
January 3, 2017 3:40

Journal of Interconnection Networks
Vol. 17, No. 1 (2017) 1740002 (67 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0219265917400023

Improving Smartphone Security and Reliability∗

IULIAN NEAMTIU†

Department of Computer Science, New Jersey Institute of Technology,
Newark, NJ 07102, USA

ineamtiu@njit.edu

XUETAO WEI‡, MICHALIS FALOUTSOS§, LORENZO GOMEZ¶,

TANZIRUL AZIM§, YONGJIAN HU§ and ZHIYONG SHAN‖

‡University of Cincinnati, Cincinnati, OH 45220, USA
§University of California, Riverside, CA 92521, USA

¶University of California, Los Angeles, CA 90095, USA
‖University of Central Missouri, Warrensburg, MO 64093, USA

Received 00 Month 2016
Revised 4 December 2016

Users are increasingly relying on smartphones, hence concerns such as mobile app security,
privacy, and correctness have become increasingly pressing. Software analysis has been
successful in tackling many such concerns, albeit on other platforms, such as desktop and
server. To fill this gap, he have developed infrastructural tools that permit a wide range
of software analyses for the Android smartphone platform. Developing these tools has
required surmounting many challenges unique to the smartphone platform: dealing with
input non-determinism in sensor-oriented apps, non-standard control flow, low-overhead
yet high-fidelity record-and-replay. Our tools can analyze substantial, widely-popular apps
running directly on smartphones, and do not require access to the app’s source code.
We will first present two tools (automated exploration, record-and-replay) that increase
Android app reliability by allowing apps to be explored automatically, and bugs replayed or
isolated. Next, we present several security applications of our infrastructure: a permission
evolution study on the Android ecosystem; understanding and quantifying the risk posed
by URL accesses in benign and malicious apps; app profiling to summarize app behavior;
and Moving Target Defense for thwarting attacks.

Keywords: Mobile applications; android; security; program analysis; record-and-replay;
monitoring; profiling; moving target defense.

∗Material based on our prior publications in OOPSLA’13, OOPSLA’15, Globecom’15, MobiCom’12,
ACSAC’12, Milcom’15.
†Corresponding author.

1740002-1

http://dx.doi.org/10.1142/S0219265917400023

January 3, 2017 3:40

I. Neamtiu et al.

1. Introduction

Users are increasingly relying on smartphones for a variety of tasks.37,38 For

example, apps such as PayPal Here, Intuit GoPayment, Square Register allow mo-

bile payments by users swiping a credit card on a smartphone or tablet that runs the

app; FDA has approved smartphone ultrasound.32 Aside from civilian use, smart-

phones are also used more and more in military domains, e.g., through the Nett

Warrior5 or Android Tactical Assault Kit (ATAK)1 initiatives. However, with in-

creased smartphone use, the potential for smartphones being unreliable, or attack

targets, also increases. Moreover, users, developers and vendors have little insight

into, and assurance of smartphone behavior. Therefore, concerns such as app security

and reliability become increasingly pressing.19,41,44,47,89

Security concerns refer to confidentiality, integrity, and availability. Examples

of confidentiality issues include the following. An user of a smartphone credit card

reader might legitimately ask “is it safe to swipe my credit card on this stranger’s

smartphone?”. Similarly, a merchant using that device might ask “Does the app send

customers purchases or locations to advertisers, hence exposing me to liability?”.

Examples of integrity include making sure that someone’s smartphone is not turned

into a “bot” that takes commands from its peers or a Command-and-Control center

hence subverting the intended use of the smartphone. Availability requires that

phones and apps are usable, e.g., responsive, so that users can count on the phone

and apps being ready at any moment.

Reliability means that smartphone software will operate as intended for a certain

period of time.

Stakeholders. Besides end-users, software developers face difficulties as well, since

tools for analysis and testing smartphone apps are only beginning to mature now.

For example, a developer for the aforementioned smartphone payment app might

have a difficult time proving to the credit card company that their app is secure.

Military users’s concerns are even more stringent: when smartphones are not secure,

or unreliable in the tactical field, lives can be at stake. Finally, vendors are under

pressure to guarantee that the pre-installed software (that comes with the phone)

is secure and reliable, since this software runs my default and cannot be easily

modified/uninstalled by users.

Our main idea and contribution consists of suite of approaches, implemented

in tools, that allow all the aforementioned stakeholders to achieve, or benefit from,

higher degrees of smartphone security and reliability.

To substantiate our claims, we present our prior results in the area of Android

security and reliability. We begin with two infrastructure tools; these tools help

improve Android reliability, and are building blocks for security analyses. First, in

Section 2 we present a technique that allows apps to be explored automatically,

which enables a wide range of dynamic analyses and automatic testing. Second, in

Section 3 we present an approach for record-and-replay that allows app executions

1740002-2

January 3, 2017 3:40

Improving Smartphone Security and Reliability

to be reproduced deterministically, which supports a wide range of reliability and

security tasks (e.g., reproducing bugs or attacks).

Next (and forming the bulk of this paper) we discuss security. In Section 4

we perform a comprehensive study of the Android permission system to see if the

ecosystem is moving “in the right direction” in regards to permissions and their use

for security. We found that permissions have limited effectiveness, that “Dangerous”

permissions are the largest set and growing, and that apps violate the principle of

least privilege. In Section 5 we present a tool and study of risk, namely the risk apps

are exposed to when they connect to websites; we found that “good” apps talk to

“bad” websites, exposing the user to risk. In Section 6 we present an app profiling

system that exposes app traits (behavior, traffic) which have many implications,

from security to performance. Finally, in Section 7 we present a Moving Target

Defense approach that offers increased resistance against known and unknown at-

tacks, as demonstrated on a real attack and 12 widely-used Android apps.

2. Infrastructure and Reliability: Automated Exploration

Testing is key to reliability. Unfortunately, manual testing for Android leads to low

coverage, hence insufficient testing, and consequently poor reliability. In this section

we present our approach for generating app test cases automatically which achieve

much better coverage than manual testing.

To facilitate test case construction and exploration for smartphone apps, several

approaches have emerged. The Monkey tool10 can send random event streams to an

app, but this limits exploration effectiveness. Frameworks such as Monkeyrunner,9

Robotium39 and Troyd56 support scripting and sending events, but scripting takes

manual effort. Prior approaches for automated GUI exploration6,7,76,82,99,101 have

one or more limitations that stand in the way of understanding how popular apps

run in their natural environment, i.e., on actual phones: running apps in an emulator,

targeting small apps whose source code is available, incomplete model extraction,

state space explosion.

For illustration, consider the task of automatically exploring popular apps, such

as Amazon Mobile, Gas Buddy, YouTube, Shazam Encore, or CNN, whose source code

is not available. Our approach A3E can carry out this task, since we connect to

apps running naturally on the phone. However, existing approaches have multiple

difficulties due to the lack of source code or running the app on the emulator where

the full range of required sensor inputs (camera, GPS, microphone) or output devices

(e.g., flashlight) is either unavailable8 or would have to be simulated.

2.1. System Model

We have chosen Android as the target platform as it is currently the leading mobile

platform in the US27 and worldwide.51 We now describe the high-level structure of

Android platform and apps; introduce two kinds of Activity Graphs that define the

high-level workflow within an app; and define coverage based on these graphs.

1740002-3

January 3, 2017 3:40

I. Neamtiu et al.

2.1.1. Android App Structure

Android platform and apps. Android apps are typically written in Java (pos-

sibly with some additional native code). The Java code is compiled to a .dex file,

containing compressed bytecode. The bytecode runs in the Dalvik virtual machine,

which in turn runs on top of a smartphone-specific version of the Linux kernel.

Android apps are distributed as .apk files, which bundle the .dex code with a

“manifest” (app specification) file named AndroidManifest.xml.

Android app workflow. A rich application framework facilitates Android app

construction, as it provides a set of libraries, a high-level interface for interaction with

low-level devices, etc. More importantly, for our purposes, the application framework

orchestrates the workflow of an app, which makes it easy to construct apps but hard

to reason about control flow.

A typical Android app consists of separate screens named Activities. An activity

defines a set of tasks that can be grouped together in terms of their behavior and

corresponds to a window in a conventional desktop GUI. Developers implement

activities by extending the android.app.Activity class. As Android apps are GUI-

centric, the programming model is based on callbacks and differs from the traditional

main()-based model. The Android framework will invoke the callbacks in response

to GUI events and developers can control activity behavior throughout its life-cycle

(create, paused, resumed, or destroy) by filling-in the appropriate callbacks.

An activity acts as a container for typical GUI elements such as toasts (pop-ups),

text boxes, text view objects, spinners, list items, progress bars, check boxes. When

interacting with an app, users navigate (i.e., transition between) different activities

using the aforementioned GUI elements. Therefore in our approach activities, ac-

tivity transitions and activity coverage are fundamental, because activities are the

main interfaces presented to an end-user. For this reason we primarily focused on ac-

tivity transition during a normal application run, because its role is very significant

in GUI testing.

Activities can serve different purposes. For example in a typical news app, an

activity home screen shows the list of current news; selecting a news headline will

trigger the transition to another activity that displays the full news item. Activities

are usually invoked from within the app, though some activities can be invoked from

outside the app if the host app allows it.

Naturally, these activity transitions form a graph. In Fig. 1 we illustrate how

activity transitions graphs emerge as a result of a user interaction in the popular

Android app, Amazon Mobile. On top we have the textual description of users’

actions, in the middle we have an actual screen shot, and on the bottom we have

the activities and their transitions. Initially the app is in the Main Activity; when

the user clicks the search box, the app transitions to the Search Activity (note the

different screen). The user searches for items by typing in item names, and a textual

list of items is presented. When the user presses “Go”, the screen layout changes as

the app transitions to the Search List Activity.

1740002-4

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Activity Coverage: Activities and
Transition

Can be used to reach a particular point of the
application. i.e., regenerate bugs.

1. Main
Activity

2. Search
Activity

3. Search
List Activity

Clicking
Search Box

1 2 3

Typing in
Search Box

Selecting in
the List of
Items

Fig. 1. An example activity transition scenario from the popular Android app, Amazon Mobile.

We now proceed to defining the activity transitions graphs that form the basis

of our work.

2.1.2. Static Activity Transition Graph

The Static Activity Transition Graph (SATG) is a graph GS = (VS , ES) where

the set of vertices, VS , represents the app activities, while the set of edges, ES ,

represents possible activity transitions. We extract SATG’s automatically from apps

using static analysis.

Figure 2 shows the SATG for the popular shopping app, Craigslist Mobile; the

reader can ignore node and edge colors as well as line styles for now. Note that

activities can be called independently, i.e., without the need for entering into another

activity. Therefore, the SATG can be a disconnected graph. SATG’s are useful for

program understanding as they provide an at-a-glance view of the high-level app

workflow.

2.1.3. Dynamic Activity Transition Graph

The Dynamic Activity Transition Graph (DATG) is a graph GD = (VD, ED) where

the set of vertices, VD, represents the app activities, while the set of edges, ED,

represents actual activity transitions, as observed at runtime.

A DATG captures the footprint of dynamic exploration or user interaction in

an intuitive way and is a subgraph of the SATG. Figure 2 contains the DATG for

the popular shopping app, Craigslist Mobile: the DATG is the subgraph consisting

of solid edges and nodes. Paths in DATG’s illustrate sequences of actions required

to reach a particular state of an app, which is helpful for constructing test cases or

reproducing bugs.

1740002-5

January 3, 2017 3:40

I. Neamtiu et al.

CraigslistStartup

SearchActivity

StateActivity SearchSettingActivityLocationActivity CategoryActivity

PostSelectionActivity

ItemListActivity CityActivity

ItemActivity

VerificationActivity

PostComposeActivity

BrowserActivity

LoginActivity

MMAdViewWebOverlay MMAdViewController AdActivity

VideoPlayerActivity

MMAdViewOverlayActivity

PlusOneActivity

Fig. 2. Static Activity Transition Graph extracted automatically by our approach from the Craigslist Mobile
app. Grey nodes and associated edges have been explored by users. Solid-contour nodes (grey or white) and

solid-line edges were traversed dynamically by our exploration. Dashed-contour nodes and dashed-line edges

remained unexplored. Activity names are simplified for legibility.

2.1.4. Coverage Metrics

We chose two coverage metrics as basis for measuring and assessing the effectiveness

of our approach: activity coverage and method coverage. We chose these metrics

because they strike a good balance between utility and collection overhead: first,

activities and methods are central to app construction, so the numeric values of

activity and method coverage are intuitive and informative; second, the runtime

performance overhead associated with collecting these metrics is low enough so that

user experience and app performance are not affected. We now proceed to defining

the metrics.

Activity coverage. We define activity coverage (AC) as the ratio of activities

reached during execution (AR) to the total number of activities defined in the app

(AT), that is, AC = AR
AT . Intuitively, the higher the AC for a certain run, the more

screens have been explored, and the more thorough and complete the app exploration

has been. We retrieve the AR dynamically, and the AT statically.

Method coverage. Activity coverage is intuitive, as it indicates what percentage

of the screens (that is, functionality at a high level) are reached. In addition, users

might be interested in the thoroughness of exploration measured at a lower, method-

level. Hence we use a finer-grained metric — what percentage of methods are reached

— to quantify this aspect. We define method coverage (MC) as the ratio of methods

called during execution (ME) to the total number of methods defined in the app

(MT), that is, MC = ME
MT .

1740002-6

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Table 1. Overview of our examined apps.

Size

App Type Category Kinst. KBytes #Downloads

Amazon Mobile Free Shopping 146 4,501 58,745

Angry Birds Free Games 167 23,560 1,586,884

Angry Birds Space P. Paid Games 179 25,256 14,962

Advanced Task Killer Free Productivity 9 75 428,808

Advanced Task Killer P. Paid Productivity 3 99 4,638

BBC News Free News&Mag. 77 890 14,477

CNN Free News&Mag. 204 5,402 33,788

Craigslist Mobile Free Shopping 56 648 61,771

Dictionary.com Free Books&Ref. 105 2,253 285,373

Dictionary.com Ad-free Paid Books&Ref. 49 1,972 2,775

Dolphin Browser Free Communication 248 4,170 1,040,437

ESPN ScoreCenter Free Sports 78 1,620 195,761

Facebook Free Social 475 3,779 6,499,521

Tiny Flashlight + LED Free Tools 47 1,320 1,612,517

Movies by Flixster Free Entertainment 202 4,115 398,239

Gas Buddy Free Travel&Local 125 1,622 421,422

IMDb Movies & TV Free Entertainment 242 3,899 129,759

Instant Heart Rate Free Health&Fit. 63 5,068 100,075

Instant Heart R.-Pro Paid Health&Fit. 63 5,068 6,969

Pandora internet radio Free Music&Audio 214 4,485 968,714

PicSay – Photo Editor Free Photography 49 1,315 96,404

PicSay Pro – Photo E. Paid Photography 80 955 18,455

Shazam Free Music&Audio 308 4,503 432,875

Shazam Encore Paid Music&Audio 308 4,321 18,617

WeatherBug Free Weather 187 4,284 213,688

WeatherBug Elite Paid Weather 190 4,031 40,145

YouTube Free Media&Video 253 3,582 1,262,070

ZEDGE Free Personalization 144 1,855 515,369

We found that all the examined apps, except Advanced Task Killer, ship with

third-party library code bundled in the app’s APK file; we exclude third-party meth-

ods from ME and MT computations as these methods were not defined by app de-

velopers hence we consider that including them would be misleading. We measured

the ME using runtime profiling information and the MT via static analysis.

1740002-7

January 3, 2017 3:40

I. Neamtiu et al.

Sta$c&Ac$vity&
Transi$on&Graph&

SCanDroid*

Sta$c&Taint&Analysis&App&Bytecode&

Automa/c*
explorer*

APK*

Replayable*
Trace*

App&running&on&phone&

Results&

De
bu

gg
in
g&
Br
id
ge
&

Targeted&
Explora$on&

Coverage**
summary*

Fig. 3. Overview of Targeted Exploration in A3E.

2.2. Implementation

To tackle these challenges, we have built the Automatic Android App Explorer

(A3E), an approach and open-source toola for systematically exploring real-world,

popular apps Android apps running on actual phones.85 Developers can use our

approach to complement their existing test suites with automatically-generated test

cases aimed at systematic exploration. Since A3E does not require access to source

code, users other than the developers can execute substantial parts of the app au-

tomatically. A3E supports sensors and does not require kernel- or framework-level

instrumentation, so the typical overhead of instrumentation and device emulation

can be avoided. Hence we believe that researchers and practitioners can use A3E as a

basis for dynamic analyses28 (e.g., monitoring, profiling, information flow tracking),

testing, debugging, etc.

To understand the level of exploration attained by Android app users in practice,

we performed a user study and measured coverage during regular interaction. For

the study, we enrolled 7 users that exercised 28 popular Android apps. We found

that across all apps and participants, on average, just 30.08% of the app screens and

6.46% of the app methods were explored.85

Our approach for automated exploration is: given an app, we construct

systematic exploration traces that can then be replayed, analyzed and used for a

variety of purposes, e.g., to drive dynamic analysis or assemble test suites. Our ap-

proach consists of two techniques, Targeted Exploration and Depth-First Exploration.

Targeted Exploration (Fig. 3) is a directed approach that first uses static bytecode

ahttp://spruce.cs.ucr.edu/A3E/

1740002-8

http://spruce.cs.ucr.edu/A3E/

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Automa'c)
explorer)

App#Bytecode#

APK)

App#running#
on#phone#

De
bu

gg
in
g#
Br
id
ge
#

Depth3first#
Explora:on#

Replayable)
Trace)

Results#

Coverage))
summary)

Fig. 4. Overview of Depth-first Exploration in A3E.

analysis to extract a Static Activity Transition Graph and then explore the graph

systematically while the app runs on a phone. Depth-First Exploration (Fig. 4) is

a completely dynamic approach based on automated exploration of activities and

GUI elements in a depth-first manner.

2.3. Evaluation

Manual exploration. To understand the level of exploration attained by Android

app users in practice, we performed a user study and measured coverage during

regular interaction. For the study, we enrolled 7 users that exercised 28 popular

Android apps. We found that across all apps and participants, on average, just

30.08% of the app screens and 6.46% of the app methods were explored.85

Automatic exploration with A3E. We have found that A3E is effective: on

25 popular apps, on average it attains 64.11% and 59.39% activity coverage via

Targeted and Depth-first Exploration, respectively (a 2× increase compared to what

the 7 users have attained); it also attains 29.53% and 36.46% method coverage via

Targeted and Depth-first Exploration, respectively (a 4.5× increase compared to

the 7 users). Our approach is also efficient: average figures are 74 seconds for Static

Activity Transition Graph construction, 87 minutes for Targeted Exploration and

104 minutes for Depth-first Exploration.85

3. Infrastructure and Reliability: Record-and-Replay

Record-and-replay helps both reliability and security. It increases reliability as re-

playing “buggy” execution allows bugs to be found and fixed. It increases security

as it allows attacks to be replayed hence understand the loss of confidentiality or

integrity.

1740002-9

January 3, 2017 3:40

I. Neamtiu et al.

To support record-and-replay, we have developed VALERA (VersAtile yet

Lightweight rEcord and Replay for Android).48 VALERA records and replays smart-

phone apps, by intercepting and recording input streams and events with minimal

overhead and replaying them with exact timing.

While useful, record-and-replay on smartphones has proven difficult: smartphone

apps revolve around concurrent streams of events that have to recorded and replayed

with precise timing. To keep overhead low, prior record-and-replay approaches for

smartphones only capture GUI input58 which hurts accuracy as they cannot replay

input from the network or sensors; or events, to reproduce event-based race.65 Prior

work on record-and-replay for desktop and server platforms33,67 has relied on tech-

niques such as hardware changes, or instruction logging which is too heavyweight

for mobile apps. To address these challenges, we have developed VALERA (VersAtile

yet Lightweight rEcord and Replay for Android),48 a novel sensor- and event-stream

driven approach to record-and-replay; VALERA is practical and has been designed to

meet several key desiderata:

(1) Support I/O (sensors, network) and record system information required to

achieve high accuracy and replay popular, full-featured apps.
(2) Accept APKs as input — this is how apps are distributed on Google Play —

rather than requiring access to the app source code.
(3) Work with apps running directly on the phone, rather than on the Android

emulator which has limited support for only a subset of sensors.
(4) Low overhead to avoid perturbing the app’s execution.
(5) Require no hardware, kernel, or VM changes.

Our experiments shows that: VALERA is able to replay 50 popular Android apps

which use a variety of sensors with low overhead (about 1% for either record or

replay). VALERA is effective for reproducing bugs by replaying the input and event

schedule that led to an error state. With the support of deterministic replay of event

schdules, VALERA is able to reproduce hard-to-debug event-driven races.

3.1. Overview

VALERA consists of an API interception component and a runtime component. App

instrumentation, achieved via bytecode rewriting, is used to intercept the communi-

cation between the app and the Android framework to produce log files. The runtime

component is a manually instrumented Android Framework which is used to log and

replay the event schedule.

Automatic interception through app rewriting. VALERA leverages Redexer57

(an off-the-shelf Dalvik bytecode rewriting tool) to instrument the app. Given the

original app (APK file) along with an Interceptor specification, VALERA is able to

find all the callsites in the bytecode that match the specification and should be

intercepted. The specification consists of a list of API methods along with simple

annotations on how the methods and their parameters should be treated. Finally, the

1740002-10

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Redexer	

Original	
 app	

Instrumented	
 app	

GPS	

Interceptor	
 Specifica1on	

Interceptor	

generator	
 Scanner	

Microphone	
 Intents	
 Camera	

APK	

APK	

Network	

Fig. 5. Overview of VALERA’s automatic interception.

Dalvik	
 VM	

Linux	
 kernel	

Instrumented	

App	
 GPS	
 Mic.	
 Intents	
 Camera	

Event	

schedule	

Touchscreen	
 Accelerometer	
 …	

record	
 replay	
 modified	

Legend	

Network	

Sc
he

du
le
Re

pl
ay
er
	

Android	

Framework	

VALERA	
 runEme	

Fig. 6. Overview of the VALERA runtime.

dynamic intercepting modules and stubs are passed on to the Redexer to effect the

interception, and repackages the bytecode into an instrumented APK. An overview

is shown in Fig. 5.

The runtime component is shown in Fig. 6 (the grey area on the right). The

instrumented app runs on top of the instrumented AF, which in turn runs on top of

unmodified versions of the VM and the kernel. App instrumentation, achieved via

bytecode rewriting as explained previously, is used to intercept the communication

between the app and the AF to produce log files (values and timestamps) associated

1740002-11

January 3, 2017 3:40

I. Neamtiu et al.

with network and high-level sensor input, such as GPS, microphone, and camera;

intents are also intercepted at this point. AF instrumentation (which we performed

manually) is used to log and replay the event schedule — see the ScheduleReplayer

vertical box inside the AF. As the arrow directions indicate, during record the

value/timestamp stream flows from left to right (toward the log files), and during

replay from right to left (from the log files to the app/AF). To sum up, the VALERA

runtime consists of record and replay code and the log files; this code runs inline in

the app and AF, with no extra processes or threads needed. Other apps that execute

concurrently run in their own address space, on their own VM copies; we omit them

for clarity.

Recording and replaying the event schedule. Android is an event-driven sys-

tem. Events can be classified into two groups: external and internal. External events

come from the underlining hardware while internal events are posted by different

threads. VALERA records the event schedule by logging each event and event process-

ing operation into a trace file. Each event, either internal or external, is assigned

a Lamport timestamp (logic order number) in the schedule. During replay, VALERA

replays the events in the recorded order.

Effectiveness and efficiency. VALERA is effective: we were able to replay 50 pop-

ular apps (most of them have in excess of 10 million installs) that use a variety

of sensors. Experiments show that VALERA imposes just 1.01% time overhead for

record, 1.02% time overhead for replay, 208KB/s space overhead, on average, and

can sustain event rates exceeding 1,000 events/second.

3.2. Replay Applications

VALERA has many applications in Android development; we present several.

Semantic sensor data alteration. To test the stability of an app, VALERA also

provides features to alter the recorded sensor data in a semantically meaningful way.

For example, VALERA can alter GPS readings (e.g., inject a null location object to

simulate GPS hardware exceptions), blur or darken the pictures captured by camera

to emulate different physical environments, or change the sample rate of the audio

data to test the reaction of the app towards different audio qualities.49

Reproducing event-driven races. Event-driven races in Android are hard to

debug and reproduce by current record-and-replay tools. With deterministic event

order recorded, VALERA can help reproduce these races by preserving the exact event

ordering. Our experiments show that VALERA can do this effectively on several open

source apps: we were able to reproduce harmful event-driven races that crash the

app (e.g., Tomdroid) or lead to incorrect GUI view state (e.g., NPR News).50

1740002-12

January 3, 2017 3:40

Improving Smartphone Security and Reliability

4. Security: Is the Ecosystem Moving in the “Right” Direction?

We now discuss how we can help improve Android security: specifically, we study

Android’s permission model, along with its security implications, advantages/disad-

vantages, and trends.

To ensure security and privacy, Android uses a permission-based security model

to mediate access to sensitive data, e.g., location, phone call logs, contacts, emails,

or photos, and potentially dangerous device functionalities, e.g., Internet, GPS, and

camera. The platform requires each app to explicitly request permissions up-front

for accessing personal information and phone features. App developers must define

the permissions their app will use in the AndroidManifest.xml file bundled with the

app, and then, users have the chance to see and explicitly grant these permissions as a

precondition to installing the app. At runtime, the Android OS allows or denies use of

specific resources based on the granted permissions. In practice, this security model

could use several improvements, e.g., informing users of the security implications of

running an app, revoking/granting app permissions without reinstalling the app, or

moving towards finer-grained permissions.

In fact, the Android permission model attracts emerging malware that chal-

lenges the system to exploit vulnerabilities in order to perform privilege escalation

attacks — permission re-delegation attacks,13 confused deputy attacks, and collud-

ing attacks.78 As a result, users can have sensitive data leaked or subscription fees

charged without their consent (e.g., by sending SMS messages to premium num-

bers via the SMS related Android permissions, as the well-known Android malwares

Zsone and Geinimi do97). While most of these attacks are first initiated when a

user downloads a third-party app to the device, to make matters worse, even stock

Android devices with pre-installed apps are prone to exposing personal privacy in-

formation due to their higher privilege levels (e.g., the notorious HTCLogger app11).

We study the evolution of the Android ecosystem to understand whether the

permission model is allowing the platform and its apps to become more secure.92

Following a systematic approach, we use three different types of characterizations

(third-party app permissions vs pre-installed app permissions, and two permission

classifications from Google). We study multiple Android platform releases over three

years, from Cupcake (April 2009) to Ice Cream Sandwich (December 2011). We use

a stable dataset of 237 evolving third-party apps covering 1,703 versions (span-

ning a minimum of three years). Finally, we investigate pre-installed apps from 69

firmwares, including 346 pre-installed apps covering 1,714 versions. To the best of

our knowledge, this is the first longitudinal study on Android permissions and the

first study that sheds light on the co-evolution of the whole Android ecosystem:

platform, third-party apps, and pre-installed apps.

Our overall conclusion is that the security and privacy of the ecosystem (platform

and apps) do not improve, at least from the user’s point of view. For example, the

evolution moves more and more toward violating the principle of least privilege, a

1740002-13

January 3, 2017 3:40

I. Neamtiu et al.

fundamental security tenet. Specifically, our study of the permission evolution of the

Android ecosystem leads to the following observations:

The number of permissions defined in Android platform tends to in-

crease, and the Dangerous-level set of permissions is the most frequent

and continues to grow. There were 103 Android permissions in the first widely-

used release (API level 3); the number of permissions has grown to 165 in the most

current release (API level 15). Furthermore, the Dangerous-level permissions is al-

ways the largest group across all API levels, e.g., 60 out of 165 permissions in API

level 15, and is still growing.

Added platform permissions cater to hardware manufacturers and their

apps, rather than third-party developers. Nearly half (49.1% in API level

15) of all permissions are not accessible to third-party developers. Furthermore, of

all the added permissions between API levels 3 to 15, most (49 out of 62) are in

privilege levels that are not available to third-party developers, e.g., Signature and

signatureOrSystem levels.

As shown in Table 2, Dangerous permissions are added in 5 out of 11 cate-

gories. Most of them are from personal data-related categories, e.g, PERSONAL INFO,

STORAGE and ACCOUNTS. We believe that this evolutionary trend shows that the

Android platform provides more channels to harvest personal information from the

device, which could increase the privacy breach risk if these permissions may be

abused by Android apps.

Table 2. Added Dangerous permissions and their categories.

Dangerous permission Category

READ HISTORY BOOKMARKS Personal Info

WRITE HISTORY BOOKMARKS Personal Info

READ USER DICTIONARY Personal Info

READ PROFILE Personal Info

WRITE PROFILE Personal Info

READ SOCIAL STREAM Personal Info

WRITE SOCIAL STREAM Personal Info

WRITE EXTERNAL STORAGE Storage

AUTHENTICATE ACCOUNTS Accounts

MANAGE ACCOUNTS Accounts

USE CREDENTIALS Accounts

NFC Network

USE SIP Network

CHANGE WIFI MULTICAST STATE System Tools

CHANGE WIMAX STATE System Tools

1740002-14

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Android platform permissions are not becoming more fine-grained. Finer-

grained permissions in Android, e.g., separating the advertisement code permissions

from host app permissions,70 have been advocated by security groups from both

academia and industry.29,64,87 The basis for finer-grained permissions is the principle

of least privilege, i.e., giving apps the minimum number of permissions necessary to

provide a certain level of service.

We investigated whether Android permissions are becoming more fine-grained

over time. After carefully examining the Android permissions from API level 3

to 15, we observe that the permission changes do not tend towards becoming

more fine-grained. We found only one possible example of a permission splitting

in READ OWNER DATA. However, there is no indication that the two new permissions

were specifically designed to replace the previous one, as shown in the first exam-

ple of Fig. 7. Overwhelmingly, the permission changes indicate that the Android

platform is giving more flexibility and control to the phone vendors. For example,

as shown in Fig. 7, SEND SMS and PHONE STATE permissions exist in both API level

10 and 14, but the newly added Android permissions SEND SMS NO CONFIRMATION

and READ PRIVILEGED PHONE STATE gives the app a higher privileged access to the

device. Further, those higher privileged permissions are signatureOrSystem per-

missions, which can only used by vendor developers.

.

.
API7

API8

API9

API10

API14

API15

READ_OWNER_DATA
(Dangerous)

READ_PROFILE
(Dangerous)

READ_SOCIAL_STREAM
(Dangerous)

SEND_SMS
(Dangerous)

SEND_SMS
(Dangerous)

SEND_SMS_NO_CONFIRMATION
(SignatureOrSystem)

READ_PHONE_STATE
(Dangerous)

READ_PHONE_STATE
(Dangerous)

READ_PRIVILEGED_PHONE_STATE
(SignatureOrSystem)

Fig. 7. Functionally-similar permissions added and deleted between API levels.

In other words, the platform does not seem to be moving towards more fine-

grained permissions, which would in general be a step towards increased privacy or

security. Instead, the permission changes indicate clearly that the Android platform

is striving to give more flexibility and control to smartphone vendors, e.g., HTC,

Motorola, Samsung, by providing them with permissions of higher privilege.

Permission additions dominate the evolution of third-party apps, of which

Dangerous permissions tend to account for most of the changes. From the

analysis of third-party apps, we found that the number of occurrences of adding

Android permissions is significantly higher than the number of deleted permissions.

Surprisingly, permission changes are not due to changes in the platform. Interest-

ingly, among those additions, newer versions of apps tend to favor adding Dangerous

permissions most often (66.11% of permission increases in apps consisted of at least

one more Dangerous permission).

1740002-15

January 3, 2017 3:40

I. Neamtiu et al.

Macroscopic and microscopic patterns emerge when studying evolution

of permission usage. We found evidence that Dangerous permission usage some-

times oscillate as an application evolves, which might indicate that developers are

unclear about certain permission definitions, and their correct usage.

We analyzed the permissions added and deleted in the 1,703 versions of the

237 third-party apps in our stable dataset. We have found that most apps add

permissions over time, with some apps adding more than 15 permissions. Only a

small number of apps, about 10, delete permissions, and the deletions are limited

to at most 3 permissions.

Table 3. App permission changes in the stable dataset.

Total Induced by
changes platform changes

Add 857 14 (1.63%)

Delete 183 5 (2.73%)

Total 1040 19 (1.82%)

We present the total numbers of permission addition and deletion events in the

stable dataset in Table 3: column 2 illustrates that the addition of permissions occurs

much more frequently than the deletion of permissions. To disambiguate between

genuine permission additions and additions induced by changes in the platform

(e.g., as a result of added functionality), we also computed the permission changes

induced by changes in the Android platform, which we show in column 3 of Table 3).

Surprisingly, these induced changes only account for a small number of the permis-

sion changes: less than 3% of either additions or deletions. In sum, we were able to

conclude that permission changes, which consist mostly of additions, are not due to

changes in the platform.

We now set out to answer the question: what is the primary cause for the permis-

sion additions? We show the Top-5 most frequently added and dropped permission

in the first column of Tables 4 and 5; column 2 of these tables will be explained

shortly. For the added permissions, we found that Android apps became more ag-

gressive in asking for resources, by asking for new permissions. For instance, the

Android apps adopt permissions such as WAKE LOCK, GET ACCOUNTS, and VIBRATE.

WAKE LOCK prevents the processor from sleeping or the screen from dimming, hence

allowing the app to run constantly without bothering the user for wake-up actions.

VIBRATE enables the phone to vibrate for notifying the user when the correspond-

ing apps invokes some functionality. In order to meet the increasing requirement of

storage, WRITE EXTERNAL STORAGE is added to enable writing data into the external

storage of the device such as an SD card. We note that permissions that do not

improve the user experience, e.g., ACCESS MOCK LOCATION and INSTALL PACKAGES,

the apps simply drop them.

1740002-16

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Table 4. Most frequently added permissions in the
stable dataset.

Android permission In Top 20?

ACCESS NETWORK STATE X

WRITE EXTERNAL STORAGE X

WAKE LOCK X

GET ACCOUNTS ×
VIBRATE X

Table 5. Most frequently deleted permissions in
the stable dataset.

Android Permission In Top 20?

ACCESS MOCK LOCATION ×
READ OWNER DATA ×
INSTALL PACKAGES ×

RECEIVE MMS ×
MASTER CLEAR ×

Table 6. Top-20 most frequent permissions requested by malware.

Permission % of apps using it

INTERNET 97.8%

READ PHONE STATE 93.6%

ACCESS NETWORK STATE 81.2%

WRITE EXTERNAL STORAGE 67.2%

ACCESS WIFI STATE 63.8%

READ SMS 62.7%

RECEIVE BOOT COMPLETED 54.6%

WRITE SMS 52.2%

SEND SMS 43.9%

VIBRATE 38.3%

ACCESS COARSE LOCATION 38.1%

READ CONTACTS 36.3%

ACCESS FINE LOCATION 34.3%

WAKE LOCK 33.7%

CALL PHONE 33.7%

CHANGE WIFI STATE 31.6%

WRITE CONTACTS 29.7%

WRITE APN SETTINGS 27.7%

RESTART PACKAGES 26.4%

1740002-17

January 3, 2017 3:40

I. Neamtiu et al.

As Android Apps are increasingly adding new permissions, users are naturally

have security and privacy concerns, e.g., how can they be sure that apps do not abuse

permissions?

For comparison, in Table 6 (from Zhou and Xiang97), we list the Top-20 permis-

sions that Android malwares request (and abuse), as reported by Zhou and Xiang.97

We now come back to column 2 in Tables 4 and 5; the columns show the result of

comparing the added (and respectively, deleted) permissions in our stable dataset

with the Top-20 malware permission list. A ‘X’ means the corresponding Android

permission is in the Top-20 malware permission list, while a ‘×’ means the permis-

sion is not in the list. We found that most of the added permissions are on the

malware list, while none of the dropped permissions are on the list. Though we cer-

tainly can not claim these third-party apps are malicious, the trend should concern

users: as apps gain more powerful access, the overall system becomes less secure.

For example, in the confused deputy attack, a malicious app could compromise and

leverage a benign app to achieve its malevolent goals .78

The characterization of permission changes we provided so far, in terms of ab-

solute numbers (added/deleted), reveals the general trend toward apps requiring

more and more permissions. In addition, we also performed an in-depth study where

we looked for a finer-grained characterization of permissions evolution in terms of

“patterns”, e.g., repeated occurrences of permission changes.

Macro patterns. To construct the macro patterns, we use 0→1 and 1→0 as the

basic modes, where ‘0’ represents the state that the corresponding app does not use

a particular permission, ‘1’ represents the state that the corresponding app uses a

particular permission, and ‘→’ represents a state transition. In Table 8, we tabulate

the macro-patterns we observed in the stable dataset, along with their frequencies.

We found that the permission additions dominate the permission changes (0→1 has

a 90.46% frequency), as pointed out earlier. We also found occurrences of other

interesting patterns, e.g., permissions being deleted and then added back, though

these instances are much less frequent.

Micro patterns. Some Dangerous permissions appear to be confusing de-

velopers. For example, the location permissions ACCESS COARSE LOCATION and

ACCESS FINE LOCATION, provide different levels of location accuracy, on GSM/WiFi

position and GPS location, respectively. Location tracking has been heavily de-

bated because it could possibly be used to violate the user’s privacy. We found

that app developers handled the adding and deleting of these Dangerous location

permission in an interesting way; to reveal the underlying evolution patterns of

used by the Dangerous location permissions, we have done a case study of micro-

patterns on two widely used location permissions, ACCESS COARSE LOCATION and

ACCESS FINE LOCATION. We found that, although the most frequent macro evolu-

tion pattern of location permission is 0→1, the micro evolution patterns of the

location permissions are quite diverse.

1740002-18

January 3, 2017 3:40

Improving Smartphone Security and Reliability

In Table 9, we tabulate the micro-patterns we observed for the location permis-

sion alone. For instance, 0→Both→Fine means both location permissions are used

at first, then the ACCESS COARSE LOCATION permission is deleted in a later version

of the app. 0→Fine→0→Fine shows the app added ACCESS FINE LOCATION at first,

dropped it in a subsequent version, and finally, added back again. Though the table

indicates several micro-patterns, note that using both location permissions domi-

nates, with 50% of the total, which shows that more and more apps tend to include

both location permissions for location tracking. We are able to make two observa-

tions. First, evolution patterns requesting Dangerous permissions clearly show the

struggling balance between app usability and user privacy during the evolution of

apps. Second, the patterns reveal that developers of third-party apps may be unclear

with the correct usages of the Dangerous location permissions, which highlights the

importance for the platform to be more clear on how to properly handle Dangerous

permissions.

4.1. Apps Want More Dangerous Permissions

We now proceed to investigate the added permissions in the Dangerous protection

level as they introduce more risks.

We found that 66.11% of permission increases in apps required at least one more

Dangerous permission. In more detail, we list the frequently used Dangerous per-

missions in the first column of Table 7. We found that WRITE EXTERNAL STORAGE

is the most requested Dangerous permission, in which sensitive personal or

Table 7. Frequently used Dangerous Android permissions
of stable dataset.

Dangerous permission In Top 20?

WRITE EXTERNAL STORAGE X

WAKE LOCK X

READ PHONE STATE X

ACCESS COARSE LOCATION X

CAMERA ×
INTERNET X

ACCESS FINE LOCATION X

READ LOGS ×
READ CONTACTS X

RECORD AUDIO ×
BLUETOOTH ×
CALL PHONE X

CHANGE WIFI STATE X

GET TASKS ×
MODIFY AUDIO SETTINGS ×

MANAGE ACCOUNTS ×

1740002-19

January 3, 2017 3:40

I. Neamtiu et al.

enterprise files can be written to external media. This permission is also a hot-spot

for most malicious activities. INTERNET, READ PHONE STATE, and WAKE LOCK are also

requested frequently by the new versions of the apps. The first two are needed to

allow for embedded advertising libraries (ads), but these third-party ads are also

raising privacy concerns of abusing the user’s personal information. We then cross-

checked this list with the Top-20 malware permissions,97 as shown in column 2 of

Table 7. We observed that 9 of the 16 frequent permissions listed are also frequently

used by malicious apps. This significant overlap intensifies our privacy and security

concerns.

An increasing number of apps are violating the principle of least privilege.

The tendency of developers to request permissions that their apps do not need causes

an app to become overprivileged (as is the case for 44.8% of apps).

Extra permission usage may lead to overprivilege, a situation in which an app

requests the permission, but never uses the resource granted. This could increase

vulnerabilities in the app and raise concern of security risks. In this section, we

investigate the privilege patterns to determine whether Android apps became over-

privileged during their evolution.

To detect overprivilege, we ran the Stowaway14 tool on the stable dataset (1,703

app versions). We found that 19.6% of the newer versions of apps became overprivi-

leged as they added permissions, and 25.2% of apps were initially overprivileged and

stayed that way during their evolution. Although the overall tendency is towards

overprivilege, we could not ignore the fact that 11.6% of apps decreased from over-

privileged to legitimate privilege, a positive effort to balance usability and privacy

concerns.

In addition, similar to the evolution patterns of permission usage, we also study

the evolution patterns of overprivilege status for each app.92 We found that the

patterns Legitimate→Over and Over→Legitimate dominate at 58.57% and 32.14%,

respectively. However, like in the patterns of permission usage, we also found other

diverse patterns during the evolution of apps, which again shows that there may be

confusion for third-party developers when deciding on what permissions to use for

their app.

Finally, we have observed that Dangerous permissions are the major source that

causes an app to be overprivileged, which again emphasizes that developers should

exercise more care when requesting Dangerous permissions.

The power and privilege of pre-installed apps is growing. Sixty-six per-

cent of pre-installed apps are overprivileged. Furthermore, pre-installed apps have

more power to control and customize Android devices through Android platform-

defined and self-defined higher protection level permissions, e.g., Signature- and

SignatureOrSystem-level permissions. Though granting vendors higher privilege

is not surprising, end-users (the actual owners of the device) still have security

concerns.11,63 We argue that since pre-installed apps have greater power over the

1740002-20

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Normal Dangerous Sig Sig or Sys
0

1

2

3

4

5

Protection Level

A
v
e
ra

g
e
 #

 o
f
P

e
rm

is
is

o
n
s
 P

e
r

A
p

p

Stable

Preinstalled

Fig. 8. Average number of permissions per app, for each protection level, from stable and pre-installed

datasets.

device, the developers of pre-installed apps must understand and accept their re-

sponsibility to protect the end user.

Pre-installed apps have access to a richer set of higher-privileged permissions,

e.g., at the Signature and signatureOrSystem levels, compared to third-party

apps, which gives pre-installed apps access to more personal information on the

device.63 Thus, we should investigate how Android permissions are used in pre-

installed apps. We conducted a permission-change analysis for pre-installed apps

in a manner similar to the stable dataset. We found that 62.61% of pre-installed

apps do not change their permissions at all, which is significant when compared to

our third-party apps with only 15.68%. Further, pre-installed apps request many

more Signature and signatureOrSystem level permissions than third-party apps,

while at the same time requesting nearly just as many Normal and Dangerous level

permissions. This shows that pre-installed apps have a much higher capability to

penetrate the smartphone. Interestingly, the vendors also have the ability to define

their own permissions inside the platform when they customize the Android plat-

form for their devices. For example, HTC defines its own app update permission,

HTC APP UPDATE.

The power of pre-installed apps requires great responsibility by vendors to ensure

that this power is not abused. On one hand, vendors are able to customize pre-

installed apps to take full advantage of all the hardware capabilities of the device,

as well as create a brand-personalized look-and-feel to enhance user experience. On

the other hand, users cannot opt out of pre-installed apps, and in most cases, cannot

uninstall the pre-installed apps, which raises the question: why should users be forced

to trust pre-installed apps? Hindering that trust is our finding that, despite being

developed by vendors, 66.1% of pre-installed apps were overprivileged.

1740002-21

January 3, 2017 3:40

I. Neamtiu et al.

What if the power of pre-installed apps is used against the user with malicious

intent? For example, the marred pre-installed app HTCLogger and other reported

security compromised apps have already indicated such security risks do exist and

can significantly damage the smartphone and/or the user data.11,63 The vendors’

Signature and signatureOrSystem level permissions can be exploited by malicious

apps to do an array of damaging actions, such as wiping out user data, sending out

SMS messages to premium numbers, recording user conversations, or obtaining the

device location data of the device.63

As we analyzed the evolution of Android platform permissions, it was interest-

ing to see the evolution trends benefit vendors, rather than users. With the power

vendors have in pre-installed apps, developers of pre-installed apps should be more

careful in their development as they represent the trusted computing base (TCB)

of the Android ecosystem. Up until now, there has not been any clear regulations

or boundary definitions that protect the user from pre-installed apps. We argue

that, since pre-installed apps have more power and privilege over Android devices,

vendors need to realize their responsibility to protect the end-user.

5. Security: URL Risk

Apps are very Internet-centric: a lot of their operation consists of accessing, down-

loading data from, or uploading data to, the Web via URLsb. Unfortunately, many

websites are not trustworthy, e.g., they can be used to host malware, hence URLs

have a certain risk factor associated with them. In this section we define and char-

acterize this URL risk that affects Android apps.

Apps collect substantial amounts of information about users by mans of sensors

that offer a wide range of context-sensitive functionality, from GPS- and compass-

assisted navigation to song recognition to exercise tracking to picture geo-tagging

and sharing. This is illustrated in Fig. 9: the private data (e.g., location, phone

state, list of contacts) can be leaked by apps to all kinds of websites:c good, bad, or

somewhere in-between.

We focus on a specific security and privacy question: Do good apps talk to “bad”

websites? We use the term bad websites to refer to hosts and domains that have been

labeled as inappropriate by malware repositories such as VirusTotal3 and trustwor-

thy reputation engines such as Web-Of-Trust (WOT).4 In general, these bad websites

engage in dangerous or annoying activities that range from distributing malware,

to phishing to overly aggressive ads and spamming, as we discuss in Section 5.1.

Adopting the terminology from WOT, we define the terms: (a) malicious website,

implicated in distribution of malware, (b) bad website, that appears in blacklists,

and (c) low-reputation websites that have a user rating of less than 60, with each

bhttps://en.wikipedia.org/wiki/Uniform Resource Locator
cWebsites, domains, hosts and entities are used interchangeably in our paper.

1740002-22

https://en.wikipedia.org/wiki/Uniform_Resource_Locator

January 3, 2017 3:40

Improving Smartphone Security and Reliability

App	

	
 	

Loca&on	

Phone	
 state	

Email	

Contacts	

Bad	
 Websites	

Ad
ve
r&
sin

g	

W
eb

sit
es
	

Tr
ac
ki
ng
	
 W

eb
sit
es
	

Good	
 Websites	

Fig. 9. Even good apps communicate with websites of variable reputation, which can raise a range
of concerns.

category including the previous in the order presented. For labeling a website, we

rely on information and the lists from WOT and VirusTotal, which are widely-used

and widely considered as reference sources.

We focus on apps’ network communication, since it is an obvious vector for

security attacks: Internet access is a de facto capability for almost all apps. On the

Android platform, most apps request Internet permission, while all apps in the iOS

App Store have Internet access by default without even asking the user. It is also

highly unlikely that apps will refrain from getting Internet access: (a) many apps

needs access to the Internet to operate, and (b) many apps, especially the free ones,

seek revenue by either showing ads or collecting information about the user and her

behavior, such as mobility patterns. So the question is: does Internet access pose

concerns for security and privacy, even for good apps? We use the term good apps

here loosely to refer to apps that come from reputable developers, and widely vetted

by large numbers of users. Interestingly, even identifying which websites an app talks

hides several subtleties.

We have developed AURA (Android Url Risk Assessor), a systematic approach

to identifying security and privacy concerns for apps based on the websites that

an app talks to.93 The first step is to comprehensively identify all such websites

for a given app, which is non-trivial. We propose and compare the use of both

dynamic and static analysis, and we argue that static analysis is necessary as many

embedded websites are not contacted, even during exhaustive test runs. Second, we

provide a taxonomy of websites using both malware detection and crowdsourcing

efforts to capture a wide range of annoying or dangerous activities. We study 13,500

popular free Android apps from Google Play2 that connect to 254,022 URLs and

1,260 malicious Android apps97 that connect to 19,510 URLs.

1740002-23

January 3, 2017 3:40

I. Neamtiu et al.

Table 8. Macro evolution patterns of
permission usage in the stable dataset.

Macro pattern Frequency

0→1 90.46%

1→0 8.59%

1→0→1 0.84%

1→0→1→0 0.11%

AURA overview. Figure 10 presents the high-level architecture of AURA. Given

an Android app, we use static analysis to extract the URLs embedded in the app.

We also have a dynamic analysis component, which can be used selectively, as we

did for a set of sample apps, to complement the static analysis. can scale well but it

might miss URLs (e.g., due to redirection), hence has the need for dynamic analysis.

With the URLs at hand, AURA performs classification and risk evaluation on both

URLs and domains, with the help of VirusTotal and WOT. Finally, the output is a

set of potential risks, in terms of bad websites the app talks to: malware, phishing,

low-reputation websites. These risks are presented to the user.

The results of our work can be summarized in the following points.

a. Developing AURA. We develop a systematic and comprehensive approach

focusing on a lesser-studied security aspect of apps. A key novelty is the use of

both static and dynamic information: we use both static (bytecode) analysis and

dynamic (execution) analysis when available. We employ widely-used classification

labels for the bad websites, in order to make reporting of results consistent with

industry standards.

b. The importance of static analysis. We show that dynamic analysis cannot

match the thoroughness of static analysis. Even when apps are explored thoroughly

(on average for two hours each) using high-coverage automated tools, dynamic anal-

ysis identifies less than half the URLs static analysis does. This suggests that using

static analysis provides significant insight into an app’s potential communication.

Dynamic analysis critically hinges on the availability of a good (high-coverage)

testing suite, so that all the facets of an app can be explored. As argued above, even

sophisticated tools such as A3E have limited reach in terms of how thoroughly an

app is explored. In the following, we demonstrate the effectiveness of static analysis

when compared with dynamic analysis. In order to ensure representative results, we

selected our test apps by following rigorous criteria as we did in previous work.94

In Table 10, we present a comparison of the two analyses for each app, and over

all apps. The first column contains the app name. The second column shows the

exploration time required by dynamic analysis. Note that dynamic exploration is

thorough, with apps being explored on average for two hours, which is far longer

than the typical average app user session (71.56 seconds).22 The third column shows

the total number of URLs discovered by dynamic analysis for each app; on average,

1740002-24

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Table 9. Micro evolution patterns for the
location permissions; Fine represents the
ACCESS FINE LOCATION permission, Coarse
represents the ACCESS COARSE LOCATION

permission, and Both means both Fine and
Coarse are used.

Micro pattern Frequency

Both 6.67%

Fine→Both 10.00%

Fine→Coarse 3.33%

Coarse→Both 10.00%

0→Both 20.00%

0→Fine 10.00%

0→Coarse 26.70%

0→Fine→Both 3.33%

0→Both→Fine 3.33%

0→Both→Coarse 3.33%

0→Fine→0→Fine 3.31%

6.1 URLs per app. The fourth column shows the number of URLs discovered via

dynamic analysis that could not be found via static analysis. The last two columns

show the number of URLs discovered by static analysis (total and the extra URLs

compared to dynamic analysis). We observe that static analysis finds on average

11.9 domains that dynamic analysis does not find, whereas dynamic analysis finds

on average 2.8 domains that static analysis does not. Therefore, we chose static

analysis as our preferred method for performing the rest of the study. An additional

advantage of static analysis is scalability: as URL extraction and classification takes

on the order of seconds per app, static analysis is particularly suitable for analyzing

large sets of apps.

c. Good apps talk to bad websites. We find that good apps can be inter-

acting with questionable websites: for our examined apps, 8.8% communicate with

malicious websites, 15% talk to bad websites, 73% with low-reputation websites (as

defined above), and 74% of the apps talk to websites containing material not suitable

for children.

d. Understanding bad intentions. We find the following intentions of bad

websites: 43% of bad websites try to phish sensitive personal information or con-

fidential financial information, e.g., credit card details, while 42% of bad websites

are used for distribution of rootkits, trojans, viruses, malware, spyware, rogues and

adware, and creating virus attacks. The rest of the bad websites, which account

for 15%, intrusively and aggressively sell ads. These intentions vary from harming

devices to stealing confidential data to annoying users.

1740002-25

January 3, 2017 3:40

I. Neamtiu et al.

Table 10. Summary of static and dynamic analyses; “extra” refers to domains
found by one analysis but not the other.

Dynamic analysis Static analysis

Time Total Extra Total Extra

App (minutes) URLs URLs URLs URLs

Amazon 131 5 2 10 6

AdvncdTaskKiller 47 0 0 3 3

AdvncdTaskKiller($) 58 0 0 0 0

BBCnews 52 13 8 5 2

CNN 161 8 6 12 10

Craigslist 91 7 3 7 3

Dictionary.com 131 19 15 13 8

Dictionary($) 156 0 0 13 13

Dolphin Browser 179 6 0 14 12

ESPN 44 1 1 7 7

Flixster 219 9 4 20 16

IMDB 126 4 3 17 17

InstantHeartRate 51 0 0 27 27

InstantHeartRate($) 49 0 0 27 27

Pandora 111 3 0 19 19

Picsay 121 0 0 3 3

Picsay($) 129 0 0 3 3

Shazam 239 12 4 24 20

Shazam($) 230 12 4 24 20

Weatherbug 107 14 3 16 16

Weatherbug($) 124 14 1 16 16

ZEDGE 114 8 8 16 15

Average 121 6.1 2.8 13.4 11.9

5.1. Evaluation Results

Our study is based on a sizable number of apps, both benign and malicious. After

we apply AURA to these apps, we obtain 254,022 URLs from 13,500 benign apps

and 19,510 URLs from 1260 malicious apps. In the remainder of the paper, with

the exception of Section 5.1.2 where we discuss malicious apps, all the findings are

based on analyzing the 254,022 URLs that the 13,500 benign apps talk to.79 Note

that the total number of URLs was obtained by adding the number of URLs for

each app, so the dataset contains duplicates; we will discuss this next.

1740002-26

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Static

Dynamic

Risk
 Assessment

APK
Malicious
websites

Unsuitable for
children

Insecure
communication

WOT

VirusTotal

URL

Fig. 10. AURA architecture.

5.1.1. Malicious URLs

Malicious sites could be visited or interacted with when using Android apps, which

poses great risk especially when more and more apps harvest the personal informa-

tion stored on the smartphone. We examined whether malicious URLs are used in

our benign app dataset. To find such URLs, we cross-checked against VirusTotal’s

database. We found that 286 URLs were malicious; these URLs spread across 1,187

apps (8.8%). We believe that the 8.8% percentage is a significant source of concern.

In Section 5.1.3 we present a detailed analysis of these blacklisted domains.

Table 11. Top 20 domains used in apps.

1 admob.com 11 tapjoyads.com

2 android2020.com 12 mydas.mobi

3 twitter.com 13 adwhirl.com

4 facebook.com 14 w3.org

5 airpush.com 15 wikipedia.org

6 google.com 16 amazonaws.com

7 android.com 17 psesc.com

8 gstatic.com 18 inmobi.com

9 mobclix.com 19 paypal.com

10 flurry.com 20 hubblesite.org

We now turn to investigating the domains (or hosts) in our dataset, that is the

trustworthiness of sites without regard to the specific path. We found that 66% of

the apps talk to at least one domain that has very poor reputation; that 74% of the

apps talk to websites containing material not suitable for children; that malicious

apps do not necessarily talk to ill-reputed websites; and that 15% of apps talk to

blacklisted domains. We also found that Android apps tend to have more tracking

services than advertisement services.

1740002-27

January 3, 2017 3:40

I. Neamtiu et al.

C
D

F

0

0.2

0.4

0.6

0.8

1.0

Number of Track Services Per App
0 100 200 300 400 500 600 700 800 900

0.8

1.0

0 50 100 150

C
D

F

0

0.2

0.4

0.6

0.8

1.0

Number of Ads Per App
0 1 2 3 4 5 6 7 8 9 10 11 12

(a) (b)

Minimum Reputation
Average Reputation
Reputation Span

C
D

F

Reputation Score

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

Minimum Reputation
Average Reputation
Reputation Span

C
D

F

Reputation Score

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

(c) (d)

Minimum Reputation
Average Reputation
Reputation Span

C
D

F

Reputation Score

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

Minimum Reputation
Average Reputation
Reputation Span

C
D

F

Reputation Score

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

(e) (f)

Fig. 11. (Color online) (a) Distribution of number of tracking services per each app; (b) Distribution

of number of advertisement services per each app; (c) Domain reputation distribution in benign apps;
(d) Domain reputation distribution in malicious apps; (e) Child safety reputation distribution in benign

apps; (f) Child safety reputation distribution in malicious apps.

We also computed the top domains used in the 13,500 benign Android apps, and

present the top-20 in Table 11. We can see that advertisements (e.g., admob.com,

flurry.com, airpush.com, inmobi.com), cloud services (e.g., amazonaws.com), social

networking services (e.g., twitter.com, facebook.com) and payment solution services

(e.g., paypal.com) are used intensively among apps. We also plot the distributions

about the number of tracking and advertisement services of each app in Figs. 11(a)

and 11(b). We can see that both services penetrate Android apps broadly, while

Android apps tend to have more tracking services than advertisement sources.

1740002-28

admob.com
flurry.com
airpush.com
inmobi.com
amazonaws.com
twitter.com
facebook.com
paypal.com

January 3, 2017 3:40

Improving Smartphone Security and Reliability

5.1.2. Trustworthiness and Child Safety

We now investigate the reputation of the domains extracted from our URL dataset

with respect to trustworthiness and child safety. WOT assigns each domain a rep-

utation score from 0 (very poor reputation) to 100 (very good reputation). We use

WOT’s domain reputation score to compute the reputation for each domain in our

dataset. If we could not find the reputation for a domain in WOT’s database, we

just assign that domain a reputation score of −1. For each app, we compute several

reputation indicators: a minimum reputation, that is the lowest reputation score

across all the domains used in the app; an average reputation, that is the average

reputation score across all the domains used in the app; and a reputation span, that

is the difference between the minimum and maximum reputation score across all the

domains used in the app.

Benign apps. Our analysis has revealed several reasons for concern. We found

that 63% of apps talk to at least one domain for which WOT does not have any

reputation score. In addition, 73% of the apps talk to at least one domain that has

unsatisfactory reputation (score is less than 60). In detail, 68% of the apps talk to

domains with poor reputation (score is less than 40) and 66% of the apps talks to the

domains with very poor reputation (score less than 20). Unsurprisingly, these trends

are also reflected in the reputation span: 60% of the apps have reputation spans

exceeding 90 points, meaning the apps mix high-reputation with low-reputation

domains. These findings indicate that there is significant cause for concern even for

benign apps: when these supposedly benign apps send information to low-reputation

domains, users can be exposed to privacy and security risks.

Children use Android apps for many activities, e.g., gaming or social networking.

Hence we proceed to analyze how child-safe the domains are, based on WOT’s

definition of child-safe domains. Similar to trustworthiness, we plot the child-safety

reputation score for benign apps in Fig. 11(e). We observe that 74% of the benign

apps talk to at least one domain that has unsatisfactory reputation based on user

ratings, hence may not be suitable for children (for example, the website contains

adult material). We believe that such findings could help Google Play, the main

Android app marketplace, to better regulate app distribution in order to safeguard

child safety.

Malicious apps. Intuitively, we would assume that malicious apps would contain

low-reputation of domains. We do the same reputation evaluation for the malicious

apps, and we find that our intuition would be wrong — malicious apps have similar

distribution of trustworthiness and child safety as benign apps. For example, in terms

of trustworthiness Fig. 11(d) indicates that about 55% of the apps have reputation

less than 15, and there are fewer apps with large reputation spans. Child safety

reputations (Fig. 11(f)) are also similar to benign apps.

1740002-29

January 3, 2017 3:40

I. Neamtiu et al.

This is unsurprising, since most malicious apps are created by injecting a mal-

ware veneer in a benign app via repackaging.104 The edge that AURA provides is

the ability to examine the reputation of domains the app talks to: it is important to

tackle Android app security not only via traditional security techniques (that pro-

tect devices against technical threats such as viruses and other harmful software),

but also via crowdsourcing. Hence our AURA approach can help protect the device

and the app against threats that only the human eye can identify, such as scams,

unreliable web stores and questionable content.

5.1.3. Blacklisted Domains

Blacklisted domains are known for hosting malwares or viruses, phishing and

scam hosts, as shown in Table 12. Surprisingly, according to both VirusTotal and

WOT’ratings, AURA found that 2,025 apps (15% of the dataset) talk to blacklisted

domains. These blacklisted domains pose a wider rage of dangers to end-users, e.g.,

users’ sensitive data could be leaked to these domains for illegal purposes, or users

could end up downloading and installing malware. We provide a detailed break-down

of blacklisted site categories in Table 13. As we can see, they include advertising

services, hosting services, financial services, etc. We have manually browsed some

Table 12. Definitions and descriptions of blacklisted types of domains
from WOT.

Blacklist type Description

malware Site is blacklisted for hosting malware

phishing Site is blacklisted for hosting a phishing page

scam Site is blacklisted for hosting a scam

Table 13. Categories of blacklisted
domains and their percentages.

Category %

Advertising 28

Hosting Service 23

Entertainment Media 14

Short URL Service 8

Dating 7

Social 7

DNS service 6

Online Shopping 3

Finance 2

Misc 2

1740002-30

January 3, 2017 3:40

Improving Smartphone Security and Reliability

of the blacklisted domains to discover how they lure users in and how they exploit

users and there information. We provide details on their nefarious behavior next.

Luring users in. Blacklisted websites first use a “lure-in” to entice users into

visiting the website or clicking on download links, namely, using these means:

(1) “Big reward” return trap: cheat users by claiming that they could obtain a big

return after they buy the advertised promotions from the website.

(2) Adult content: using explicit images to lure users into subscribing to services.

(3) Intrusive ads, that is display ads that constantly pop up, counting on user’s

attrition to eventually click on the ad.

(4) Fake sites: present a deceiving front page (e.g., news, government, bank, travel)

to lure users into sharing their sensitive and confidential information.

(5) Exploited sites: sites or hosting services that are compromised by malware.

(6) Abusing short URL and DNS services: using an URL shortener to hide their

suspicious intentions and redirect the users to malicious sites.

Inflicting malicious behavior. Once users are lured into visiting websites, shar-

ing information, or downloading software, the blacklisted websites exploit users’

good faith by inflicting malicious behavior in a variety of ways, which we describe

next.

Phishing sensitive personal information or confidential financial in-

formation, e.g., credit card details. Once users share confidential information,

websites will resort to identity theft, credit card abuse, and tracking users’ habits.

Distribution of rootkits, trojans, viruses, malware, spyware, rogues

and adware, and creating virus attacks. Once such nefarious software is in-

stalled, the malicious behavior can take a variety of forms: corrupting the data saved

on the smartphone, which could render the phone unusable, information leaking

(e.g., financial information, passwords), and so on.

Intrusively and aggressively sell ads. Once such adware is installed, it dis-

plays non-stopping pop-up ads that users cannot dismiss/unsubscribe from.

Note that a blacklisted domain may have two or more of these behaviors, which

means some of these intentions can co-exist.

5.1.4. Potential uses and deployment:

We envision using AURA in several different ways.

a. Advisory stand-alone tool. AURA could be used as an advisory stand-alone

tool, where users submit the apps of interest, and receive an assessment; the set of

users includes researchers that want to further study app security from an Internet

access point of view.

b. Expanded app information. AURA could enhance the information pre-

sented to an user prior to installing an app. The Google Play market information

panel could include AURA’s assessment as a part of the profile of the app as a more

1740002-31

January 3, 2017 3:40

I. Neamtiu et al.

refined explanation of the Internet Access permission.

c. App filtering. AURA could also be used as a filter before the app is allowed

to enter Google Play. The market owner, such as Google, Samsung or Amazon, could

force developers to evaluate their apps with AURA, and allow apps on the market

only if they meet certain requirements (not talking to malware-hosting sites seems

like a good requirement).

d. A component in a larger security system. AURA could be integrated

into other static and dynamic analysis tools to provide more comprehensive risk

information for each app. The interactions between the developer and market ad-

ministrators are encouraged during the development and maintenance of the app.

6. Security: App Profiling

In this section we present an approach for profiling Android apps to understand the

security implications of running those apps. For example, some apps use sensitive

resources without disclosing the access up-front. Other apps can threaten availability

due to excessive resource consumption, a condition that our approach detects.

A fundamental challenge for both users and app marketplaces such as Google

Play or Apple App Store is how to understand and summarize app behavior. More

specifically, in light of the 1,000,000+ apps currently on Google Play (ex Android

Market),2 we seek to answer the question “Given an Android app, how can we

efficiently get an informative thumbnail of its behavior?” To this end have devised

a profiling scheme that works even with limited resources in terms of time, manual

effort, and cost. We define limited resources to mean: a few users with a few minutes

of experimentation per application. At the same time, we want the resulting app

profiles to be comprehensive, useful, and intuitive. Therefore, given an app and

one or more short executions, we want a profile that captures succinctly what the

app did, and contrast it with: (a) what it was expected or allowed to do, and

(b) other executions of the same app. For example, an effective profile should provide:

(a) how apps use resources, expressed in terms of network data and system calls,

(b) the types of device resources (e.g., camera, telephony) an app accesses, and

whether it is allowed to, and (c) what entities an app communicates with (e.g.,

cloud or third-party servers).

Who would be interested in such a capability? We argue that an inexpensive

solution would appeal to everyone who “comes in contact” with the app, including:

(a) the app developer, (b) the owner of an Android app market, (c) a system ad-

ministrator, and (d) the end user. Effective profiling can help us: (a) enhance user

control, (b) improve user experience, (c) assess performance and security implica-

tions, and (d) facilitate troubleshooting. We envision our quick and cost-effective

thumbnails (profiles) to be the first step of app profiling, which can then have more

involved and resource-intense steps, potentially based on what the thumbnail has

revealed.

1740002-32

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Static

Network

User

OS

Static

Network

User

OS

Monitoring Profiling

ProfileDroid

APK
App
Profile

Behavioral
Patterns

Inconsistencies

Fig. 12. Overview and actual usage (left) and architecture (right) of ProfileDroid.

Despite the flurry of research activity in this area, there is no approach yet that

focuses on profiling the behavior of an Android app itself in all its complexity.

Several efforts have focused on analyzing the mobile phone traffic and show the

protocol related properties, but they do not study the apps themselves.42,46 Others

have studied security issues that reveal the abuse of personal device information.60,90

However, all these works: (a) do not focus on individual apps, but report general

trends, or (b) focus on a single layer, studying, e.g., the network behavior or the

app specification in isolation. For example, some apps have negligible user inputs,

such as Pandora, or negligible network traffic, such as Advanced Task Killer, and

thus, by focusing only on one layer, the most significant aspect of an application

could be missed.

Specifically, this section discusses the design and implementation of

ProfileDroid,94 a systematic and comprehensive system for profiling Android

apps. A key novelty is that our profiling spans four layers: (a) static, i.e., app spec-

ification, (b) user interaction, (c) operating system, and (d) network. To the best

of our knowledge, this is the first workd that considers all these layers in profiling

individual Android apps. Our contributions are twofold. First, designing the system

requires the careful selection of informative and intuitive metrics, which capture the

essence of each layer. Second, implementing the system is a non-trivial task, and we

have to overcome numerous practical challenges.e

For each layer, the monitoring component runs on the Android device where

the app is running. The captured information is subsequently fed into the profiling

part, which runs on the connected computer. In Fig. 12, on the right, we show a

high level overview of our system and its design. On the left, we have an actual

picture of the actual system the Android device that runs the app and the profiling

computer (such as a desktop or a laptop).

dAn earlier work35 uses the term “cross-layer,” but the layers it refers to are quite different from
the layers we use.
e Examples include fine-tuning data collection tools to work on Android, distinguishing between
presses and swipes, and disambiguating app traffic from third-party traffic.

1740002-33

January 3, 2017 3:40

I. Neamtiu et al.

From an architectural point of view, we have designed ProfileDroid to be

flexible and modular with level-defined interfaces between the monitoring and pro-

filing components. Thus, it is easy to modify or improve functionality within each

layer. Furthermore, we could easily extend the current functionality to add more

metrics, and even potentially more layers, such as a physical layer (temperature,

battery level, etc.).

6.1. Overview of Approach

We present an overview of the design and implementation of ProfileDroid. We

measure and profile apps at four different layers: (a) static, or app specification (b)

user interaction, (c) operating system, and (d) network. For each layer, our system

consists of two parts: a monitoring and a profiling component. For each layer, the

monitoring component runs on the Android device where the app is running. The

captured information is subsequently fed into the profiling part, which runs on the

connected computer. In Fig. 12, on the right, we show a high level overview of our

system and its design. On the left, we have an actual picture of the actual system

the Android device that runs the app and the profiling computer (such as a desktop

or a laptop).

In the future, we foresee a light-weight version of the whole profiling system to

run exclusively on the Android device. The challenge is that the computation, the

data storage, and the battery consumption must be minimized. How to implement

the profiling in an incremental and online fashion is beyond the scope of the current

work. Note that our system is focused on profiling of an individual app, and not

intended to monitor user behavior on mobile devices.

From an architectural point of view, we design ProfileDroid to be flexible and

modular with level-defined interfaces between the monitoring and profiling compo-

nents. Thus, it is easy to modify or improve functionality within each layer. Fur-

thermore, we could easily extend the current functionality to add more metrics, and

even potentially more layers, such as a physical layer (temperature, battery level,

etc.).

6.1.1. Implementation and Challenges

We describe the implementation of monitoring at each layer, and briefly touch on

challenges we had to surmount when constructing ProfileDroid.

To profile an application, we start the monitoring infrastructure (described at

length below) and then the target app is launched. The monitoring system logs

all the relevant activities, e.g., user touchscreen input events, system calls, and all

network traffic in both directions.

Static Layer. At the static layer, we analyze the APK (Android application

package) file, which is how Android apps are distributed. We use apktool to un-

pack the APK file to extract relevant data. From there, we mainly focus on the

1740002-34

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Manifest.xml file and the bytecode files contained in the /smali folder. The man-

ifest is specified by the developer and identifies hardware usage and permissions

requested by each app. The smali files contain the app bytecode which we parse

and analyze statically, as explained later in Section 6.2.1.

User Layer. At the user layer, we focus on user-generated events, i.e., events

that result from interaction between the user and the Android device while running

the app. To gather the data of the user layer, we use a combination of the logcat

and getevent tools of adb. From the logcat we capture the system debug output

and log messages from the app. In particular, we focus on events-related messages.

To collect the user input events, we use the getevent tool, which reads the /dev

/input/event* to capture user events from input devices, e.g., touchscreen, ac-

celerometer, proximity sensor. Due to the raw nature of the events logged, it was

challenging to disambiguate between swipes and presses on the touchscreen. We

provide details in Section 6.2.2.

Operating System Layer. At the operating system-layer, we measure the

operating system activity by monitoring system calls. We collect system calls invoked

by the app using an Android-specific version of strace. Next, we classify system calls

into four categories: filesystem, network, VM/IPC, and miscellaneous. As described

in Section 6.2.3, this classification is challenging, due to the virtual file system and

the additional VM layer that decouples apps from the OS.

Network Layer. At the network layer, we analyze network traffic by logging

the data packets. We use an Android-specific version of tcpdump that collects all

network traffic on the device. We parse, domain-resolve, and classify traffic. As

described in Section 6.2.4, classifying network traffic is a significant challenge in

itself; we used information from domain resolvers, and improve its precision with

manually-gathered data on specific websites that act as traffic sources.

6.1.2. Experimental Setup

Android Devices. The Android devices monitored and profiled in this paper were

a pair of identical Motorola Droid Bionic phones, which have dual-core ARM Cortex-

A9 processors running at 1GHz. The phones were released on released September

8, 2011 and run Android version 2.3.4 with Linux kernel version 2.6.35.

App Selection. To ensure representative results, we strictly follow the following

criteria in selecting our test apps. First, we selected a variety of apps that cover most

app categories as defined in Google Play, such as Entertainment, Productivity tools,

etc. Second, all selected apps had to be popular, so that we could examine real-world,

production-quality software with a broad user base. In particular, the selected apps

must have at least 1,000,000 installs, as reported by Google Play, and be within the

Top-130 free apps, as ranked by the Google Play website. In the end, we selected

27 apps as the basis for our study: 19 free apps and 8 paid apps; the 8 paid apps

have free counterparts, which are included in the list of 19 free apps. The list of the

selected apps, as well as their categories, is shown in Table 14.

1740002-35

January 3, 2017 3:40

I. Neamtiu et al.

Table 14. The test apps; app-$$ represents the paid version
of an app.

App name Category

Dictionary.com,
Reference

Dictionary.com-$$

Tiny Flashlight Tools

Zedge Personalization

Weather Bug,
Weather

Weather Bug-$$

Advanced Task Killer,
Productivity

Advanced Task Killer-$$

Flixster Entertainment

Picsay,
Photography

Picsay-$$

ESPN Sports

Gasbuddy Travel

Pandora Music & Audio

Shazam,
Music & Audio

Shazam-$$

Youtube Media & Video

Amazon Shopping

Facebook Social

Dolphin,
Communication (Browsers)

Dolphin-$$

Angry Birds,
Games

Angry Birds-$$

Craigslist Business

CNN News & Magazines

Instant Heart Rate,
Health & Fitness

Instant Heart Rate-$$

Conducting the experiment. In order to isolate app behavior and improve

precision when profiling an app, we do not allow other manufacturer-installed apps

to run concurrently on the Android device, as they could interfere with our mea-

surements. Also, to minimize the impact of poor wireless link quality on apps, we

used WiFi in strong signal conditions. Further, to ensure statistics were collected

of only the app in question, we installed one app on the phone at a time and unin-

stalled it before the next app was tested. Note however, that system daemons and

required device apps were still able to run as they normally would, e.g., the service

and battery managers.

1740002-36

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Finally, in order to add stability to the experiment, the multi-layer traces for

each individual app were collected from tests conducted by multiple users to obtain

a comprehensive exploration of different usage scenarios of the target application.

To cover a larger variety of running conditions without burdening the user, we

use capture-and-replay, as explained below. Each user ran each app one time for 5

minutes; we capture the user interaction using event logging. Then, using a replay

tool we created, each recorded run was replayed back 5 times in the morning and 5

times at night, for a total of 10 runs each per user per app. The runs of each app

were conducted at different times of the day to avoid time-of-day bias, which could

lead to uncharacteristic interaction with the app; by using the capture-and-replay

tool, we are able to achieve this while avoiding repetitive manual runs from the same

user. For those apps that had both free and paid versions, users carried out the same

task, so we can pinpoint differences between paid and free versions. To summarize,

our profiling is based on 30 runs (3 users × 10 replay runs) for each app.

6.2. Analyzing each layer

In this section, we first provide detailed descriptions of our profiling methodology,

and we highlight challenges and interesting observations.

6.2.1. Static Layer

The first layer in our framework aims at understanding the app’s functionality and

permissions. In particular, we analyze the APK file on two dimensions to identify

app functionality and usage of device resources: first, we extract the permissions

that the app asks for, and then we parse the app bytecode to identify intents, i.e.,

indirect resource access via deputy apps. Note that, in this layer only, we analyze

the app without running it — hence the name static layer.

Functionality usage. Android devices offer several major functionalities, labeled

as follows: Internet, GPS, Camera, Microphone, Bluetooth and Telephony. We

present the results in Table 15. A ‘X’ means the app requires permission to use

the device, while ‘I’ means the device is used indirectly via intents and deputy apps.

We observe that Internet is the most-used functionality, as the Internet is the gate-

way to interact with remote servers via 3G or WiFi — all of our examined apps

use the Internet for various tasks. For instance, Pandora and YouTube use the Inter-

net to fetch multimedia files, while Craigslist and Facebook use it to get content

updates when necessary.

GPS, the second most popular resource (9 apps) is used for navigation and

location-aware services. For example, Gasbuddy returns gas stations near the user’s

location, while Facebook uses the GPS service to allow users to check-in, i.e., publish

their presence at entertainment spots or places of interests. Camera, the third-most

popular functionality (5 apps) is used for example, to record and post real-time

news information (CNN), or for for barcode scanning Amazon. Microphone, Bluetooth

1740002-37

January 3, 2017 3:40

I. Neamtiu et al.

and Telephony are three additional communication channels besides the Internet,

which could be used for voice communication, file sharing, and text messages. This

increased usage of various communication channels is a double-edged sword. On the

one hand, various communication channels improve user experience. On the other

hand, it increases the risk of privacy leaks and security attacks on the device.

Intent usage. Android intents allow apps to access resources indirectly by using

deputy apps that have access to the requested resource. For example, Facebook does

not have the camera permission, but can send an intent to a deputy camera app to

take and retrieve a picture.f We decompiled each app using apktool and identified

instances of the android.content.Intent class in the Dalvik bytecode. Next, we

analyzed the parameters of each intent call to find the intent’s type, i.e., the device’s

resource to be accessed via deputy apps.

We believe that presenting users with the list of resources used via intents (e.g.,

that the Facebook app does not have direct access to the camera, but nevertheless it

can use the camera app to take pictures) helps them make better-informed decisions

about installing and using an app. Though legitimate within the Android security

model, this lack of user forewarning can be considered deceiving; with the more com-

prehensive picture provided by ProfileDroid, users have a better understanding

of resource usage, direct or indirect.12

6.2.2. User Layer

At the user layer, we analyze the input events that result from user interaction. In

particular, we focus on touches — generated when the user touches the screen — as

touchscreens are the main Android input devices. Touch events include presses, e.g.,

pressing the app buttons of the apps, and swipes — finger motion without losing

contact with the screen. The intensity of events (events per unit of time), as well

as the ratio between swipes and presses are powerful metrics for GUI behavioral

fingerprinting (Section 6.3.4); we present the results in Fig. 13 and now proceed to

discussing these metrics.

Technical challenge. Disambiguating between swipes and presses was a chal-

lenge, because of the nature of reported events by the getevent tool. Swipes and

presses are reported by the touchscreen input device, but the reported events are

not labeled as swipes or presses. A single press usually accounts for 30 touchscreen

events, while a swipe usually accounts for around 100 touchscreen events. In order to

distinguish between swipes and presses, we developed a method to cluster and label

events. For example, two events separated by less than 80 milliseconds are likely to

be part of a sequence of events, and if that sequence of events grows above 30, then

it is likely that the action is a swipe instead of a press. Evaluating and fine-tuning

our method was an intricate process.

fThis was the case for the version of the Facebook app we analyzed in March 2012, the time we
performed the study. However, we found that, as of June 2012, the Facebook app requests the
Camera permission explicitly.

1740002-38

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Table 15. Profiling results of static layer; ‘X’ represents use via
permissions, while ‘I’ via intents.

App In
te

rn
e
t

G
P
S

C
a
m
e
ra

M
ic
ro

p
h
n
e

B
lu
e
to

o
th

T
e
le
p
h
o
n
y

Dictionary.com X I I

Dictionary.com-$$ X I I

Tiny Flashlight X X

Zedge X

Weather Bug X X

Weather Bug-$$ X X

Advanced Task Killer X

Advanced Task Killer-$$ X

Flixster X X

Picsay X

Picsay-$$ X

ESPN X

Gasbuddy X X

Pandora X X

Shazam X X X

Shazam-$$ X X X

YouTube X

Amazon X X

Facebook X X I X

Dolphin X X

Dolphin-$$ X X

Angry Birds X

Angry Birds-$$ X

Craigslist X

CNN X X

Instant Heart Rate X X I I

Instant Heart Rate-$$ X X I I

Touch events intensity. We measured touch intensity as the number of touch

events per second — this reveals how interactive an app is. For example, the music

app Pandora requires only minimal input (music control) once a station is selected.

In contrast, in the game Angry Birds, the user has to interact with the interface of

the game using swipes and screen taps, which results in a high intensity for touch

events.

1740002-39

January 3, 2017 3:40

I. Neamtiu et al.

0

2.5

5.0

7.5

10.0

0

0.5

1.0

1.5

0

5

10

15

20

25

Di
cti
on
ar
y.c
om

($$
)D
ict
ion
ar
y.c
om

Ti
ny
 Fl
ash
lig
ht

Ze
dg
e

W
ea
the
r B
ug

($$
)W
ea
the
r B
ug

Ad
vT
ask
Ki
lle
r

($$
)A
dv
Ta
sk
Ki
lle
r

Fli
xst
er

Pic
say

($$
)P
ics
ay
ES
PN

Ga
sb
ud
dy

Pa
nd
or
a

Sh
az
am

($$
)Sh
az
am

Yo
utu
be

Am
az
on

Fa
ceb
oo
k

Do
lph
in

($$
)D
olp
hin

An
gr
y B
ird
s

($$
)A
ng
ry
 B
ird
s

Cr
aig
sli
st
CN
N

In
stH
ea
rtR
ate

($$
)In
stH
ea
rtR
ate

Touch Event Intensity (Events/Sec)

Swipe/Press Ratio

Phone Event Intensity (Events/Sec)

Fig. 13. Profiling results of user layer; note that scales are different.

Swipe/Press ratio. We use the ratio of swipes to presses to better capture the

nature of the interaction, and distinguish between apps that have similar touch

intensity. Note that swipes are used for navigation and zooming, while touches are

used for selection. Figure 13 shows that apps that involve browsing, news-page

flipping, gaming, e.g., CNN, Angry Birds, have a high ratio of swipes to presses;

even for apps with the same touch intensity, the swipe/press ratio can help profile

and distinguish apps, as seen in the following table:

App Touch intensity Swipe/Press ratio

Picsay medium low

CNN medium high

Phone event intensity. The bottom chart in Fig. 13 shows the intensity of events

generated by the phone itself during the test. These events contain a wealth of

contextual data that, if leaked, could pose serious privacy risks. The most frequent

events we observed were generated by the accelerometer, the light proximity sensor,

and for some location-aware apps, the compass. For brevity, we omit details, but

we note that phone-event intensity, and changes in intensity, can reveal the user’s

proximity to the phone, the user’s motion patterns, and user orientation and changes

thereof.

6.2.3. Operating System Layer

We first present a brief overview of the Android OS, and then discuss metrics and

results at the operating system layer.

1740002-40

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Android OS is a Linux-based operating system, customized for mobile devices.

Android apps are written in Java and compiled to Dalvik executable (Dex) byte-

code. The bytecode is bundled with the app manifest (specification, permissions)

to create an APK file. When an app is installed, the user must grant the app the

permissions specified in the manifest. The Dex bytecode runs on top of the Dalvik

Virtual Machine (VM) — an Android-specific Java virtual machine. Each app runs

as a separate Linux process with a unique user ID in a separate copy of the VM. The

separation among apps offers a certain level of protection and running on top of a VM

avoids granting apps direct access to hardware resources. While increasing reliability

and reducing the potential for security breaches, this vertical (app–hardware) and

horizontal (app–app) separation means that apps do not run natively and inter-app

communications must take place primarily via IPC. We profile apps at the oper-

ating system layer with several goals in mind: to understand how apps use system

resources, how the operating-system intensity compares to the intensity observed at

other layers, and to characterize the potential performance implications of running

apps in separate VM copies. To this end, we analyzed the system call traces for each

app to understand the nature and frequency of system calls. We present the results

in Table 16.

System call intensity. The second column of Table 16 shows the system call

intensity in system calls per second. While the intensity differs across apps, note

that in all cases the intensity is relatively high (between 30 and 1,183 system calls

per second) for a mobile platform.

System call characterization. To characterize the nature of system calls, we

group them into four bins: file system (FS), network (NET), virtual machine

(VM&IPC), and miscellaneous (MISC). Categorizing system calls is not trivial.
Technical challenge. The Linux version running on our phone (2.6.35.7 for Arm)

supports about 370 system calls; we observed 49 different system calls in our traces.

While some system calls are straightforward to categorize, the operation of virtual

filesystem calls such as read and write, which act on a file descriptor, depends on

the file descriptor and can represent file reading and writing, network send/receive,

or reading/altering system configuration via /proc. Therefore, for all the virtual

filesystem calls, we categorize them based on the file descriptor associated with

them, as explained below. FS system calls are used to access data stored on the

flash drive and SD card of the mobile device and consist mostly of read and write

calls on a file descriptor associated with a space-occupying file in the file system, i.e.,

opened via open. NET system calls consist mostly of read and write calls on a file

descriptor associated with a network socket, i.e., opened via socket; note that for

NET system calls, reads and writes mean receiving from and sending to the network.

VM&IPC system calls are calls inserted by the virtual machine for operations such

as scheduling, timing, idling, and IPC. For each such operation, the VM inserts a

specific sequence of system calls. We extracted these sequences, and compared the

1740002-41

January 3, 2017 3:40

I. Neamtiu et al.

Table 16. Profiling results: operating system layer.

Syscall

intensity FS NET VM&IPC MISC

App (calls/sec.) (%) (%) (%) (%)

Dictionary.com 1025.64 3.54 1.88 67.52 27.06

Dictionary.com-$$ 492.90 7.81 4.91 69.48 17.80

Tiny Flashlight 435.61 1.23 0.32 77.30 21.15

Zedge 668.46 4.17 2.25 75.54 18.04

Weather Bug 1728.13 2.19 0.98 67.94 28.89

Weather Bug-$$ 492.17 1.07 1.78 75.58 21.57

AdvTaskKiller 75.06 3.30 0.01 65.95 30.74

AdvTaskKiller-$$ 30.46 7.19 0.00 63.77 29.04

Flixster 325.34 2.66 3.20 71.37 22.77

Picsay 319.45 2.06 0.01 75.12 22.81

Picsay-$$ 346.93 2.43 0.16 74.37 23.04

ESPN 1030.16 2.49 2.07 87.09 8.35

Gasbuddy 1216.74 1.12 0.32 74.48 24.08

Pandora 286.67 2.92 2.25 70.31 24.52

Shazam 769.54 6.44 2.64 72.16 18.76

Shazam-$$ 525.47 6.28 1.40 74.31 18.01

YouTube 246.78 0.80 0.58 77.90 20.72

Amazon 692.83 0.42 6.33 76.80 16.45

Facebook 1030.74 3.99 2.98 72.02 21.01

Dolphin 850.94 5.20 1.70 71.91 21.19

Dolphin-$$ 605.63 9.05 3.44 68.45 19.07

Angry Birds 1047.19 0.74 0.36 82.21 16.69

Angry Birds-$$ 741.28 0.14 0.04 85.60 14.22

Craigslist 827.86 5.00 2.47 73.81 18.72

CNN 418.26 7.68 5.55 71.47 15.30

InstHeartRate 944.27 7.70 1.73 75.48 15.09

InstHeartRate-$$ 919.18 12.25 0.14 72.52 15.09

number of system calls that appear as part of the sequence to the total number,

to quantify the VM and IPC-introduced overhead. The most common VM/IPC

system calls we observed (in decreasing order of frequency) were: clock gettime,

epoll wait, getpid, getuid32, futex, ioctl, and ARM cacheflush. The remaining

system calls are predominantly read and write calls to the /proc special filesystem

are categorized as MISC.

1740002-42

January 3, 2017 3:40

Improving Smartphone Security and Reliability

The results are presented in Table 16: for each category, we show both intensity,

as well as the percentage relative to all categories. Note that FS and NET percent-

ages are quite similar, but I/O system calls (FS and NET) constitute a relatively

small percentage of total system calls, with the VM&IPC dominating. We will come

back to this aspect in Section 6.3.

6.2.4. Network Layer

The network-layer analysis summarizes the data communication of the app via WiFi

or 3G. Android apps increasingly rely on Internet access for a diverse array of

Table 17. Profiling results of network layer; ‘–’ represents no traffic.

Traffic HTTP/

intens. Traffic CDN+ Third HTTPS

(bytes/ In/Out Origin Cloud Google party Traffic split

App sec.) (ratio) (%) (%) (%) (%) srcs. (%)

Dictionary.com 1450 1.94 – 35.36 64.64 – 8 100/–

Dictionary.com-$$ 488 1.97 0.02 1.78 98.20 – 3 100/–

Tiny Flashlight 134 2.49 – – 99.79 0.21 4 100/–

Zedge 15424 10.68 – 96.84 3.16 – 4 100/–

Weather Bug 3808 5.05 – 75.82 16.12 8.06 13 100/–

Weather Bug-$$ 2420 8.28 – 82.77 6.13 11.10 5 100/–

AdvTaskKiller 25 0.94 – – 100.00 – 1 91.96/8.04

AdvTaskKiller-$$ – – – – – – 0 –/–

Flixster 23507 20.60 2.34 96.90 0.54 0.22 10 100/–

Picsay 4 0.34 – 48.93 51.07 – 2 100/–

Picsay-$$ 320 11.80 – 99.85 0.15 – 2 100/–

ESPN 4120 4.65 – 47.96 10.09 41.95 5 100/–

Gasbuddy 5504 10.44 6.17 11.23 81.37 1.23 6 100/–

Pandora 24393 28.07 97.56 0.91 1.51 0.02 11 99.85/0.15

Shazam 4091 3.71 32.77 38.12 15.77 3.34 13 100/–

Shazam-$$ 1506 3.09 44.60 55.36 0.04 – 4 100/–

YouTube 109655 34.44 96.47 – 3.53 – 2 100/–

Amazon 7757 8.17 95.02 4.98 – – 4 99.34/0.66

Facebook 4606 1.45 67.55 32.45 – – 3 22.74/77.26

Dolphin 7486 5.92 44.55 0.05 8.60 46.80 22 99.86/0.14

Dolphin-$$ 3692 6.05 80.30 1.10 5.80 12.80 9 99.89/0.11

Angry Birds 501 0.78 – 73.31 10.61 16.08 8 100/–

Angry Birds-$$ 36 1.10 – 88.72 5.79 5.49 4 100/–

Craigslist 7657 9.64 99.97 – – 0.03 10 100/–

CNN 2992 5.66 65.25 34.75 – – 2 100/–

InstHeartRate 573 2.29 – 4.18 85.97 9.85 3 86.27/13.73

InstHeartRate-$$ 6 0.31 – 8.82 90.00 1.18 2 20.11/79.89

1740002-43

January 3, 2017 3:40

I. Neamtiu et al.

services, e.g., for traffic, map or weather data and even offloading computation to the

cloud. An increasing number of network traffic sources are becoming visible in app

traffic, e.g., Content Distribution Networks, Cloud, Analytics and Advertisement.

To this end, we characterize the app’s network behavior using the following metrics

and present the results in Table 17.

Traffic intensity. This metric captures the intensity of the network traffic of the

app. Depending on the app, the network traffic intensity can vary greatly, as shown

in Table 17. For the user, this great variance in traffic intensity could be an im-

portant property to be aware of, especially if the user has a limited data plan. Not

surprisingly, we observe that the highest traffic intensity is associated with a video

app, YouTube. Similarly, the entertainment app Flixster, music app Pandora, and

personalization app Zedge also have large traffic intensities as they download audio

and video files. We also observe apps with zero, or negligible, traffic intensity, such

as the productivity app Advanced Task Killer and free photography app Picsay.

Origin of traffic. The origin of traffic means the percentage of the network traffic

that comes from the servers owned by the app provider. This metric is particularly

interesting for privacy-sensitive users, since it is an indication of the control that the

app provider has over the app’s data. Interestingly, there is large variance for this

metric, as shown in Table 17. For example, the apps Amazon, Pandora, YouTube,

and Craigslist deliver most of their network traffic (e.g., more than 95%) through

their own servers and network. However, there is no origin traffic in the apps Angry

Birds and ESPN. Interestingly, we observe that ony 67% of the Facebook traffic

comes from Facebook servers, with the remaining coming from content providers or

the cloud.
Technical challenge. It is a challenge to classify the network traffic into different

categories (e.g., cloud vs. ad network), let alone identify the originating entity. To

resolve this, we combine an array of methods, including reverse IP address lookup,

DNS and whois, and additional information and knowledge from public databases

and the web. In many cases, we use information from CrunchBase (crunchbase.com)

to identify the type of traffic sources after we resolve the top-level domains of the

network traffic.17 Then, we classify the remaining traffic sources based on informa-

tion gleaned from their website and search results.

In some cases, detecting the origin is even more complicated. For example, con-

sider the Dolphin web browser — here the origin is not the Dolphin web site, but

rather the website that the user visits with the browser, e.g., if the user visits CNN,

then cnn.com is the origin. Also, YouTube is owned by Google and YouTube media

content is delivered from domain 1e100.net, which is owned by Google; we report

the media content (96.47%) as Origin, and the remaining traffic (3.53%) as Google

which can include Google ads and analytics.

1740002-44

January 3, 2017 3:40

Improving Smartphone Security and Reliability

CDN+Cloud traffic. This metric shows the percentage of the traffic that comes

from servers of CDN (e.g., Akamai) or cloud providers (e.g., Amazon AWS). Content

Distribution Network (CDN) has become a common method to distribute the app’s

data to its users across the world faster, with scalability and cost-effectively. Cloud

platforms have extended this idea by providing services (e.g., computation) and not

just data storage. Given that it is not obvious if someone using a cloud service is

using it as storage, e.g., as a CDN, or for computation, we group CDN and cloud

services into one category. Interestingly, there is a very strong presence of this kind

of traffic for some apps, as seen in Table 17. For example, the personalization app

Zedge, and the video-heavy app Flixster need intensive network services, and

they use CDN and Cloud data sources. The high percentages that we observe for

CDN+Cloud traffic point to how important CDN and Cloud sources are, and how

much apps rely on them for data distribution.

Google traffic. Given that Android is a product of Google, it is natural to wonder

how involved Google is in Android traffic. The metric is the percentage of traffic

exchanged with Google servers (e.g., 1e100.net), shown as the second-to-last column

in Table 17. It has been reported that the percentage of Google traffic has increased

significantly over the past several years.23 This is due in part to the increasing

penetration of Google services (e.g., maps, ads, analytics, and Google App Engine).

Note that 22 of out of the 27 apps exchange traffic with Google, and we discuss this

in more detail in Section 6.3.

Third-party traffic. This metric is of particular interest to privacy-sensitive users.

We define third party traffic as network traffic from various advertising services (e.g.,

Atdmt) and analytical services (e.g., Omniture) besides Google, since advertising

and analytical services from Google are included in the Google traffic metric. From

Table 17, we see that different apps have different percentages of third-party traffic.

Most apps only get a small or negligible amount of traffic from third parties (e.g.,

YouTube, Amazon and Facebook). At the same time, nearly half of the total traffic

of ESPN and Dolphin comes from third parties.

The ratio of incoming traffic and outgoing traffic. This metric captures the

role of an app as a consumer or producer of data. In Table 17, we see that most of

the apps are more likely to receive data than to send data. As expected, we see that

the network traffic from Flixster, Pandora, and YouTube, which includes audio

and video content, is mostly incoming traffic as the large values of the ratios show.

In contrast, apps such as Picsay and Angry Birds tend to send out more data than

they receive.

1740002-45

January 3, 2017 3:40

I. Neamtiu et al.

Note that this metric could have important implications for performance op-

timization of wireless data network providers. An increase in the outgoing traffic

could challenge network provisioning, in the same way that the emergence of p2p

file sharing stretched cable network operators, who were not expecting large house-

hold upload needs. Another use of this metric is to detect suspicious variations in

the ratio, e.g., unusually large uploads, which could indicate a massive theft of data.

Note that the goal of this paper is to provide the framework and tools for such an

investigation, which we plan to conduct as our future work.

Number of distinct traffic sources. An additional way of quantifying the inter-

actions of an app is with the number of distinct traffic sources, i.e., distinct top-level

domains. This metric can be seen as a complementary way to quantify network in-

teractions, a sudden increase in this metric could indicate malicious behavior. In

Table 17 we present the results. First, we observe that all the examined apps inter-

act with at least two distinct traffic sources, except Advanced Task Killer. Second,

some of the apps interact with a surprisingly high number of distinct traffic sources,

e.g., Weather bug, Flixster, and Pandora. Note that we count all the distinct

traffic sources that appear in the traces of multiple executions.

The percentage of HTTP and HTTPS traffic. To get a sense of the percent-

age of secure Android app traffic, we compute the split between HTTP and HTTPS

traffic, e.g., non-encrypted and encrypted traffic. We present the results in the last

column of Table 17 (‘–’ represents no traffic). The absence of HTTPS traffic is stag-

gering in the apps we tested, and even Facebook has roughly 22 % of unencrypted

traffic, as we further elaborate in Section 6.3.

6.3. Interpreting the Results

6.3.1. Privacy and Security Issues

Lack of transparency. We identify discrepancies between the app specification and

app execution. For example, Instant Heart Rate and Dictionary use telephony

resources without declaring them up-front, via intents (by asking a proxy app).

Most network traffic is unencrypted. We find that most of the network traffic

is not encrypted. For example, most of the web-based traffic is over HTTP and not

HTTPS: only 8 out of the 27 apps use HTTPS and for Facebook, 22.74% of the

traffic is not encrypted.

6.3.2. Operational Issues

Free apps have a cost. Free versions of apps could end up costing more than their

paid versions especially on limited data plans, due to increased advertising/analytics

traffic. For example, the free version of Angry Birds has 13 times more traffic than

the paid version.

1740002-46

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Apps talk to “strangers”. Apps interact with many more traffic sources than one

would expect. For example, the free version of Shazam talks to 13 different traffic

sources in a 5-minute interval, while its paid counterpart talks with 4.

Google “touches” almost everything. Out of 27 apps, 22 apps exchange data

traffic with Google, including apps that one would not have expected, e.g., Google

accounts for 85.97% of the traffic for the free version of the health app Instant

Heart Rate, and 90% for the paid version.

6.3.3. Performance Issues

Security comes at a price. The Android OS uses virtual machine (VM)-based

isolation for security and reliability, but as a consequence, the VM overhead is high:

more than 63% of the system calls are introduced by the VM for context-switching

between threads, supporting IPC, and idling.94

6.3.4. Thumbnails

The intensity of activities at each layer is a fundamental metric that we want to

capture, as it can provide a thumbnail of the app behavior. The multi-layer intensity

is a tuple consisting of intensity metrics from each layer: static (number of function-

alities), user (touch event intensity), operating system (system call intensity), and

network (traffic intensity).

Presenting raw intensity numbers is easy, but it has limited intuitive value. For

example, reporting 100 system calls per second provides minimal information to a

user or an application developer. A more informative approach is to present the

relative intensity of this app compared to other apps.

We opt to represent the activity intensity of each layer using labels: H (high),

M (medium), and L (low). The three levels (H,M,L) are defined relative to the

intensities observed at each layer using the five-number summary from statistical

analysis:31 minimum (Min), lower quartile (Q1), median (Med), upper quartile

(Q3), and maximum (Max).

Table 18 shows the results of applying this H-M -L model to our test apps.

We now proceed to showing how users and developers can benefit from an H-M -L-

based app thumbnail for characterizing app behavior. Users can make more informed

decisions when choosing apps by matching the H-M -L thumbnail with individual

preference and constraints. For example, if a user has a small-allotment data plan on

the phone, perhaps he would like to only use apps that are rated L for the intensity

of network traffic; if the battery is low, perhaps she should refrain from running

apps rated H at the OS or network layers.

Developers can also benefit from the H-M -L model by being able to profile

their apps with ProfileDroid and optimize based on the H-M -L outcome. For

example, if ProfileDroid indicates an unusually high intensity of filesystem calls

1740002-47

January 3, 2017 3:40

I. Neamtiu et al.

Table 18. Thumbnails of multi-layer intensity in the H-M -L
model (H:high, M :medium, L:low).

Static User OS Network
(# of (events/ (syscall/ (bytes/

App func.) sec.) sec.) sec.)

Dictionary.com L M H M

Dictionary.com-$$ L M M M

Tiny Flashlight M L M L

Zedge L M M H

Weather Bug M M H M

Weather Bug-$$ M M M M

AdvTaskKiller L M L L

AdvTaskKiller-$$ L M L L

Flixster M M L H

Picsay L M L L

Picsay-$$ L M M M

ESPN L M H M

Gasbuddy M M H M

Pandora M L L H

Shazam H L M M

Shazam-$$ H L H M

YouTube L M M H

Amazon M M M H

Facebook H H H M

Dolphin M H M H

Dolphin-$$ M H M M

Angry Birds L H M M

Angry Birds-$$ L H H L

Craigslist L H H H

CNN M M M M

InstHeartRate M L H M

InstHeartRate-$$ M L H L

in the operating system layer, the developer can examine their code to ensure those

calls are legitimate. Similarly, if the developer is contemplating using an advertising

library in their app, she can construct two H-M -L app models, with and without

the ad library and understand the trade-offs.

In addition, an H-M -L thumbnail can help capture the nature of an app. In-

tuitively, we would expect interactive apps (social apps, news apps, games, Web

browsers) to have intensity H at the user layer; similarly, we would expect me-

dia player apps to have intensity H at the network layer, but L at the user layer.

Table 18 supports these expectations, and suggests that the the H-M -L thumbnail

could be an initial way to classify apps into coarse behavioral categories.

1740002-48

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Table 19. Android restart levels.

Level Cause

1: Pause activity Activity becomes (partially) covered; Turn off screen

2: Stop activity Switch to another app; Start a new activity in the same
app; Receive a phone call; Press ‘Home’ button

3: Destroy activity Press ‘Back’ button; Kill app

7. Security: Moving Target Defense

In this section we present a Moving-target defense approach that aims to increase

security by making the smartphone’s integrity and confidentiality harder to subvert.

Moving-target defense is an effective strategy for deflecting cyber attacks. The

widespread use of smartphones in the tactical field requires novel ways of securing

smartphones against an ever-increasing number of zero-day attacks. We have pro-

posed81 a new, proactive approach for securing smartphone apps against certain

classes of attacks. Specifically, we have leveraged the smartphone’s native support

for quick and lossless restarts to make application restart a cyber maneuver meant

to deflect and confuse attackers. We have proposed a time-series entropy metric to

quantify attack resilience. We have applied our approach to 12 popular Android

apps chosen from a variety of domains, including online banking and shopping. Pre-

liminary experiments with using proactive restarts on these apps show that restart

is a promising way of increasing attack resilience for a certain class of side-channel

attacks named Activity Inference attacks.

7.1. Background

We now present background information on proactive security, as well as the re-

sume/restart mechanism on Android.

7.1.1. Android Restart

The Android smartphone platform consists of apps, usually written in Java, running

on top of Dalvik, a Java virtual machine, which in turn runs on top of a smartphone-

specific Linux kernel. Android apps, due to the nature of the platform, are centered

around a GUI; an app’s GUI consists of separate “Activities”, where an activity

roughly corresponds to a screen in a desktop program’s GUI. As a result of user

interaction or outside events, an app transitions among activities; for example, in

the Newegg online shopping app, if the user is in the Main activity and clicks the

‘My Account’ menu item, the app transitions to the Login activity (see Fig. 14).

Smartphones (unlike desktop or server systems) have limited resources. When the

system is low on memory, or the user turns the screen off, or switches to a different

app, the current app is automatically paused or even killed; a small percentage of

1740002-49

January 3, 2017 3:40

I. Neamtiu et al.

Fig. 14. Source activity (left) and destination activity (right).

apps that provide background services remain running, albeit in a restricted mode.

When the user returns to the app, the app is resumed or restarted. Hence smartphone

apps and OSs are designed from the ground up to support pause/resume operations

smoothly and efficiently.

In Android, our target platform, there are three main levels of restart. We present

these levels in Table 19: the level is on the left, and the cause is on the right. A

restart cycle has little impact on the app and app state: the OS automatically saves

and restores GUI state. However, at the OS level, a restart cycle (especially at level

3 — destroy app) is very disruptive, as the process is killed. When the app restarts,

it restarts with different OS state, e.g., process identifier (PID), memory mapping,

process counters from /proc files, etc.

Since restart is such a common and efficient operation on smartphones, and is

gracefully tolerated by apps while being disruptive for the OS, our key insight is to

use proactive restarts to change the attack surface hence offering a cyber-maneuver

capability.

7.1.2. Activity Inference Attacks

Activity inference26 represents a class of side-channel attacks where a malicious

background application M can stealthily infer an activity transition occurring in

a foreground benign app B. Further, M can precisely pinpoint which activity B

is transitioning into, in real time. The attack is strong as it does not require any

special permission. In fact, there is no vulnerability really being exploited, since

all the information gathered by the malware M is publicly-available information

including /proc files, e.g., /proc/[pid]/statm.

The fundamental weakness, exploited by such attacks, is that the information

exposed through such channels happens to correlate well with B’s activity transition

1740002-50

January 3, 2017 3:40

Improving Smartphone Security and Reliability

behaviors. For instance, when an activity transition occurs in the foreground, the

application process allocates screen buffer for the new activity as shared memory

with a fixed size (proportional to the screen size) and then deallocates the buffer

of the previous activity. Such unique memory consumption patterns can be easily

captured through the /proc side channel. Furthermore, each destination activity

has a different initial behavior, e.g., some activity’s onCreate() callback may load

an advertisement and therefore causes a new network connection to be created.

Through other side channels, such initial behaviors are characterized to distinguish

the destination activity.

The Activity inference attack has many consequences, one of which is that once

the background malware M infers which foreground activity B is transitioning into,

it can inject a phishing activity into the foreground to preempt B. The user will

then be fooled into interacting with the malware M instead of the original app B.

Our scheme aims to address this fundamental weakness by using proactive restart

to produce changes in OS state that are harder to predict, hence undermining the

attacker’s assumption that the side channel is reliable.

7.2. Example

We now present an example that motivates, as well as illustrates, our approach.

Consider the Newegg Mobile app. An attacker might use an Activity Inference attack

to try to determine which activity Newegg Mobile is in, and which activity it is

transitioning to, so that the attacker can inject their own fake activity to try to

phish secrets.

Let us suppose that Newegg Mobile is in the Main activity (Fig. 14 left) and is

preparing to transition to the Login activity (Fig. 14 right). An Activity Inference

attack relies on observing side-channel information, i.e., shared memory values in

/proc/pid/statm, which will reveal a time series event. If the attacker detects this

event quickly, then the attacker can “pop up” a fake activity that looks very similar

to Login, and trick the user into inputting data into the fake activity — if this input

data is sensitive information, such as a username/password combination (as is the

case here), a credit card number, or a bank account number, the attack succeeds.

However, with our approach which injects restart events, the time series of shared

memory values is confusing for the attacker: due to the perturbation introduced by

restart, depending on where we choose to restart, there can be multiple time series

with multiple events which represent strategies S3 and S4 defined in Section 7.3. In

fact, our approach can deliberately insert restart events for the current activity just

to confuse the attacker into believing there is an activity transition going on, when

in fact there is no such transition.

Hence our proactive approach confuses the attacker into not knowing if, and

when, the app is transitioning between activities.

1740002-51

January 3, 2017 3:40

I. Neamtiu et al.

7.3. Implementation

We now describe our testbed and implementation.

Environment. The smartphone we used for experiments was an LG Nexus 5

running Android version 4.4.4, Linux kernel version 3.4.0, on a four-core ARMv7

CPU@2.2 GHz.

Restart implementation. In Fig. 15 we show our implementation. In Android,

applications use the services of the Android Framework (AF) and run on top of

the Dalvik virtual machine, which in turn runs on top of a Linux kernel. The AF

has a component named Activity Manager (AM) which is in charge of orchestrating

app execution, including transition between activities. For simplicity, we only depict

one running app, but in practice Android runs multiple apps concurrently. Let us

assume that the app contains two activities, A and B, and due to an input event,

e.g., the user pressing a button, the app wants to transition from A to B. In the

standard implementation of Android, the activity transition will follow the “old

pathway” (shown in gray color on top), that is, transition directly from A to B.

In our implementation, the transition follows new pathways (shown in blue color)

where there is an intervening restart, e.g., restart A prior to the transition, or restart

B after the transition. Moreover, our approach supports a third new pathway where

A is restarted even when no transition is necessary, to confuse the attacker.

We achieve this by using AM services: we use Android’s adb shell to send mes-

sages to the AM, so that activity transitions follow the new pathways. We have used

 Linux kernel

Dalvik VM

Android Framework

Application
Restart Engine

Activity

A

Activity

B

OLD pathway S1

NEW pathways

S2

S3

S4

/dev/input/eventX

R
es

ta
rt

E
ve

nt
s

Fig. 15. Overview of our implementation.

1740002-52

January 3, 2017 3:40

Improving Smartphone Security and Reliability

restart level 2 (Section 7.1.1), that is, stop and restart the activity. Extending the

approach to use restart levels 1 or 3 is straightforward.

Restart strategy. We experimented with four restart strategies, labeled S1–S4,

that govern how the system should proceed when transitioning from activity A to

activity B:

• S1: The “old” approach, without restart, where we just transition from activity

A to activity B.

• S2: A restart approach without transition (just restart A).

• S3: Our main proposed restart approach: restart A, then transition from A to B.

• S4: An alternative restart approach: transition from A to B then restart B.

7.4. Evaluation

We now present our evaluation; first, we provide an overview of the apps and app

selection process, then we discuss the experimental methodology and the results.

7.4.1. Examined apps

For evaluation we chose 24 activity transitions in 12 Android apps. We used several

criteria when selecting the apps to ensure a representative sample: apps had to

be popular, spanning free and paid categories; third-party and built-in categories;

and have a wide range of sizes. In Table 20 we present the apps: name, popularity

(number of installs per Google Play) and size. As we can see, 9 apps are free and

2 are paid (indicated by the $$ sign). Of the 9 free apps, 5 are third-party apps

available on Google Play and 4 are built-in apps that come preinstalled with the

phone. The built-in apps are particularly valuable and need to be protected for two

reasons: (1) since they come from a trusted source, the vendor, they have higher

privilege than third-party apps hence exploiting a vulnerability in such an app can

inflict significant damage; and (2) preinstalled apps cannot be easily removed by

regular users, since the phone needs to be “rooted” for the app to be removed.92

Apps have a range of sizes, from medium (367 KB) to large (10 MB). Four of the

third-party apps are very popular, having in excess of 1 million installs. Moreover,

two of them — Chase Mobile and Newegg Mobile — are security-critical since they

are used for online banking and online shopping; a security attack against them can

expose the user’s bank account information or credit card numbers.

7.4.2. Data collection

The data collection process is shown in Fig. 16. The test phone is connected to a

laptop via the Android Debugging Bridge (ADB). We triggered restarts using ADB

shell commands issued from the laptop. We wrote a monitor process — a native

Linux process, rather than VM-based app — to monitor app execution, taking a

sample every 8 milliseconds and collecting side-channel information. In particular,

1740002-53

January 3, 2017 3:40

I. Neamtiu et al.

Table 20. Test apps characteristics.

Popularity Size

App (# installs) (KB)

Chase Mobile 10,000,000+ 10,000

Newegg Mobile 1,000,000+ 9,900

Browser (builtin) 2,536

GBC Emulator ($$) 10,000+ 367

OI File Manager 5,000,000+ 973

Gallery3d (builtin) 5,122

VideoEditor (builtin) 5,243

Calendar (builtin) 1,751

DeskClock (builtin) 2,311

1MobileMarket 1,000,000+ 6,717

Convertor Pro ($$) 10,000+ 806

No-frills CPU Control 1,000,000+ 1,100

Applica'ons	

Linux	
 	

kernel	
 	
 /proc/pid1… /proc/pid2/…

Dalvik	
 VM	

Android	
 Framework	
 M

on
ito

r	

pr
oc
es
s	

Time	
 series	

ADB	

Fig. 16. Overview of our data collection process.

the monitor process samples the third entry in /proc/pid/statm of an application

under test, and outputs a sequence of samples that will constitute the time series.

We then analyze the time series using time series analysis, as will be explained

shortly.

7.5. Effectiveness

We now quantify the effectiveness of our approach: we use time series complexity as

a measure of effectiveness.

Time series complexity. Recall that attacks rely on predictability of app behavior

as reflected in the /proc/pid/statm time series values: if the time series has high

predictability (aka low complexity), the attack has a high chance of success. If the

1740002-54

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Table 21. Evaluation results: activity transitions, time series entropy and transition time for
each of the S1–S4 strategies.

Activity Permutation Entropy Transition Time (msec)

App Transitions S1 S2 S3 S4 S1 S2 S3 S4

Chase Home → PrivacyOpt 0.332 0.361 0.683 0.729 544 248 1,496 864

Mobile Home → ContactUs 0.454 0.524 0.683 0.349 688 360 1,432 1,312

Home → FindBranch 0.332 0.235 0.786 0.332 664 248 1,640 784

Newegg Main → ShoppingCart 0.256 0.406 0.696 0.129 1,088 904 1,752 1,088

Mobile Main → WishListItem 0.361 0.332 0.707 0.372 1,520 88 2,120 1,520

Main → Login 0.361 0.377 0.682 0.361 1,400 928 2,008 1,432

Main → OrderHistory 0.457 0.358 0.681 0.364 1,464 112 2,040 1,208

Main → 0.358 0.332 0.722 0.358 1,360 72 1,920 1,328

MyPrsnlHomeCust

Browser BrowserActivity → 0.332 0.332 0.595 0.657 136 24 648 672

BrowserPrefsPg

GBC Emu- MainActivity → 0.595 0.332 0.595 0.595 344 136 1,040 352

lator ($$) EmulatorSettings

OI File FileManager → 0.332 0.352 0.595 0.405 136 328 656 656

Manager Preference

FileManager → 0.372 0.332 0.635 0.657 40 248 656 672

BookmarkList

Gallery3d app.Gallery → 0.522 0.391 0.931 0.489 136 88 984 160

sts . GallerySts .

VideoEditor ProjectsActivity → 0.333 0.403 0.711 0.333 128 144 688 688

VideoEditorActivity

Calendar AllInOneActivity → 0.332 0.344 0.620 0.332 2,912 256 3,536 3,672

CalendarSttgs

AllInOneActivity → 0.355 0.344 0.724 0.332 584 192 2,080 848

EditEvent

AllInOneActivity → 0.332 0.347 0.637 0.687 568 120 776 872

EventInfo

DeskClock DeskClock → 0.361 0.332 0.661 0.689 1,312 320 1,960 648

SettingsActivity

DeskClock → 0.372 0.332 0.726 0.701 256 312 752 1,936

worldclock . Cities

1Mobile MainActivity → 0.129 0.333 0.651 0.801 1,280 1,296 1,792 2,064

Market MyAppsInstdAct

MainActivity → 0.333 0.333 0.633 0.333 1,312 192 560 2,048

SettingsActivity

Convertor ProConvertAct → 0.361 0.332 0.595 0.457 1,432 424 2,104 2,072

Pro ($$) Settings

No-frills CPU Main → Preferences 0.352 0.332 0.763 0.332 136 128 688 144

Control Main → About 0.332 0.332 0.332 0.355 128 8 664 128

Average 0.361 0.351 0.669 0.465 815 299 1,416 1,132

% vs. S1 -3% +85% +29% -63% +74% +39%

1740002-55

January 3, 2017 3:40

I. Neamtiu et al.

time series has low predictability (aka high complexity), the attacker will have a

hard time inferring app behavior.

To measure time series complexity, we use the well-known permutation entropy

(PE) metric18 normalized so that 0 ≤ PE ≤ 1. Here 0 represents no entropy, while

1 represents a random time series. Hence higher PE values are more desirable.

Time series results. Columns 3–7 in Table 21 show the results of the entropy

measures. The main comparison is between strategy S1, that is the default Android

implementation, and S3 (our main approach). Note how the PE is consistently

higher in S3 than in S1. In the last row of the table, we show the average values

across all activities. Note how PE increases from 0.361 on average (S1) to 0.669

(S3) – an 85% increase, which demonstrates that our proactive restart approach is

effective at introducing randomness in the time series and consequently is effective

at making the attacker’s job harder. Strategies S2 and S4 are less effective if they

are used in isolation (though S4 has a 29% higher PE compared to S1). Neverthe-

less, note that if we were to combine S2, S3, and S4 and randomly choose among

them upon transitions, the compound strategy would fare even better than each of

the individual strategies.

7.5.1. Efficiency

We now quantify the efficiency of our approach: are transitions taking longer with

restart, and if so, how much longer?

The last four columns in Table 21 show the transition time, from the time the

transition was initiated, to when it has completed (including restart time) for each

of the four strategies. Compared to S1, S3 increases transition time by 601 msec,

i.e., a 74% increase. This exposes the cost-benefit trade-off: we pay the price of

increasing transition time for the benefit of increasing attack resilience. Even though

our implementation is not optimized, we believe that the added 601 msec are an

acceptable overhead, especially when security is of high priority. Strategy S2 takes

less time than S1 since no transition is involved. Strategy S4 increases transition

time by 317 msec, a 39% increase compared to S1.

8. Related Work

8.1. Infrastructure and Reliability: Automated Exploration

The work of Rastogi et al.76 is most closely related to ours. Their system, named
Playground, runs apps in the Android emulator on top of a modified Android soft-
ware stack (TaintDroid); their end goal was dynamic taint tracking. They ran Play-
ground on an impressive 3,968 apps and achieved 33% code coverage on average.
The are several differences between their approach and A3E. First, they run the
apps on a modified software stack on top of the Android emulator, whereas we run
apps on actual phones using an unmodified software stack. Second, Playground, just

1740002-56

January 3, 2017 3:40

Improving Smartphone Security and Reliability

like our Depth-first Exploration, can miss activities — hence the need for Targeted
Exploration which uses static analysis to find all the possible activities and entry
points. Third, their GUI element exploration strategy is based on heuristics, ours is
depth-first.

Memon et al.’s line of work on GUI testing for desktop applications66,100,101 is
centered around event-based modeling of the application to automate GUI explo-
ration. Their approach models the GUI as an event interaction graph (EIG); the
EIG captures the sequences of user actions that can be executed on the GUI. While
the EIG approach is suitable for devising exploration strategies for GUI testing in
applications with traditional GUI design, i.e., desktop applications, several factors
pose complications when using it for touch-based smartphone apps, e.g., when using
sensors.

Yang et al.99 implemented a tool for automatic exploration called Orbit. Their
approach uses static analysis on the app’s Java source code to detect actions asso-
ciated with GUI states and then use a dynamic crawler (built on top of Robotium)
to fire the actions. We focus on a different problem domain: large real-world apps
for which the source code is not available.

Anand et al.7 developed an approach named ACTEve for concolic generation
of events for testing Android apps whose source code is available. Their focus is on
covering branches while avoiding the path explosion problem. ACTEve generated
test inputs for five small open source in 0.3–2.7 hours. Similarly, Jensen et al.55 have
used concolic execution to derive event sequences that can lead to a specific target
state in an Android app. We believe that using concolic execution would allow us
to increase coverage (especially method coverage), but it would require a symbolic
execution engine robust enough to work on APKs of real-world substantial apps.

Monkey10 is a testing utility provided by the Android SDK that can send a se-
quence of random and deterministic events to the app. Random events are effective
for stress testing and fuzz testing, but not for systematic exploration; deterministic
events have to be scripted, which involves effort, whereas in our case systematic
exploration is automated. MonkeyRunner9 is an API provided by the Android SDK
which allows programmers to write Python test scripts for exercising Android apps.
Similar to Monkey, scripts must be written to explore apps, rather than using au-
tomated exploration as we do.

Robotium39 is a testing framework for Android that supports both black-box
and white-box testing. Robotium facilitates interaction with GUI components such
as menus, toasts, text boxes, etc., as it can discover these elements, fire related
events, and generate test cases for exercising the elements. However, it does not
permit automated exploration as we do.

Troyd56 is a testing and capture-replay tool built on top of Robotium that can
be used to extract GUI widgets, record GUI events and fire events from a script. We
used parts of Troyd in our approach. However, Troyd cannot be used directly for
either Targeted or Depth-first Exploration, as it needs input scripts for exercising
GUI elements. Moreover, in its unmodified form, Troyd had a substantial perfor-
mance overhead which slowed down exploration considerably — we had to modify
it to reduce the performance overhead.

1740002-57

January 3, 2017 3:40

I. Neamtiu et al.

TEMA84 is a collection of model-based testing tools which have been applied
to Android. GUI elements form a state machine and basic GUI events are treated
as keywords like events. Within this framework, test scripts can be designed and
executed. In contrast, we extract a model either statically or dynamically and au-
tomatically construct test cases.

Android Ripper6 is a GUI-based static and dynamic testing tool for Android.
It uses a state-based approach to dynamically analyze GUI events and can be used
to automate testing by separate test cases. Android Ripper preserves the state of
the application where state is actually a tuple of a particular GUI widget and its
properties. An input event triggers the change in the state and users can write test
scripts based on the tasks that can modify the state. The approach works only on
the Android emulator and thus cannot mimic sensor events properly like a real world
application.

Several commercial tools provide functionality somewhat related to our ap-
proach, though their end-goals differ form ours. Testdroid21 can record and run the
tests on multiple devices. Ranorex 75 is a test automation framework. Eggplant86

facilitates writing automated scripts for testing Android apps. Framework for Au-
tomated Software Testing (FAST)91 can automate the testing process of Android
apps over multiple devices.

8.2. Infrastructure and Reliability: Record-and-Replay

On the smartphone platform, the most powerful, and most directly related effort is
our prior system Reran,58 which has been used to record and replay GUI gestures in
86 out of the Top-100 most popular Android apps on Google Play. Reran does not
require app instrumentation (hence it can handle gesture nondeterminism in apps
that perform GUI rendering in native code, such as Angry Birds) or AF changes.
Mosaic43 extends Reran with support for device-independent replay of GUI events
(note that our approach is device-independent as well). Mosaic has low overhead,
typically less than 0.2%, and has replayed GUI events in 45 popular apps from
Google Play. However, Reran and Mosaic have several limitations: they do not
support critical functionality (network, camera, microphone, or GPS), required by
many apps; they do not permit record-and-replay of API calls or event schedules;
their record-and-replay infrastructure is manual, which makes it hard to modify or
extend to other sensors.

Android test automation tools such as Android Guitar,6,15 Robotium,39 or
Troyd56 offer some support for automating GUI interaction, but require develop-
ers to extract a GUI model from the app and manually write test scripts to emulate
user gestures. In addition to the manual effort required to write scripts, these tools
do not support replay for sensors or schedules.

On non-smartphone platforms, record-and-replay tools have a wide range of
applications: intrusion analysis,33 bug reproducing,67 debugging,83 etc. Hardware-
based67,95 and virtual machine-based33,80 replay tools are often regarded as whole-
system replay. Recording at this low level, e.g., memory access order, thread
scheduling, allows them to eliminate all non-determinism. However, these approaches

1740002-58

January 3, 2017 3:40

Improving Smartphone Security and Reliability

require special hardware support or virtual machine instrumentation which might
be prohibitive on current commodity smartphones.

Library-based approaches30,53,77,96 record the non-determinism interaction be-
tween the program libraries and underlying operating system with a fixed interface.
R240 extends them by allowing developers to choose which kinds of interfaces they
want to replay by a simple annotation specification language. VALERA borrows this
idea from R2 (which targets the Windows kernel API) but applies it to sensor-rich
event-based Android.

8.3. Security: Is the Ecosystem Moving in the “Right” Direction?

Android permission characterization and effectiveness. Barrera et al.29 in-
troduced a self-organizing method to visualize permissions usage in different app
categories. A comprehensive usability study of Android permissions was conducted
through surveys in order to investigate Android permissions’ effectiveness at warn-
ing users, which showed that current Android permission warnings do not help most
users make correct security decisions.12 Chia et al.68 focused on the effectiveness of
user-consent permission systems in Facebook, Chrome, and Android apps; they have
shown that app ratings were not a reliable indicator of privacy risks.

Permission-related Android security. Enck et al.88 presented a framework that
read the declared permissions of an application at install time and compared it
against a set of security rules to detect potentially malicious applications. Ongtang
et al.64 described a fine-grained Android permission model for protecting applica-
tions by expressing permission statements in more detail. Felt et al.14 examined
the mapping between Android API’s and permissions and proposed Stowaway, a
static analysis tool to detect over-privilege in Android apps. Permission re-delegation
attacks were shown to perform privileged tasks with the help of an app with permis-
sions.13 Grace et al.63 used Woodpecker to examined how the Android permission-
based security model is enforced in pre-installed apps and stock smartphones.
Capability leaks were found that could be exploited by malicious activities.
DroidRanger was proposed to detect malicious apps in official and alternative mar-
kets.98 Zhou et al. characterized a large set of Android malwares, e.g., accumulating
fees on the devices by subscribing to premium services by abusing SMS related
Android permissions.97 An effective framework was developed to defend against
privilege-escalation attacks on devices.78

8.4. Security: URL Risk

Most security studies focus on malicious apps or OS-level exploits of good apps.
There are several studies that focus on identifying malicious apps,62,97,98 analyzing
the source code and the OS behavior and permissions.12,14,34,74,79 Then, there is
a group of studies that study network traffic patterns.42,72 Other efforts focus on
user information leakage and attempt to detect the specific information that is
being leaked.61,69,87 Systems that rely on instrumenting the whole software stack,
e.g., TaintDroid, can warn users when an Android app leaks sensitive data over
the network.90 web-oriented efforts, not necessarily focusing on smartphones, that

1740002-59

January 3, 2017 3:40

I. Neamtiu et al.

evaluate and label websites3,4 either focusing on malware, or considering a wider
range of goodness based on user-feedback; we leverage such efforts to classify the
websites here. However, our focus is different, in that we want to find out: (1) Which
entities is the personal data potentially sent to (e.g., content providers, advertisers)?
(2) Are these entities trusted? These questions are not answered in prior work.

8.5. Security: App Profiling

Falaki et al.42 analyzed network logs from 43 smartphones and found commonly
used app ports, properties of TCP transfer and the impact factors of smartphone
performance. Furthermore, they also analyzed the diversity of smartphone usage,
e.g., how the user uses the smartphone and apps.46 Maier et al.36 analyzed protocol
usage, the size of HTTP content and the types of hand-held traffic. These efforts
aid network operators, but they do not analyze the Android apps themselves. Re-
cent work by Xu et al.72 did a large scale network traffic measurement study on
usage behaviors of smartphone apps, e.g., locality, diurnal behaviors and mobility
patterns. Qian et al.35 developed a tool named ARO to locate the performance and
energy bottlenecks of smartphones by considering the cross-layer information rang-
ing from radio resource control to application layer. Huang et al.52 performed the
measurement study using smartphones on 3G networks, and presented the app and
device usage of smartphones. Falaki et al.45 developed a monitoring tool SystemSens
to capture the usage context, e.g., CPU and memory, of smartphone. Livelab24 is a
measurement tool implemented on iPhones to measure iPhone usage and different
aspects of wireless network performance. Powertutor59 focused on power modeling
and measured the energy usage of smartphone. All these efforts focus on studying
other layers, or device resource usage, which is different from our focus.

8.6. Security: Moving Target Defense

Application Restarts. Application restarts have been used in the past to remedy
transient faults. Perkins et al.71 used a reactive approach, named ClearView, that
monitors an application’s execution to learn application invariants, detect bugs or
attacks, and upon detection automatically construct and apply a patch to heal the
application. ClearView has been applied to Firefox. Ten exploits were presented to
ClearView; upon repeated presentation, ClearView learned to identify each exploit
and construct a patch against it. Our work is distantly related: our approach is proac-
tive and attack-agnostic, as we do not perform monitoring, detection or patching,
whereas ClearView uses sophisticated attack and bug-specific reactive techniques
for invariant detection and patch construction.

Candea et al.25 have proposed “microreboots” (rebooting small components in-
stead of entire applications) as a recovery technique for Internet services. Our own
prior work16 has used online patch construction and application restart to provide
self-healing capabilities — apps recovering from certain classes of transient and per-
manent faults — in Android apps. However, that approach was reactive, rather than
proactive, and its goal was fault recovery rather than changing the attack surface.
We are not aware of any work that uses restart as a cyber maneuver.

1740002-60

January 3, 2017 3:40

Improving Smartphone Security and Reliability

Android Side Channels Attacks and Defenses. Much work has been done on
studying side channels. Proc file systems have been used for side-channel attacks.
Zhang et al.102 found that the ESP/EIP value can be used to infer keystrokes.
Qian et al.73 have used “sequence-number-dependent” packet counter side channels
to infer TCP sequence number. In Memento,54 the memory footprints were found to
correlate with the web page the user is visiting. Zhou et al.105 found 3 Android/Linux
public resources to leak private information about location, disease, etc.. Chen et
al.26 proposed Activity inference attacks that can be applicable to all Android apps.

There are few effective defenses against the types of side-channel attacks. Lately,
Zhang et al. have proposed to pause all suspicious background processes to stop
them from gathering any data about the foreground app.103 Such defense could
be effective; however, it comes with a functionality cost — many background apps
will not be able to function as designed. Another defense against the GUI state-
manipulation attacks proposed by Bianchi et al. tries to provide explicit and secure
indicators to keep the user informed about which app runs in the foreground at all
times.20 Such defense is tailored to attacks similar to Activity inference. In contrast,
we believe application restart can be used as a general cyber maneuver against many
types of side-channel attacks.

9. Conclusions and Future Work

We have presented a suite of infrastructural tools and approaches for improving
Android’s security and reliability. Our tools use program analysis, bytecode rewrit-
ing, multi-level monitoring and profiling to paint a clearer picture of Android app
behavior; this can help Android developers and users better understand the security
implications of running apps. In the last part of our paper we have shown how a
simple restart-based approach can be used as an effective Moving Target Defense
tool that provides higher resistance to known and unknown attacks.

We plan to extend this work in several directions.
Section 2: we plan to make A3E, the automated explorer, more effective by in-

creasing the coverage it achieves, and also more efficient, to reduce the time it takes
to explore an app.

Section 3: while VALERA captures and replays event order, in the current version
VALERA does not capture thread nondeterminism or memory accesses. We plan to
add support for capturing and replaying these, to enable reproducing data races.
In addition, VALERA modifies the AF; enabling record-and-replay on stock Android
without requiring AF changes would make the approach more portable and easier
to use.

Section 4: one of the most serious issues we have found was over-privilege in
pre-installed apps. A “sanitizer” that took a pre-installed app and would rewrite
its bytecode to reduce privilege to the absolute minimum required (i.e., apply the
principle of least privilege) would be a huge security advance for manufacturers and
end-users alike.

Section 5: AURA discovers URLs either statically or dynamically. While static
discovery has been shown more effective that dynamic discovery for our app dataset,
its effectiveness might be a problem when apps use obfuscation, URL shortener

1740002-61

January 3, 2017 3:40

I. Neamtiu et al.

or redirects, or dynamic URL generation/loading schemes. Dynamic discovery has
scalability issues. Hence finding URLs effectively and efficiently remains a challenge
that we plan to address.

Section 6: our study was based on 27 apps. An immediate extension would be
to expand the range of apps, e.g., top-10 apps in each of the 30+ categories on
Google Play. Next, a comparison between categories would reveal which apps are
energy-intensive, privacy-sensitive, and so on.

Section 7: our MTD approach has been validated on a single attack (Activity
Inference). Further experiments on how our approach withstands other kinds of
attacks would increase confidence in our technique. Reducing transition time, while
a technical – rather than research – challenge would go a long way toward making
our approach more user-friendly.

Acknowledgments

This research was supported in part by NSF grant CNS-1630037. Research was
sponsored by the Army Research Laboratory and was accomplished under Coopera-
tive Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). The views
and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwith-
standing any copyright notation here on.

References

1. App could allow troops to call in airstrikes, October 2013, http://www.militarytimes.

com/article/20131016/NEWS04/310160005/App-could-allow-troops-call-airstrikes.

2. Google Play, https://play.google.com/store, September 2013.

3. VirusTotal, https://www.virustotal.com/en/#url, September 2013.

4. Web of Trust, http://www.mywot.com/, September 2013.

5. Army lists top 12 items in fiscal year 2016 budget request, April 2015,

http://www.army.mil/article/145946/

Army lists top 12 items in fiscal year 2016 budget request/.

6. D. Amalfitano, A. Fasolino, S. Carmine, A. Memon and P. Tramontana, Using GUI

ripping for automated testing of android applications, in ASE’12.

7. S. Anand, M. Naik, M. J. Harrold and H. Yang, Automated concolic testing of smart-

phone apps, in FSE ’12, pp. 1–11.

8. Android Developers, Android Emulator Limitations, http://developer.android.com/

tools/devices/emulator.html#limitations.

9. Android Developers, MonkeyRunner,

http://developer.android.com/guide/developing/tools/monkeyrunner concepts.html.

10. Android Developers, UI/Application Exerciser Monkey, http://developer.android.

com/tools/help/monkey.html.

11. Android Police, Massive Security Vulnerability in HTC Android Devices,

http://www.androidpolice.com/2011/10/01/

massive-security-vulnerability-in-htc-android-devices, October 2011.

1740002-62

http://www.militarytimes.com/article/20131016/NEWS04/310160005/App-could-allow-troops-call-airstrikes
http://www.militarytimes.com/article/20131016/NEWS04/310160005/App-could-allow-troops-call-airstrikes
https://play.google.com/store
https://www.virustotal.com/en/#url
http://www.mywot.com/
http://www.army.mil/article/145946/Army_lists_top_12_items_in_fiscal_year_2016_budget_request/
http://www.army.mil/article/145946/Army_lists_top_12_items_in_fiscal_year_2016_budget_request/
http://developer.android.com/tools/devices/emulator.html#limitations
http://developer.android.com/tools/devices/emulator.html#limitations
http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices

January 3, 2017 3:40

Improving Smartphone Security and Reliability

12. A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin and D. Wagner, Android Permissions:

User Attention, Comprehension, and Behavior, in SOUPS, 2012.

13. A. P. Felt, H. Wang, A. Moshchuk, S. Hanna and E. Chin, Permission Re-Delegation:

Attacks and Defenses, in USENIX Security Symposium, 2011.

14. A. P. Felt, E. Chin, S. Hanna, D. Song and D. Wagner, Android Permissions Demys-

tified, in ACM CCS, 2011.

15. Atif Memon, GUITAR, August 2012, guitar.sourceforge.net/.

16. Md. T. Azim, I. Neamtiu and L. M. Marvel, Towards self-healing smartphone soft-

ware via automated patching, in Proceedings of the 29th ACM/IEEE International

Conference on Automated Software Engineering, ACM, 2014, pp. 623–628.

17. B. Krishnamurthy and C. E. Willis, Privacy diffusion on the web: A longitudinal

perspective, in WWW, 2009.

18. C. Bandt and B. Pompe, Permutation entropy: a natural complexity measure for time

series, Physical Review Letters 88(17) (2002) 174102.

19. P. Bhattacharya, L. Ulanova, I. Neamtiu and S. C. Koduru, An empirical analysis of

the bug-fixing process in open source android apps, in CSMR’13.

20. A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel and G. Vigna, What

the App is That? Deception and Countermeasures in the Android User Interface, in

IEEE Symposium on Security and Privacy, 2015.

21. Bitbar, Automated Testing Tool for Android — Testdroid, January 2013, http:

//testdroid.com/.

22. M. Böhmer, B. Hecht, J. Schöning, A. Krüger and G. Bauer, Falling asleep with

angry birds, facebook and kindle: a large scale study on mobile application usage,

in MobileHCI ’11, pp. 47–56.

23. C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide and F. Jahanian, Internet

inter-domain traffic, in ACM SIGCOMM, 2010.

24. C. Shepard, A. Rahmati, C. Tossell, L. Zhong and P. Kortum, LiveLab: Measuring

Wireless Networks and Smartphone Users in the Field, in HotMetrics, 2010.

25. G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman and A. Fox, Microreboot: A technique

for cheap recovery, pp. 31–44.

26. Qi Alfred Chen, Zhiyun Qian, and Zhuoqing Morley Mao. Peeking into your app

without actually seeing it: UI state inference and novel android attacks, in Proceedings

of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20–22, 2014,

pp. 1037–1052.

27. CNET, Android reclaims 61 percent of all U.S. smartphone sales, May 2012,

http://news.cnet.com/8301-1023 3-57429192-93/

android-reclaims-61-percent-of-all-u.s-smartphone-sales/.

28. B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen and R. Koschke, A systematic

survey of program comprehension through dynamic analysis, IEEE Transactions on

Software Engineering, pp. 684–702, 2009.

29. D. Barrera, H. G. Kayacik, P. C. van Oorschot and A. Somayaji, A Methodology

for Empirical Analysis of Permission-based Security Models and its Application to

Android, in ACM CCS, 2010.

30. D. Geels, G. Altekar, S. Shenker and I. Stoica, Jockey: a user-space library for record-

replay debugging, in USENIX ATC’06.

1740002-63

guitar.sourceforge.net/
http://testdroid.com/
http://testdroid.com/
http://news.cnet.com/8301-1023_3-57429192-93/android-reclaims-61-percent-of-all-u.s-smartphone-sales/
http://news.cnet.com/8301-1023_3-57429192-93/android-reclaims-61-percent-of-all-u.s-smartphone-sales/

January 3, 2017 3:40

I. Neamtiu et al.

31. D. C. Hoaglin, F. Mosteller and J. W. Tukey, Understanding Robust and Exploratory

Data Analysis (Wiley, 1983).

32. B. Dolan, FDA approves Mobisante’s smartphone ultrasound, http://www.

mobihealthnews.com/10165/fda-approves-mobisantes-smartphone-ultrasound.

33. G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai and P. M. Chen, Revirt: enabling

intrusion analysis through virtual-machine logging and replay, in OSDI’02.

34. E. Chin, A. P. Felt, K. Greenwood and D. Wagner, Analyzing Inter-Application

Communication in Android, in ACM MobiSys, 2011.

35. F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen and O. Spatscheck, Profiling Resource

Usage for Mobile apps: a Cross-layer Approach, in ACM MobiSys, 2011.

36. G. Maier, F. Schneider and A. Feldmann, A First Look at Mobile Hand-held Device

Traffic, in PAM, 2010.

37. Gartner, Inc., Gartner Highlights Key Predictions for IT Organizations and Users in

2010 and Beyond, January 2010, http://www.gartner.com/it/page.jsp?id=1278413.

38. Gartner, Inc., Gartner Says Worldwide PC Shipment Growth Was Flat in Second

Quarter of 2012, July 2012, http://www.gartner.com/it/page.jsp?id=2079015.

39. Google Code, Robotium, August 2012, http://code.google.com/p/robotium/.

40. Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek and Z. Zhang, R2:

An application-level kernel for record and replay, in OSDI’08.

41. J. Guyn, Facebook users give iPhone app thumbs down, Los

Angeles Times, July 21 2011, http://latimesblogs.latimes.com/technology/2011/07/

facebook-users-give-iphone-app-thumbs-down.html.

42. H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin, A First Look

at Traffic on Smartphones, in ACM IMC, 2010.

43. M. Halpern, Y. Zhu and V. J. Reddi, Mosaic: Cross-platform user-interaction record

and replay for the fragmented android ecosystem, in ISPASS’15.

44. S. Hao, D. Li, W. G. J. Halfond and R. Govindan, Estimating android applications’

CPU energy usage via bytecode profiling, in 2012 First International Workshop on

Green and Sustainable Software (GREENS), pp. 1–7, 2012.

45. H. Falaki, R. Mahajan and D. Estrin, SystemSens: A Tool for Monitoring Usage in

Smartphone Research Deployments, in ACM MobiArch, 2011.

46. H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan and D. Estrin,

Diversity in Smartphone Usage, in ACM MobiSys, 2010.

47. C. Hu and I. Neamtiu, Automating GUI testing for android applications, in AST ’11,

pp. 77–83, 2011.

48. Y. Hu, T. Azim and I. Neamtiu, Versatile yet lightweight record-and-replay for android,

in OOPSLA’15.

49. Y. Hu and I. Neamtiu, Fuzzy and cross-app replay for smartphone apps, in AST’16.

50. Y. Hu, I. Neamtiu and A. Alavi, Automatically verifying and reproducing event-based

races in android apps, in Proceedings of the 25th International Symposium on Software

Testing and Analysis (ISSTA 2016), Saarbrücken, Germany, July 18–20, 2016, pp. 377–

388, 2016.

51. IDC, Android and iOS Surge to New Smartphone OS Record in Second Quar-

ter, According to IDC, August 2012, http://www.idc.com/getdoc.jsp?containerId=

prUS23638712.

1740002-64

http://www.mobihealthnews.com/10165/fda-approves-mobisantes-smartphone-ultrasound
http://www.mobihealthnews.com/10165/fda-approves-mobisantes-smartphone-ultrasound
http://www.gartner.com/it/page.jsp?id=1278413
http://www.gartner.com/it/page.jsp?id=2079015
http://code.google.com/p/robotium/
http://latimesblogs.latimes.com/technology/2011/07/facebook-users-give-iphone-app-thumbs-down.html
http://latimesblogs.latimes.com/technology/2011/07/facebook-users-give-iphone-app-thumbs-down.html
http://www.idc.com/getdoc.jsp?containerId=prUS23638712
http://www.idc.com/getdoc.jsp?containerId=prUS23638712

January 3, 2017 3:40

Improving Smartphone Security and Reliability

52. J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang and P. Bahl, Anatomizing app

Performance Differences on Smartphones, in ACM MobiSys, 2010.

53. J. Steven, P. Chandra, B. Fleck, and A. Podgurski, jRapture: A capture/replay tool

for observation-based testing, in ISSTA’00.

54. S. Jana and V. Shmatikov, Memento: Learning Secrets from Process Footprints, in

IEEE Symposium on Security and Privacy, pp. 143–157, 2012.

55. C. S. Jensen, M. R. Prasad and A. Møller, Automated testing with targeted event

sequence generation, in Proceedings of the 2013 International Symposium on Software

Testing and Analysis, pp. 67–77, 2013.

56. J. Jeon and J. S. Foster, Troyd, January 2013, https://github.com/plum-umd/troyd.

57. J. Jeon, K. Micinski and J. S. Foster, Redexer, http://www.cs.umd.edu/projects/PL/

redexer/index.html.

58. L. Gomez, I. Neamtiu, T. Azim and T. Millstein, Reran: Timing- and touch-sensitive

record and replay for android, in ICSE ’13.

59. L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. M. Mao and L. Yang,

Accurate Online Power Estimation and Automatic Battery Behavior Based Power

Model Generation for Smartphones, in CODES+ISSS, 2010.

60. M. Egele, C. Kruegel, E. Kirda and G. Vigna, Detecting Privacy Leaks in iOS apps,

in NDSS, 2011.

61. M. Egele, C. Kruegel, E. Kirda, and G. Vigna, PiOS: Detecting Privacy Leaks in iOS

Applications, in NDSS, 2011.

62. M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, RiskRanker: Scalable and Accurate

Zero-day Android Malware Detection, in ACM MobiSys, 2012.

63. M. Grace, Y. Zhou, Z. Wang, and X. Jiang, Systematic Detection of Capability Leaks

in Stock Android Smartphones, in NDSS, 2012.

64. M. Ongtang, S. McLaughlin, W. Enck and P. McDaniel, Semantically Rich

Application-Centric Security in Android, in ACSAC, 2009.

65. P. Maiya, A. Kanade and R. Majumdar, Race detection for android applications, in

PLDI’14.

66. A. M. Memon, An event-flow model of GUI-based applications for testing, Software

Testing, Verification and Reliability, pp. 137–157, 2007.

67. S. Narayanasamy, G. Pokam and B. Calder, Bugnet: Continuously recording program

execution for deterministic replay debugging, in ISCA ’05.

68. P. H. Chia, Y. Yamamoto and N. Asokan, Is this App Safe? A Large Scale Study on

Application Permissions and Risk Signals, in WWW, 2012.

69. P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, These aren’t the Droids

you’re looking for: Retrofitting Android to protect data from imperious applications,

in ACM CCS, 2011.

70. P. Pearce, A.P. Felt, G. Nunez and D. Wagner, AdDroid: Privilege Separation for

Applications and Advertisers in Android, in ACM AsiaCCS, 2012.

71. J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,

F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst and M.

Rinard, Automatically patching errors in deployed software, in Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP ’09), pp. 87–102,

New York, NY, USA, ACM 2009.

1740002-65

https://github.com/plum-umd/troyd
http://www.cs.umd.edu/projects/PL/redexer/index.html
http://www.cs.umd.edu/projects/PL/redexer/index.html

January 3, 2017 3:40

I. Neamtiu et al.

72. Q. Xu, J. Erman, A. Gerber, Z. M. Mao, J. Pang, and S. Venkataraman, Identify

Diverse Usage Behaviors of Smartphone Apps, in IMC, 2011.

73. Z. Qian, Z. M. Mao and Y. Xie, Collaborative tcp sequence number inference attack:

how to crack sequence number under a second, in CCS, pp. 593–604, 2012.

74. R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia and X. Wang, Soundcomber:

A Stealthy and Context-Aware Sound Trojan for Smartphones, in NDSS, 2011.

75. Ranonex, Android Test Automation - Automate your App Testing, January 2013,

http://www.ranorex.com/mobile-automation-testing/android-test-automation.html.

76. V. Rastogi, Y. Chen and W. Enck, Appsplayground: automatic security analysis of

smartphone applications, in CODASPY, pp. 209–220, 2013.

77. Michiel, Ronsse and Koen De Bosschere, RecPlay: A Fully Integrated Practical

Record/Replay System, ACM Trans. Comput. Syst. 17(2) (1999) 133–152.

78. S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi and B. Shastry, Towards

Taming Privilege-Escalation Attacks on Android, in NDSS, 2012.

79. S. Fahl, M. Harbach, T. Muders, L. Baumgartner, B. Freisleben and M. Smith, Why

eve and mallory love android: an analysis of android SSL (in)security, in ACM CCS,

2012.

80. S. T. King, G. W. Dunlap and P. M. Chen, Debugging operating systems with time-

traveling virtual machines, in USENIX ATC’05.

81. Z. Shan, I. Neamtiu, Z. Qian and D. Torrieri, Proactive restart as cyber maneuver

for android, in Military Communications Conference (MILCOM 2015), IEEE 2015,

pp. 19–24, 2015.

82. SourceForge, Android GUITAR, August 2012,

http://sourceforge.net/apps/mediawiki/guitar/index.php?title=Android GUITAR.

83. S. M. Srinivasan, S. Kandula, C. R. Andrews and Y. Zhou, Flashback: a lightweight

extension for rollback and deterministic replay for software debugging, in USENIX

ATC’04.

84. T. Takala, M. Katara, and J. Harty, Experiences of system-level model-based GUI

testing of an Android application, in ICST ’11, pp. 377–386.

85. T. Azim and I. Neamtiu, Targeted and depth-first exploration for systematic testing

of android apps, in OOPSLA’13.

86. TestPlant, eggPlant for mobile testing, January 2013, http://www.testplant.com/

products/eggplant/mobile/.

87. W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, A Study of Android Application

Security, in USENIX Security Symposium, 2011.

88. W. Enck, M. Ongtang and P. McDaniel, On Lightweight Mobile Phone Application

Certification, in ACM CCS, 2009.

89. W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel and A. N. Sheth,

Taintdroid: An information-flow tracking system for realtime privacy monitoring on

smartphones, in OSDI, pp. 393–407, 2010.

90. W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel and A. N. Sheth,

Taintdroid: An information-flow tracking system for realtime privacy monitoring on

smartphones, in OSDI, 2010.

91. W. River, Wind River Framework for Automated Software Testing, January 2013,

http://www.windriver.com/announces/fast/.

1740002-66

http://www.ranorex.com/mobile-automation-testing/android-test-automation.html
http://sourceforge.net/apps/mediawiki/guitar/index.php?title=Android_GUITAR
http://www.testplant.com/products/eggplant/mobile/
http://www.testplant.com/products/eggplant/mobile/
http://www.windriver.com/announces/fast/

January 3, 2017 3:40

Improving Smartphone Security and Reliability

92. X. Wei, L. Gomez, I. Neamtiu and M. Faloutsos, Permission evolution in the android

ecosystem, in Proceedings of the 28th Annual Computer Security Applications Confer-

ence (ACSAC ’12), pp. 31–40, New York, NY, USA, ACM 2012.

93. X. Wei, I. Neamtiu and M. Faloutsos, Whom does your android app talk to? in 2015

IEEE Global Communications Conference (GLOBECOM 2015), San Diego, CA, USA,

December 6–10, 2015, pp. 1–6.

94. X. Wei, L. Gomez, I. Neamtiu and M. Faloutsos, ProfileDroid: Multi-layer Profiling of

Android Applications, in ACM MobiCom, 2012.

95. M. Xu, R. Bodik and M. D. Hill, A “flight data recorder” for enabling full-system

multiprocessor deterministic replay, in ISCA ’03, pp. 122–135.

96. Y. Saito, Jockey: a user-space library for record-replay debugging, in AADEBUG’05.

97. Y. Zhou and X. Jiang, Dissecting Android Malware: Characterization and Evolution,

in IEEE S &P, 2012.

98. Y. Zhou, Z. Wang, W. Zhou and X. Jiang, Hey, You, Get off of My Market: Detecting

Malicious Apps in Official and Alternative Android Markets, in NDSS, 2012.

99. W. Yang, M. Prasad and T. Xie, A grey-box approach for automated GUI-model

generation of mobile applications, in FASE’13, pp. 250–265.

100. X. Yuan and A. M. Memon, Using GUI run-time state as feedback to generate test

cases, in ICSE ’07, pp. 396–405, 2007.

101. X. Yuan and A. M. Memon, Generating event sequence-based test cases using GUI

run-time state feedback, IEEE Transactions on Software Engineering, pp. 81–95, 2010.

102. K. Zhang and X. Wang, Peeping Tom in the Neighborhood: Keystroke Eavesdropping

on Multi-User Systems, in USENIX Security Symposium, pp. 17–32, 2009.

103. N. Zhang, K. Yuan, M. Naveed, X. Zhou and X. Wang, Leave Me Alone: App-level

Protection Against Runtime Information Gathering on Android, in IEEE Symposium

on Security and Privacy, 2015.

104. W. Zhou, Y. Zhou, X. Jiang and P. Ning, Detecting repackaged smartphone applica-

tions in third-party android marketplaces, in CODASPY, pp. 317–326, 2012.

105. X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A. Gunter and

K. Nahrstedt, Identity, Location, Disease and More: Inferring Your Secrets from An-

droid Public Resources, in CCS, pp. 1017–1028, 2013.

1740002-67

	Introduction
	Infrastructure and Reliability: Automated Exploration
	System Model
	Android App Structure
	Static Activity Transition Graph
	Dynamic Activity Transition Graph
	Coverage Metrics

	Implementation
	Evaluation

	Infrastructure and Reliability: Record-and-Replay
	Overview
	Replay Applications

	Security: Is the Ecosystem Moving in the ``Right'' Direction?
	Apps Want More Dangerous Permissions

	Security: URL Risk
	Evaluation Results
	Malicious URLs
	Trustworthiness and Child Safety
	Blacklisted Domains
	Potential uses and deployment:

	Security: App Profiling
	Overview of Approach
	Implementation and Challenges
	Experimental Setup

	Analyzing each layer
	Static Layer
	User Layer
	Operating System Layer
	Network Layer

	Interpreting the Results
	Privacy and Security Issues
	Operational Issues
	Performance Issues
	Thumbnails

	Security: Moving Target Defense
	Background
	Android Restart
	Activity Inference Attacks

	Example
	Implementation
	Evaluation
	Examined apps
	Data collection

	Effectiveness
	Efficiency

	Related Work
	Infrastructure and Reliability: Automated Exploration
	Infrastructure and Reliability: Record-and-Replay
	Security: Is the Ecosystem Moving in the ``Right'' Direction?
	Security: URL Risk
	Security: App Profiling
	Security: Moving Target Defense

	Conclusions and Future Work

