}] \}\]

where callback variables \(c \) contain the address of a callback, \(t \) is the timestamp for node creation, \(a \) is the activity context (activity’s runtime state), while \(S_{it} \) (a regular node) represents the instance of instruction \(S_i \) at time \(t \). Data and control dependences are denoted \(\leftarrow_d \) and \(\leftarrow_c \), respectively. Superedges connect supernodes and regular edges connect regular nodes. Note that supernodes might contain sub-graphs (consisting of regular nodes \(S_{it} \leftarrow_c S_{jt} \) or \(S_{it} \leftarrow_d S_{jt} \)); hence the hierarchical PDG notion. We now explain our dependence rules, shown in Figure 1.

A. Asynchronous Dependences

Asynchronous data dependence. Intuitively, asynchronous data dependences capture communication via message passing (IPC, objects, etc.). We denote the set of registers defined in callback \(c_1 \) as Define \((c_1)\); and the reference stored in register \(v_x \) at time \(t \) as ref \((v_x, t)\). Then, callback instance \(c_2 \) is data-dependent on callback instance \(c_1 \) (i.e., \(N_1 \leftarrow_d N_2 \)) if at time \(t \), \(c_1 \) defines an inter- or intra-process messaging object (intent) in a register \(v_1 \), and \(c_2 \) receives the same reference in register \(v_2 \) as a parameter. This also introduces a data dependence from the first instruction \(S_{2t} \) in \(c_2 \) that uses \(v_2 \), to the instruction \(S_{1t} \) in \(c_1 \) that defines \(v_1 \). Depending on the callback, data dependence can be inter-app or intra-app; we track both.

Asynchronous control dependence. Effective asynchronous slicing hinges on capturing dependences between asynchronous events precisely, via superedges \(N \leftarrow_c N_2 \) whenever \(N \) determines (initiates) the execution of \(N_2 \) via
Sequential data dependence

\[N_1 = \langle c_1, t_1, a_1, \ldots \rangle, N_2 = \langle c_2, t_2, a_2, \ldots \rangle \]
\[v_2 \in \text{param}(c_2), v_1 \in \text{Def}(c_1), \text{ref}(v_1, t_1) = \text{ref}(v_2, t_2) \]
\[N_1 \leftarrow_d N_2 \quad \text{and} \quad S_{1t} \leftarrow_d S_{2t} \]

Sequential control dependence

\[N_1 = \langle c_1, t_1, a_1, \ldots \rangle, N_2 = \langle c_2, t_2, a_2, \ldots \rangle, a_1 \neq a_2, \text{initiator}(N_2) = N_1, (N_1 \leftarrow_d N_2) \]
\[N_1 = \langle c_1, t_1, a_1, \ldots \rangle, N_2 = \langle c_2, t_2, a_2, \ldots \rangle, a_1 \neq a_2, \text{initiator}(N_2) = N_1, N_1 \leftarrow_d N_2, N_0 \leftarrow_c N_1 \]
\[N_0 \leftarrow_c N_2 \]

Asynchronous data dependence

\[\text{Capture event causality} \]
\[N_1 = \langle c_1, t_1, a_1, \ldots \rangle, N_2 = \langle c_2, t_2, a_2, \ldots \rangle \]
\[v_1 \in \text{param}(c_2), v_2 \in \text{Def}(c_1), \text{ref}(v_1, t_1) = \text{ref}(v_2, t_2) \]
\[N_1 \leftarrow_d N_2 \quad \text{and} \quad S_{1t} \leftarrow_d S_{2t} \]

Asynchronous control dependence

\[\text{Capture event causality} \]
\[N_1 = \langle c_1, t_1, a_1, \ldots \rangle, N_2 = \langle c_2, t_2, a_2, \ldots \rangle \]
\[v_1 \in \text{param}(c_2), v_2 \in \text{Def}(c_1), \text{ref}(v_1, t_1) = \text{ref}(v_2, t_2) \]
\[N_1 \leftarrow_d N_2 \quad \text{and} \quad S_{1t} \leftarrow_d S_{2t} \]

Sequential data dependence

\[v_1 \in S_{1t}, v_2 \in S_{2t}, v_1 \in \text{Def}(S_{1t}), v_2 \in \text{Def}(S_{2t}) \]
\[\text{ref}(v_1, t_1) = \text{ref}(v_2, t_2) \]
\[S_{1t} \leftarrow_d S_{2t} \]

Sequential control dependence

\[\text{isBool}(S_{1t}) = \text{true} \]
\[S_{ipd} = \text{ipd}(S_{1t}), \text{isPost}(S_{ipd}, S_{ipd}) = \text{true} \]
\[S_{1t} \leftarrow_c S_{2t} \]

Fig. 1: Dependence rules.

IV. ANDROID SLICING CHALLENGES

We now show how the Android programming model/platform introduce challenges for constructing a dynamic slicer, and discuss how we have overcome these challenges.

A. Low Overhead

Dynamic slicing (as with any dynamic analysis) on mobile platforms must not interfere with the execution of the app that is being analyzed. Mobile apps do not tolerate delays gracefully: we illustrate this with three examples. First, even just attaching the standard dynamic analyzer Pin [7] to an Android app – a trivial operation on desktop/server – can have unacceptable overhead, or outright crash the app. We instrumented 6 well-known apps using AndroidSlicer and Pin (Pintool prints simple instructions). Table I presents the results. We used Monkey to send the apps 5,000 UI events. Pin instrumentation crashed all examined apps due to nonresponsiveness5 while AndroidSlicer instrumentation had a low overhead of 5%. Second, introducing delays in GUI event processing can alter the semantics of the event: an instrumented app running slower might interpret one long swipe as two shorter swipes [9]. Third, harmful interference due to delays in GPS timing, or in event delivery and scheduling, can easily derail an execution [10].

Our approach. We address this challenge by optimizing register tracking at the AF/library boundary. First, in the runtime tracing phase, for a call into the AF/library we only track live registers, and only up to the boundary; upon exiting the AF/library we resume tracking registers. Second, in the static analysis phase we compute taint (source → sink) information to identify those methods that take values upward to the AF (sources) as well as those methods which return values downward to the app code (sinks). Finally, in the trace

5https://developer.android.com/reference/java/util/concurrent/TimeoutException

TABLE I: AndroidSlicer and Pin comparison.

<table>
<thead>
<tr>
<th>App</th>
<th>Original run (s)</th>
<th>AndroidSlicer run (s)</th>
<th>Pin run (s)</th>
<th>AndroidSlicer overhead (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indeed Job Search</td>
<td>15.8</td>
<td>17.1</td>
<td>Crashed at 14.7</td>
<td>8</td>
</tr>
<tr>
<td>Geek</td>
<td>29.4</td>
<td>32.2</td>
<td>Crashed at 17.4</td>
<td>9</td>
</tr>
<tr>
<td>Scanner Radio</td>
<td>29.5</td>
<td>30.9</td>
<td>Crashed at 15.1</td>
<td>5</td>
</tr>
<tr>
<td>Daily Bible</td>
<td>23.9</td>
<td>24.2</td>
<td>Crashed at 23.6</td>
<td>1</td>
</tr>
<tr>
<td>CheapChair</td>
<td>21.7</td>
<td>22.8</td>
<td>Crashed at 12.2</td>
<td>5</td>
</tr>
<tr>
<td>Kmart</td>
<td>24.5</td>
<td>25.2</td>
<td>Crashed at 14.6</td>
<td>3</td>
</tr>
</tbody>
</table>
processing phase we instantiate the static taint information with the registers tracked into and out of the framework.

B. High-throughput Wide-ranging Input

Android apps are touch- and sensor-oriented, receiving high-throughput, time-sensitive input from a wide range of sources. Typical per-second event rates are 70 for GPS, 54 for the camera, 386 for audio, and 250 for network [10]. A simple swipe gesture is 301 events per second [9]. Thus, we require low-overhead tracking of high-throughput multi-sourced input.

Our approach. Android employs AF-level event handlers for capturing external events. We achieve both scalability and precision by intercepting the registers at event processing boundary, as illustrated next. Swipes are series of touches, with the event handler onFling(MotionEvent e1, MotionEvent e2, float velocityX, float velocityY). We intercept the event by tracking the registers that hold the event handler parameters, i.e., e1, e2, velocityX, velocityY, and tagging them as external inputs. This approach has two advantages. First, register tracking is efficient, ensuring scalability. Second, being able to trace program behavior, e.g., an app crash, to a particular external input via a backward slice allows developers to “find the needle in the haystack” and allows us to perform efficient and effective fault localization (Sections VI-A and VI-B). Although our implementation targets Android, it is agnostic of the low-level OS layer.

C. Inter- and Intra-app Communication

Android relies heavily on IPC. The fundamental IPC mechanism is called Intent: using an intent, an activity can start another activity, or ask another app for a service. For example, the Facebook app can send an intent to the Camera app asking it to take a picture; the picture is returned via an intent as well. There are two types of intents: implicit and explicit. An implicit intent starts any component that can handle the intended action without specifying a destination component. An explicit intent specifies the destination component (an Activity instance) by name.

Implicit intents and consequently, inter-app communications, complicate slicing. We illustrate this in Figure 2. The example shows the GetContacts activity that allows the user to pick a contact. An intent can launch an activity via the startActivity or startActivityForResult methods. Upon completion, Android calls the onActivityResult method with the request code that we have passed to the startActivityForResult method (line 5 in the example). Without understanding the impact of inter-app intents, we would not be able to find complete slices. Assume we want to compute the slice with respect to variable name starting at statement 14. The resulting slice should contain statements \{14, 9, 10, 12, 13, 8, 11, 5, 4\}. However, traditional slicing would not find the complete slice because it only adds statements \{14, 13, 12, 11, 10, 9\} to the slice – it will miss statements 4 and 5 for two main reasons. First, traditional slicing fails to pair startActivityForResult with onActivityResult – which are similar to a caller-call – and thus it fails to reconstruct control flow to account for IPC. Second, note how we cross memory spaces into the Contacts app, hence we need to account for Android’s sandboxing to be able to trace the initial (request) and result intents.

Explicit intents also complicate slicing, as shown in Figure 3. The example shows ActivityOne starting ActivityTwo. The message “Some Value” is passed via IPC, the Bundle in this case. Consider computing the slice with respect to variable value starting at statement 8. The dynamic slice should contain statements \{8, 7, 4, 3, 2\}. However, traditional slicing cannot find the precise slice because it does not account for intra-app communication. Specifically, the example uses Bundle’s putExtra and getExtra to pass data between the two activities; the Bundle is a system component, so in this case the dataflow is mediated by the system, and would elude a traditional slicer. Hence traditional slicing would not traverse statements \{4, 3, 2\} due to the missing dependences between the two activities and would yield slice \{8, 7\} which would be incorrect.

Our approach. To address challenges due to inter- and intra-app communication, we analyze app inputs and track callbacks and AF APIs to construct asynchronous data dependence edges accordingly (Section III-A). For example, if an activity calls another activity by sending an intent via startActivity or sendBroadcast, we trace the receiver callback and the parameter referencing the intent. For example we introduce data dependences \(n \leftarrow d\) \(m\), where \(n\) is the node associated with the instruction that sends the broadcast with the intent as parameter reference in a register \(v_n\), while \(m\) is the node associated with the instruction that receives the intent, by reference, in register \(v_m\).

Analyzing intra-app communication is complicated by several factors. Android allows developers to only receive intents within the app’s context for certain internal activities. Intercepting these intents to construct data-flow facts requires further analysis of app bytecode. The task can be challenging, e.g., for intents that receive custom Parcelable objects (Android’s form of serialization). To address this challenge, we add instrumentation routines to track the registers containing intent references. These intents are passed as parameters in different AF or API calls.

To summarize, by recording callbacks and intents, AndroidSlicer captures inter-app and intra-app communication precisely, with no under- or over-approximation.

V. IMPLEMENTATION

In this section, we describe AndroidSlicer’s implementation. An overview is shown in Figure 4. In the first stage, the app is instrumented to allow instruction tracing. Next, as the app executes, runtime traces are collected. We perform an on-demand static analysis to optimize trace processing, and then compute the PDG. Finally, we calculate slices for a given slicing criterion. We now discuss each phase.
Fig. 2: Program and its associated PDG. In the program: lines marked with an S denote the slice with respect to variable name on line 14. In the PDG: solid edges denote data dependences; dashed edges denote control dependences; graph nodes marked with an M denote nodes that would be missed by traditional slicing techniques. Labels on solid edges denote the variables which cause the data dependence.

Fig. 3: Program and its associated PDG. Lines marked with S denote the slice with respect to variable value on line 8.

Fig. 4: AndroidSlicer overview.

A. Instrumentation

The purpose of this stage is three-fold: identify app entry points; construct method summaries; and add instruction/metadata tracing capabilities to the app.

Constructing method summaries. We first build a callgraph for each app class from the analyzed app entry points to create method summaries (i.e., in/out registers and method type). For each node in the callgraph (i.e., method) we add instrumentation tags that summarize that method. This instrumentation is an extended version of the method signature present in the Dexcode (Android bytecode); we save information for parameter registers and return value registers.

Adding tracing instructions. We add tracing capabilities via Soot [11]. AndroidSlicer’s instrumenter takes the app binary as input; the output is the instrumented app, which we run on the phone. To support tracing, we inject a new Dexcode instruction for every app instruction or callback routine we encounter. The trace format is described next.

B. Runtime Trace Collection

We collect the traces while the instrumented app is running on the phone. Traces have the format:

```
trace_entry := <t, instruction_number_offset, instruction, [summary]>
summary := <type, invoked_method, parameter_registers, return_registers, callback_parameter_registers, intent_source, intent_action_filters>
```

Trace entries have the following semantics: t is the actual time the instruction was executed (t in the model); instruction_number_offset is the instruction’s relative line number in the printed dex code; instruction is the opcode (op in the model); therefore we have the S_{it} from the model. Summary information is only used for method invocations; it contains the method’s type, e.g., an IPC or a non-IPC call, in/out register values, caller information (i.e., current callback), and, where applicable, the action string (filter) associated with the intent.
C. On-demand Static Analysis

To build the PDG efficiently, we conduct a post-run on-demand static analysis that uses the collected runtime information to narrow down the scope of the static analysis to only those app parts that have been exercised during the run. The advantage of this on-demand approach is that, instead of statically analyzing the whole program (which for Android apps raises scalability and precision issues) we only analyze those methods encountered during execution. The on-demand analysis phase performs several tasks.

D. Trace Processing and PDG Construction

With the static analysis information at hand, we analyze the application traces to generate the PDG of that particular execution. The PDG is built gradually via backward exploration of dependencies, adding nodes and edges as explained shortly. Our prior static analysis produces two sets: (1) StaticData\(_s\) – the set of static data dependence nodes for an instruction \(s\), and (2) StaticControl\(_s\) – the set of static control dependence nodes for an instruction \(s\). As mentioned in Section III, suffix \(t\) distinguishes between different occurrences of an instruction; the implementation uses a global counter for this purpose.

Sequential data dependence edges. For every occurrence of an instruction \(s\), add a data dependence edge to the last executed occurrence of every instruction in its StaticData\(_s\).

Sequential control dependence edges. For every occurrence of an instruction \(s\), add a control dependence edge to the last executed occurrence of every instruction in its StaticControl\(_s\).

Asynchronous data dependence superedges. For every occurrence of a callback callee node, add a data dependence to the last occurrence of its caller. This information is revealed via static callback analysis. We also identify the instruction \(s_{\text{ipct}}\) that contains the actual IPC method call in the caller that passed the intent reference at time \(t\). The callee receives the intent through one of its parameter registers \(v_{\text{intent}}\). We then identify the last occurrence of the first instruction in callee at time \(t\) that uses \(v_{\text{intent}}\). Let us name this \(S_{\text{int}}\). We then add a data dependence \(S_{\text{ipct}} \rightarrow_d S_{\text{int}}\).

Asynchronous control dependence superedges. Based on our two asynchronous control dependence rules (Figure 1), if there is no data dependence between the corresponding supernodes from two consecutive activity contexts, i.e., call-back callee and its caller \((N_1\) and \(N_2\)), we add a control dependence superedge \(N_1 \leftarrow_c N_2\). Otherwise, we add a control dependence superedge \(N_0 \leftarrow_c N_2\), where \(N_0\) is the supernode \(N_1\) is control-dependent on.

E. Generating Program Slices from the PDG

We now discuss our approach for generating slices given the PDG and a slicing criterion. Algorithm 1 provides the high-level description. The slicing criterion \((t, s_t, v_s)\) represents the register \(v_s\) in instruction \(s\) at a particular timestamp \(t\). Since an instruction is a regular node in the PDG we will use both terms interchangeably, i.e., \(s_t\) refers to both the exact instance of the instruction at time \(t\) and the PDG node. We maintain a workset \(T_s\) that holds the nodes yet-to-be-explored (akin to the working queue in Breadth-first search). The output \(OUT_{st}\) is the set of distinct nodes in the PDG we encounter while backward traversing from \(s_t\) to any of the app entry points affecting the value held in register \(v_s\). We first traverse the edges in the PDG starting from \(s_t\) and create a dynamic data dependence table \(Def_n\) and a control dependence table \(Ctrl_n\) for each node \(n\) on paths to entry points. For each regular node \(n'\) in the set \(P_n = Def_n \cup Ctrl_n\), we add \(n'\) to \(OUT_{st}\). If \(n'\) is a supernode and \(n' \in Def_n\), we expand \(n'\). The expansion adds the last occurrence of the regular node \(n_r\) inside \(n'\) that broadcasts an intent to \(Def_n\) and recalculates \(P_n\). Note that \(n_r\) passes the IPC reference (intents) in a register to the next supernode, and hence it should be included in the slice. Since the same instruction can appear multiple times because of different occurrences at different timestamps, this procedure adds nodes with the same instructions to the slice for each occurrence. This increases the size of the slice. To reduce the number of nodes in \(OUT_{st}\) we make two optimizations.

1. Node merging. Given different occurrences (i.e., at times \(t\) and \(t'\)) of a regular node (i.e., \(n \equiv s_t, n' \equiv s_{t'}\)) if \(P_n = P_{n'}\), we merge \(n\) and \(n'\) into \(n_{\text{merged}}\). For two different occurrences \(N\) and \(N'\) of the same supernode, we also apply merging: if \(N\) and \(N'\) have incoming or outgoing data dependence edges we expand the nodes and merge the individual instructions, i.e., regular nodes inside them; if \(N\) and \(N'\) are connected by control dependence edges only, we merge them.

2. Loop folding. In loops, for every new occurrence of a loop body instruction \(s\), we will add a new node in the slice.

Algorithm 1 Dynamic program slicing

Input: PDG, slicing criterion \(SliceCriterion = (t, s_t, v_s)\)

Output: set of nodes \(OUT_{st}\)

1: \(\text{procedure } SLICE(SliceCriterion)\)
2: \(T_s \leftarrow \{s_t\} // \text{initialize workset } T_s\)
3: \(OUT_{st} \leftarrow \{s_t\}\)
4: for all nodes \(n\) that are in \(T_s\) do
5: \(\text{calculate set } P_n = Def_n \cup Ctrl_n\)
6: for all nodes \(n'\) in \(P_n\) do
7: if \(n'\) is a supernode then
8: \(\text{Expand } & \text{ extract the last regular node } n_r\)
9: \(\text{Add } n_r \text{ to } Def_n\)
10: else if \(n' = n \& P_{n'} = P_n\) then
11: \(\text{Merge } (n', n); \text{ remove } n' \text{ from } P_{n'}\)
12: else if previous occurrence of \(n\) is in \(P_{n'} \& P_{n'} \subset P_n\) then
13: \(\text{Merge } (n', n); \text{ remove } n' \text{ from } P_{n'}\)
14: else
15: \(\text{add } n' \text{ to } OUT_{st}; \text{ add } n' \text{ to } T_s; \text{ remove } n\)
16: end if
17: end for
18: end for
19: end procedure

But these nodes may point to the same set of data and control dependence in the PDG – they are different occurrences of \(s \). To reduce these duplications, we merge two distinct nodes \(n \) and \(n' \) in the loop if the following conditions are met: (a) current occurrence of \(n' \) depends on the previous execution of \(n \); (b) current occurrence of \(n' \) depends on the current occurrence of \(n \); and (c) \(P_n' \subseteq P_n \).

Let us call the new node created after the merge \(n_{\text{merged}} \). Each time we find a different occurrence of the merged node \(n' \). Limitation to further reduce it to a single node.

getSimilarItems registers actual instruction (center) and the value propagation through the number of distinct dynamic instances of an instruction(left), the app takes an input word from a text box and translates it. In

ordering of the callbacks associated with asynchronous events could be overcome with next-generation static analyzers. This analysis finds the input parts responsible for a crash or error. Note that unlike traditional programs where input propagation and control flow largely depend on program logic, in event-driven systems propagation depends on the particular ordering of the callbacks associated with asynchronous events.

Leveraging our PDG, we can reconstruct the \(v \) propagation path.

Problem statement. Let \(I \) be the set of app inputs \(I_1, I_2, \ldots \) (e.g., coming from GUI, network, or sensors) through registers \(v_1, v_2, \ldots \). Let the faulty register be \(v_\text{err} \), i.e., its value deviates from the expected value (including an incorrect numeric value, crash, or exception). Hence the analysis’ input will be the tuple \((I, v_\text{err}, PDG) \) while the output will be a sequence of registers \(v_1, v_2, \ldots, v_n \) along with the callbacks \(c_1, c_2, \ldots, c_m \) the registers are used in.

Tracking input propagation. In the PDG, for every asynchronous callback, we can create an input propagation path by tracking the data dependence for the value of any register \(v_i \). We determine whether the values propagated through registers are influenced by any of the app inputs \(I \). This is particularly useful for identifying faults due to corrupted files or large sensor inputs (e.g., a video stream).

Example. We illustrate our analysis on an actual bug, due to a malformed SQL query, in Olam, a translator app.\(^7\) The app takes an input word from a text box and translates it. In Figure 5 (top) we show the relevant part of the code: the number of distinct dynamic instances of an instruction(left), the actual instruction (center) and the value propagation through registers \(v_1, v_2, \ldots, v_n \) along the PDG edges (right). In the method getSimilaritems, the app attempts to query the SQLite database, which generates an exception, resulting in a crash.

The exception trace from the Android event log indicates that the query is ill-formed. The PDG (bottom left) points out the callback in which the exception was thrown: the onClick event associated with the search button in the MainSearch activity. We analyze the event inputs by following the data dependence edges backwards and see that the registers’ values are pointing towards the input text from the textbox edittext. We compute the slice using the faulty register reference as slicing criterion.

The execution slice is shown in Figure 5: we see that the ill-formatted string was stored in register \(v_1 \). Our approach back-propagates the value of \(v_1 \) through the slices to determine whether it was impacted by any part of the input. Back-propagation starts from the error location, i.e., instruction instance 29754. The value propagates to register \(v_5 \) which references the return value from getText invoked on an instance of \(v_4 \) that is pointing to the GUI control element EditTextBox. Our analysis ends by returning the register \(v_5 \) with the corresponding callback information. The second part of the figure shows the associated supernodes which reveal that the executed slices belong to the MainSearch:onClick callback. The failure-inducing input was thus essentially identified analyzing a much smaller set of instructions, and more importantly, in the presence of non-deterministic callback orders.

B. Fault Localization

This analysis helps detect and identify the location of a fault in an app. For sequential programs, fault localization is less challenging in the sense that it does not need to deal with the non-determinism imposed by asynchronous events. Android apps are not only event-driven but also can accept inputs at any point of the execution through sensors, files, and various forms of user interactions. For this reason, fault localization on Android can be particularly challenging for developers.

Problem statement. The input to the analysis will be the application trace, and the register \(v_\text{err} \) holding the faulty value in a specific occurrence of an instruction. The output this time will be the sequence of instructions \(s_1, s_2, \ldots, s_n \) that define and propagate the value referenced in \(v_\text{err} \).

Tracking fault propagation. Our slicing approach aids fault localization as follows. Given a fault during an execution, we determine the faulty value reference inside a register \(v_\text{err} \) by mapping the Android event log to our execution trace. Then we compute the execution slice for \(v_\text{err} \) by back-propagating through the execution slice. While we traverse the PDG backwards, we consider asynchronous callbacks and their input parameters if they have a direct data or control dependence to the final value of \(v_\text{err} \). This way, we can both handle the non-determinism of the events and also support the random inputs from internal and external sources.

Example. We illustrate our approach on a real bug in the comic book viewing app ACV.\(^8\) Figure 6 shows the generated sequential and asynchronous dependences for the faulty execution. The bug causes a crash when the user opens the file explorer to choose a comic book. If the user long-taps

\(^7\)https://play.google.com/store/apps/details?id=com.olam

\(^8\)https://play.google.com/store/apps/details?id=net.androidcomics.acv
on an inaccessible directory, the app crashes with a null pointer exception. From Figure 6 we can see that the object reference stored in register $v6$ at instruction 7153 was the primary cause of the error. The corresponding callback is revealed to be onItemLongClick in activity SDBrowserActivity. Our analysis tracks back the object reference in $v6$ through the slices, reaching instruction 6803. Here we can see a file system API invocation (java.io.File.getName()) that attempts to return a filename, but fails because the file’s directory is inaccessible. Our value propagation ends here, revealing the source of the error. We return the set of instructions {6803, ..., 7142, 7143, 7144, 7152, 7153}, and the traversed PDG nodes. For simplicity, we only show the data dependence edges and relevant parts of the slices. Our approach then back-propagates through the PDG according to the execution slice to localize the fault (for presentation simplicity we have combined consecutive supernodes in the same activity into a single node).

C. Regression Test Suite Reduction

Regression testing validates that changes introduced in a new app version do not “break” features that worked in the previous version. However, re-running the previous version’s entire test suite on the new version is time-consuming and inefficient. Prior work [12], [13] has shown that slicing reduces the number of test cases that have to be rerun during regression testing (though for traditional apps).

Problem statement. Given two app versions (V_1 and V_2), and a test suite T_1 (set of test cases) that has been run on V_1, find T_2, the minimal subset of T_1, that needs to be rerun on V_2 to ensure that V_2 preserves V_1’s functionality.

Test case selection. Agrawal et al. [12] used dynamic slicing to find T_2 as follows: given a program, its test cases, and slices for test cases, after the program is modified, rerun only those test cases whose slices contain a modified statement. This reduces the test suite because only a subset of program slices for test cases, after the program is modified, rerun only those test cases whose slices contain a modified statement. But it only considers whether a statement has been modified, not how it has been modified. When the changed instructions affect predicates leading to an asynchronous control dependence (see Section III-A), missed control dependences will lead to potentially missing some test cases. Our approach considers such dependences to maintain soundness.

VII. Evaluation

We first evaluate AndroidSlicer’s core slicing approach; next, we evaluate it on the three applications from Section VI.
Environment. An LG Nexus 5 phone (Android version 5.1.1, Linux kernel version 3.4.0, 2.3 GHz processor) for online and an Intel Core i7-4770 CPU (3.4 GHz, 24 GB RAM, 64-bit Ubuntu 14.04 version 4.4.0) for offline processing.

A. Core Slicing

App dataset. We ran AndroidSlicer on 60 apps selected from a wide range of categories (shopping, entertainment, communication, etc.) with various bytecode sizes. In Table II we present detailed results for the top-5 apps sorted by the number of installs. We summarize the findings (min/median/max) in the last three rows. The second column and third column show the app’s bytecode size (median size = 1,485 KB). and popularity (number of installs, in thousands, per Google Play as of August 2018) respectively. 28 apps had more than one million installs (median popularity 500,000 - 1,000,000 installs).

Generating inputs and slicing criteria. To drive app execution, we used Monkey [14] to send the app 1,000 UI events and then collected traces for offline analysis. To measure AndroidSlicer’s runtime overhead, same event sequence was used in instrumented and uninstrumented runs. As slicing criteria, variables were selected to cover all types of registers (local variables, parameters, fields) from a variety of instructions (static invokes, virtual invokes, conditions, method returns). This allows us to draw meaningful conclusions about slicing effectiveness and efficiency.

Correctness. We manually analyzed 10 out of the 60 apps to evaluate AndroidSlicer’s correctness. The manual analysis effort in some apps can be too high, because of the large number of instructions and dependences (e.g., in the Twitch app, there are 5,969 instructions in the slice and 9,429 dependences). Therefore, we picked 10 apps whose traces were smaller and verifiable within a reasonable amount of effort. We decompiled each app to get the Java bytecode, and manually computed the slices w.r.t. the slicing criterion. The slices were then compared with AndroidSlicer’s; we confirmed that slice computation is correct.

Effectiveness. Table II demonstrates that AndroidSlicer is effective. The “Instructions Executed” column shows the total number of instructions executed during the entire run. The median number of instructions is 14,491. If the programmer has to analyze these, the analysis task will be challenging. AndroidSlicer reduces the number of instructions to be analyzed to 44, i.e., 0.3% (column “Instructions In slice”). The “Log size” column shows the storage size required for traces. The median number of dependences to be analyzed, data and control, is not much larger, 63, (column “CD+DD”). The next column shows the number of callback events fired during the run: the median was 23 across all apps.

Efficiency. The remaining columns (“Time” and “Overhead”) show that AndroidSlicer is efficient. Stage 1 (instrumentation), typically takes just 19.1 seconds, and at most 293.5 seconds for the 50.6 MB Twitter app. The “Original run” column shows the time it took to run the uninstrumented app – typically 229.85 seconds, and at most 260.7 seconds. Column “Stage 2 Instrumented run” shows the time it took to run the instrumented app, while collecting traces. The typical run time increases to 239.7 seconds. The “Overhead” column shows the percentage overhead between the instrumented and uninstrumented runs; the typical figure is 4% which is very low not only for dependence tracking, but for any dynamic analysis in general. Furthermore, our instrumentation strategy does not require monitoring the app or attaching the app to a third-party module – this allows the app to run at its native speed. We emphasize that AndroidSlicer’s low overhead is key to its usability, because Android apps are timing-sensitive (Section IV-A). Finally, the “Stage 3 Slicing” column shows post-processing time, i.e., computing slices from traces, including on-demand static analysis; this time is low, typically just 11.9 seconds, and at most 103 seconds.

B. Failure-inducing Input Analysis

We evaluated this application on real bugs in 6 sizable apps (Table III) by reproducing the bug traces. Our failure-inducing input analysis is very effective at isolating instructions and dependences of interest – the number of executed instructions varies from 320 to 182,527, while slices contain just 16–57 instructions. The CD and DD numbers are also low: 18–73.

C. Fault Localization

We evaluated our approach on 7 apps. Table IV shows the results. Note how fault localization is effective at reducing the number of instructions to be examined from thousands down to several dozen. SoundCloud and NPR News have large slices due to intense network activity and background services (audio playback), which increase the callback count substantially.

D. Regression Test Suite Reduction

We evaluated our reduction technique on 5 apps. For each app, we considered two versions V1 and V2 and ran a test suite T1 that consisted of 200 test cases; on average, the suite achieved 62% method coverage. Next, we used AndroidSlicer to

<table>
<thead>
<tr>
<th>App</th>
<th>Dex size (KB)</th>
<th>Installs (thousands)</th>
<th>Executed</th>
<th>In slice</th>
<th>Log size (KB)</th>
<th>CD+DD</th>
<th>Callback</th>
<th>Stage 1 Instrumentation</th>
<th>Stage 2 Instrumented run</th>
<th>Stage 3 Slicing</th>
<th>Overhead (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>107,847</td>
<td>205.4</td>
<td>798</td>
<td>11,625</td>
<td>203.5</td>
<td>235.4</td>
<td>245.1</td>
<td>239.7</td>
<td>221.7</td>
<td>103.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Evernote</td>
<td>191,304</td>
<td>50,000-100,000</td>
<td>34</td>
<td>81.3</td>
<td>373</td>
<td>223.1</td>
<td>254.8</td>
<td>253.7</td>
<td>230.7</td>
<td>53.7</td>
<td>4.0</td>
</tr>
<tr>
<td>Du Recorder</td>
<td>36,672</td>
<td>5,969</td>
<td>409</td>
<td>41.0</td>
<td>351</td>
<td>222.2</td>
<td>254.8</td>
<td>222.2</td>
<td>230.3</td>
<td>12.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Indeed Job Search</td>
<td>21,752</td>
<td>557</td>
<td>356</td>
<td>24.0</td>
<td>457</td>
<td>557</td>
<td>254.8</td>
<td>254.8</td>
<td>230.7</td>
<td>12.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Twitch</td>
<td>2,025,505</td>
<td>219,850</td>
<td>5,969</td>
<td>2.3</td>
<td>115</td>
<td>30.0</td>
<td>103.0</td>
<td>103.0</td>
<td>94.2</td>
<td>8.0</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Across min | Median | max |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>10-30</td>
<td>17 2 1.6</td>
</tr>
<tr>
<td>1,485</td>
<td>1,491</td>
<td>44 2</td>
</tr>
<tr>
<td>2,025,505</td>
<td>2,052,505</td>
<td>5,969</td>
</tr>
</tbody>
</table>

TABLE II: AndroidSlicer evaluation: core slicing results.
Table V shows the results: the bytecode sizes for V₁ and V₂, the number of installs, the coverage attained by T₁ on V₁, and the instructions executed when testing V₁ and V₂, respectively. The last column shows the size of T₂. Notice how our approach is very effective at reducing the test suite size from 200 test cases down to 5–47 test cases.

VIII. RELATED WORK

Slicing event-based programs has been investigated for Web applications [6], [15], [16] written in HTML, PHP, and JavaScript. These approaches record traces through a browser plugin [6] and construct the UI model to generate the event nodes. While both Web and Android apps are event-based, their slicing approaches differ significantly. First, due to the Android apps’ life-cycle, they run in different scopes (i.e., activity, app, system), and handle various sets of requests (launch another activity, respond to action, pass data). In contrast, Web apps have different build phases, such as UI building phase (HTML nodes) and event-handling phase (JavaScript nodes). Second, unlike in Android, a Web app slicing tool (e.g., as a browser plugin) does not require low-overhead. Third, Android requires IPC tracking; that is not the case for Web.

Traditional program slicing of Java bytecode has only targeted single-entry sequential Java programs [17]–[20]. Zhou et al. [21] and Zeng et al. [22] have used bytecode slicing for Android apps, but to achieve entirely different goals: mining sensitive credentials inside the app and generating low-level equivalent C code. They create slices at bytecode level and consider data dependencies only; this makes the approach imprecise as there is no tracking of code dependencies or accounting for many Android features (e.g., callbacks, IPC, input from sensors).

Compared to Agrawal and Horgan’s slicing for traditional programs [23], we add support for Android’s intricacies, node merging for control dependence edges, dealing with slicing in the presence of restarts as well as asynchronous callback invocation. We support loop folding for regular nodes inside the supernodes. Slicing multithreaded programs is tangentially related work, where slicing was used to debug multithreaded C programs [24]–[28] — this setup differs greatly from ours.

Hoffmann et al. developed SAAF [29], a static slicing framework for Android apps. A static slicing framework such as SAAF would not be sufficient to achieve our goals as it does not consider myriad aspects, from late binding to the highly dynamic event order in real-world Android apps.

IX. CONCLUSIONS AND FUTURE WORK

We presented AndroidSlicer, a novel slicing approach and tool for Android that addresses challenges of event-based model and unique traits of the platform. Our asynchronous slicing approach that is precise yet low-overhead, overcomes the challenges. Experiments on real Android apps show that AndroidSlicer is effective and efficient. We evaluated three slicing approaches that reveal crashing program inputs, help locate faults, and reduce the regression test suite.

In the future we plan to investigate forward slicing [30], [31] and language-agnostic slicing that would permit slicing apps containing code written in different programming languages [32].

ACKNOWLEDGMENT

This material is based upon work supported by the National Science Foundation under Grants CNS-1617424 and CNS-1617584.
REFERENCES

