Device Administrator Use and Abuse in Android:
Detection and Characterization

Zhiyong Shan
Wichita State University
Wichita, Kansas, USA
zhiyong.shan@wichita.edu

ABSTRACT

Device Administrator (DA) capabilities for mobile devices,
e.g., remote locking/wiping, or enforcing password strength,
were originally introduced to help organizations manage
phone fleets or enable parental control. However, DA ca-
pabilities have been subverted and abused: malicious apps
have used DA to create ransomware or lock users out, while
benign apps have used DA to prevent or hinder uninstal-
lation; in certain cases the only remedy is to factory-reset
the phone. We call these apps “Deathless Device Administra-
tor” (DDA), i.e., apps that cannot be uninstalled. We provide
the first systematic study of Android DA capabilities, DDA
apps, DDA-attack resistance across Android versions, and
DDA-induced families in malicious apps. To enable scalable
studies of questionable DA behavior, we developed DAAX, a
static analyzer which exposes potential DA abuse effectively
and efficiently. In a corpus of 39,459 apps (20,467 malicious
and 18,992 benign) DAAX has found 4,135 DA apps and 691
potential DDA apps. The static analysis results on the 4,135
apps were cross-checked via dynamic analysis on at least 3
phones, confirming 578 true DDAs, including apps currently
on Google Play. The study has shown that DAAX is effective
(84.8% F-measure) and efficient (analysis typically takes 205
seconds per app).

CCS CONCEPTS

«Security and privacy — Mobile platform security; Soft-
ware security engineering; - Software and its engineer-
ing — Automated static analysis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

MobiCom 19, October 21-25, 2019, Los Cabos, Mexico

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6169-9/19/10...$15.00
https://doi.org/10.1145/3300061.3345452

Raina Samuel
New Jersey Institute of
Technology
Newark, New Jersey, USA
res9@njit.edu

[ulian Neamtiu
New Jersey Institute of
Technology
Newark, New Jersey, USA
ineamtiu@njit.edu

KEYWORDS

mobile applications; security; static analysis; mobile device
management

ACM Reference Format:

Zhiyong Shan, Raina Samuel, and Iulian Neamtiu. 2019. Device
Administrator Use and Abuse in Android: Detection and Charac-
terization. In The 25th Annual International Conference on Mobile
Computing and Networking (MobiCom ’19), October 21-25, 2019,
Los Cabos, Mexico. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3300061.3345452

1 INTRODUCTION

To facilitate managing mobile device fleets, mobile OSes have
introduced the concepts of Device Administration (“DA” on
Android [11]) or Mobile Device Management (“MDM” on
iOS [13]). DA/MDM give fleet device issuers control over
a wide range of security capabilities according to company
policy, e.g., enforce password strength/expiration, or lock-
/wipe devices remotely. Other examples include the ability
to restrict app behavior, e.g., an app used at a public kiosk;
or for parental control (Section 2 provides an overview of
DA while Section 3 characterizes DA use in benign apps).
These capabilities can be, and have been, abused. To the
best of our knowledge, there are no tools or studies for un-
derstanding the DA ecosystem: detecting DA use and abuse,
characterizing benign and malicious DA behavior, under-
standing consequences of malicious behavior and recovery
strategies, grouping malicious behavior into families, etc.
We fill this gap with (1) an automated, effective and efficient
approach to detect, and (2) a study to characterize, DA-based
abuse. While we target the Android platform, the potential
for abuse is present in other platforms that offer DA/MDM.
One such widely-abused capability is leveraging active DA
permissions to prevent app uninstallation. Specifically, apps
employ techniques to (1) conceal their DA status so the user
is unaware of these apps’ privileges, or (2) prevent the DA
status from being deactivated - a practice that compromises
device security and can render the device unusable until a
factory reset. We name such apps Deathless Device Adminis-
trator (DDA) apps. We have studied a wide range of malware
and benign apps that have DA permissions, and defined three

https://doi.org/10.1145/3300061.3345452
https://doi.org/10.1145/3300061.3345452
https://doi.org/10.1145/3300061.3345452

DDA categories: DDA-RESET, DDA-HIDE, and DDA-EXPERT
(Section 4). We have discovered all three classes of DDA
behavior in numerous apps that are still on Google Play.

Responsible Disclosure. We reported this attack vector to
Google on 02/11/19. On 02/12/19, Google’s Android Secu-
rity team opened an Android External Security Report, and
requested the standard 90-day disclosure window before
making the findings public. On 02/22/19, Google rated the
issue as “moderate severity. Moderate severity issues are often
fixed at the next appropriate opportunity.” due to the mul-
tiple security implications, e.g., “Local permanent denial of
service (device requires a factory reset)”, or “Local bypass of
user interaction requirements’, etc.! We have been in contact
with Google’s Android Security Team and supplied the apps,
environment information, etc. for reproducing the issues.

To permit automated, scalable DDA detection, we have
developed DAAX (DA Abuse eXposer), a static analyzer that
exposes potential DA abusive behavior (Section 5). We pro-
vide an evaluation of DAAX in Section 6. We started with a
corpus of 39,459 sample apps (20,467 malicious and 18,992
benign). The 4,135 apps in the corpus that used DA were then
analyzed dynamically (on the phone) and statically via DAAX.
DAAX has detected 244 DDA-RESET apps, 7 DDA-HIDE apps
and 327 DDA-EXPERT apps. We manually verified DDAs on
at least 3 phones running 3 different Android versions. We
confirmed DDA behavior in 578 apps, including apps cur-
rently on Google Play. DAAX’s precision was 83.7%; its recall
was 86% (hence a 84.8% F-measure). The median per-app
analysis time was 205 seconds.

Section 7 contains a longitudinal study on the effectiveness
of DDA attack vectors across five Android OS versions: 5.1,
6.0.1,7.1, 8.0, and 9.0. We found that more recent OS versions
have added techniques that give users more control over apps,
thus empowering users to combat DDA more effectively.

For malicious apps, we combined DAAX results with char-
acteristics such as DDA icon, DDA name and DDA behavior
to define 15 DDA families, described in Section 8. In Section 9
we outline solutions for eliminating or reducing the risk of
DDA, and expose pre-installed hidden DA apps.

To summarize, we make the following contributions:

(1) An exposé of DA use/abuse, including 110 confirmed
abuses in benign apps and 468 in malicious apps.

(2) DAAX, an automated approach and tool to detect (po-
tentially abusive) DA behavior.

(3) A study that used DAAX on 20,467 malicious apps and
18,992 benign apps.

(4) A longitudinal study that compares the effectiveness
of DDA attack vectors across five Android versions.

(5) A characterization of malware DA behavior (families).

Ihttps://source.android.com/security/overview/updates-
resources#severity

We envision DAAX being useful in a variety of settings.
App markets can use DAAX to determine whether an app
might contain DDA-RESET, DDA-HIDE, or DDA-EXPERT code.
Developers can use DAAX to find inadvertent violations of
DA protocol. End users can find potentially harmful DA
behavior before installing an app.

2 DEVICE ADMINISTRATOR OVERVIEW

DA - a set of “extra” app privileges allowing tighter con-
trol, or even remote control, over Android devices — was
originally introduced in Android 2.2 to facilitate enterprise
applications and management of device fleets. Starting with
Android 5, an alternative, superior set of features, “Android
for Work”, was introduced, but apps have continued to use,
and unfortunately, abuse, DA. We first discuss the DA time-
line and then the lifecycle of a DA app on a device.

2.1 DA Timeline

Android 2.2 (May 2010): DA policies introduced. DA
support was introduced, supporting the following policies:

(1) Enforcing password strength, reuse and expiration re-
quirements, and forcing a password change.

(2) Enforcing inactivity locks.

(3) Forcing a certain storage area to be encrypted.

(4) Disabling the camera.

(5) Remote device locking.

(6) Remote device wiping.

Android 5.0 (Nov. 2014) — Android 8.0 (Aug. 2017):
Android for Work introduced, expanded. Android for
Work (later, Android Enterprise, “AE” [8]) introduced the
concepts of managed devices, employed-owned devices, or
work profiles — a set of features/policies somewhat similar
to DA but broader, more secure, and with clearer roles.

Dec. 2017: Planned DA deprecation is announced.
Google recommends that apps transition away from DA to
AE and announces that DA will gradually be deprecated [35].

Android 9 (Aug. 2018): enterprise&soft deprecation.
Starting with Android 9, DA was deprecated for enterprise
use. For non-enterprise use, several policies (password expi-
ration, disabling camera) were soft-deprecated, i.e., marked
as deprecated but apps continue to function [10].

Android 10: hard deprecation. The aforementioned poli-
cies that were soft-deprecated will be hard-deprecated start-
ing with Android 10, i.e., apps targeting 2019+ API levels
that attempt to use the policy will trigger a SecurityException.
Nevertheless, at least three policies - forcing a device lock,
wipe, password reset — will continue to be supported [10].

DA features can benefit organizations, IT admins, or par-
ents. Unfortunately, when abused, DA can be turned against
users. To uninstall a DA app, the user must first deactivate
the app’s DA capabilities, and then attempt to uninstall the

https://source.android.com/security/overview/updates-resources#severity
https://source.android.com/security/overview/updates-resources#severity

Android Settings
App Activity

Android Framework & Services DA
DevicePolicy App

ManagerService ManagerService

stopAppSwitch

getRemoveWarning

Return warning message

Broadcast
DISABLE_REQUESTED

. onDisableRequested()
Return warning message

Show

warning removeActiveAdmin

dialog

Broadcast

DEVICE_ADMIN_DISABLED
onDisabled()

Figure 1: Message Sequence Chart for DA deactivation.

app. Therefore, if the app can prevent deactivation, it can
prevent uninstallation. For benign apps, the consequences
can be a nuisance (unless the app is buggy, which can render
the device unusable). For malicious apps, preventing unin-
stallation can mean unlimited/unfettered access and opens
the door to abuse, e.g., ransomware. The “hard” DA depre-
cation in Android 9 (enterprise) and Android 10 (apps with
2019 target API) mitigates this issue. However in the remain-
ing cases (non-enterprise apps, apps with API target <2019)
the DDA potential persists: the underlying cause is the as-
sumption that apps will cooperate when asked to give up
DA privileges. We discuss OS evolution’s impact in Section 7
and some potential solutions in Section 9.

DA vs. Root. DA privileges do not require root access.
“Rooting” a device (to gain root privileges) usually voids the
device’s warranty, whereas for an app to become DA the
user simply needs to install the app and activate DA.

2.2 DA Status Lifecycle

We now explain the lifecycle of DA privileges in DA apps.
Prior to deployment, developers have to claim DA capabilities
(in the manifest) and then implement them. Implementation
involves writing a DeviceAdminReceiver, Which allows the app to
receive intents sent by the system. The DeviceAdminReceiver class
consists of a series of callbacks, triggered when particular
DA-relevant events occur, €.g., onDisableRequested(), onDisabled(),
onEnabled(). The lifecycle of DA contains three steps:

1. Activation/Pre-activation: Normally, DA is activated when
the user performs an action that triggers the ACTION_ADD_DEVICE
_ADMIN intent. However, some pre-installed apps such as Find
My Device come with DA pre-activated.

2. Operation: Performing DA privileged operations, e.g.,
setting the device’s password, locking or wiping the device.

3. Deactivation: Deactivating DA when the user sends
ACTION_DEVICE_ADMIN_DISABLE_REQUESTED to the app. This gives
the app a chance to supply a message to the user about

the impact of disabling DA, by setting the extra field exTrA_
DISABLE_WARNING in the result Intent. If the field is not set, no
warning will be displayed. If set, the message will be shown
to the user before they disable DA. To uninstall an existing
DA app, users need to first deactivate the app as a DA.

2.3 Deactivation Procedure

Per Android’s official documentation “To uninstall an exist-
ing device admin app, users need to first unregister the app
as an administrator” [11]. In other words, the DA status can
be deactivated by using Android’s Settings and then the app
can be uninstalled. Figure 1 shows the Android protocol for
deactivating DA. When the user proceeds to cancel DA privi-
leges for a DA app, the Settings app will invoke stopAppSwitch() to
restrict activity switches for a period of time (e.g., 5 seconds)
and then requests the DA removal warning message from
the app. The callback method onDisableRequested() is invoked and
returns the warning text. The Settings app pops up a dialog
showing the warning. Once the user presses the ‘OK’ button,
DA privileges are deactivated by calling removeActiveAdmin().

An app can interfere with this procedure to prevent users
from deactivating the app’s DA privileges.

3 BENIGN DA CHARACTERIZATION

When installing a DA app, in theory the user should make an
informed choice, and be familiar with DA app behavior or the
policies the DA app enforces; in practice though, the user has
close to zero knowledge of the consequences. Moreover, DA
apps can come preinstalled (e.g., by the device issuer, device
vendor, or mobile carrier — see Section 9). Therefore users
may not understand entirely what these behaviors entail or
when it is appropriate to grant an app such privileges.

Table 1: Most common DA behaviors.

‘ Behavior # Apps
Lock screen 68
Set password rules 34
Change the screen-unlock password 33
Monitor screen unlock attempts 32
Erase all data 31
Set lock screen password expiry 20
Disable cameras 19
Set storage encryption 16
Disable features in keyguard/screenlock 10

In this section we discuss the most prevalent “benign” DA
behaviors we found via a separate analysis, focused on be-
nign DA usage, on a sample set of 151 benign DA apps from
Google Play. First we characterize the behaviors, then study
which Google Play categories contain the highest concentra-
tions of DA apps.

3.1 DA Behaviors (Privileges)

The most common behaviors (by number of apps having that
behavior) are provided in Table 1, and described next.

Lock Screen. This capability allows the DA app to con-
trol how and when the screen locks; it was most commonly
found in screen lock apps, and also in parental control apps,
antivirus apps, and enterprise management apps.

Set Password Rules. This controls the length and charac-
ters allowed in screen unlock passwords. There were 34 ap-
pearances of this behavior, in enterprise management apps,
antivirus apps and remote phone security apps (which are
used when a phone is lost or stolen).

Change Screen Lock. This behavior changes the screen lock
password. There were 33 instances, primarily in enterprise
and parental control apps. Unfortunately this capability can
be detrimental if the implementation is buggy - the DA app
can lock the device with a password or PIN unknown to the
user, rendering the device useless until it is factory-reset.

Monitor Screen Unlock Attempts. This DA functionality
monitors the number of incorrect passwords typed when
unlocking the screen and will lock the phone or erase all the
phone’s data if too many incorrect passwords are typed. The
functionality was used in 32 apps, mainly phone security
apps (which is typical and the function of such apps), and
enterprise management apps.

Erase Data. Phone data is erased without warning, by
performing a factory data reset; there were 31 cases, mostly
in security, antivirus, and enterprise management apps.

2To ensure a representative sample of popular apps, we chose apps from
across all 34 categories on Google Play; median number of installs across
the sample set: 1,000,000+.

Table 2: Popular apps with high # of DA behaviors.

‘ App ‘ Installs ‘ Behaviors
BlackBerry UEM Client 5,000,000+ 9
Malwarebytes Security 10,000,000+ 8
Lookout Security&AV 100,000,000+ 7
Kaspersky Mobile AV 50,000,000+ 7
Bitdefender Mobile S.&AV 5,000,000+ 6
Where’s My Droid 10,000,000+ 6
Avast AV 100,000,000+ 5
McAfee Mobile Security 10,000,000+ 5
AirDroid 10,000,000+ 5
Microsoft Authenticator 10,000,000+ 2

Disable Cameras. We found 19 instances, in enterprise
management and security apps. As this is not a standard
feature, disabling cameras might be puzzling or unsettling;
based on the general nature of these apps, the user would
expect the camera to work.

Storage Encryption. This encrypts the device’s storage — a
quasi-mandatory feature for enterprise management apps
as well as phone security apps; we found 16 instances.

Disable features in keyguard/screenlock. This allows an
application to disable the screen lock or any code that is
involved with unlocking the device. Should it be misused,
this is a potential major security breach for the device.

In Table 2 we show the apps with the 10 highest number
of DA behaviors. Six apps are antiviruses (Security or AV);
higher privileges are expected for such apps due to their
nature. However, we were surprised to see so many privileges
granted to the remaining 4 apps: BlackBerry UEM Client (9
DAsS), Microsoft Authenticator (enterprise), Where’s My Droid
(device locator), and AirDroid (remote access/file transfer).

Other

Lo Tools

21%

Lifestyle
3%

Application

5%
Library And Demo

5%

Parenting

Personalization 18%

10%

Business
14%

Figure 2: DA split across categories.

3.2 DA Across App Categories

As of March 2019, Google Play lists 34 app categories (a
35th, Games, category has its own subcategories). To find out
which categories host the most DA apps, we performed a DA
analysis on Top-600 apps in each category. Figure 2 shows
the percentage of apps which fall into a certain category.
While Tools and Business are expected to be close to the top,
surprisingly, Parenting had the second highest prevalence of
DA apps. As to the reasons for requesting DA privileges, we
note that 21% of the DA apps were in the Tools category with
Lock Screen as the most prevalent DA behavior. Productivity
and Personalization each make up 10% of the DA apps and
they both have Lock Screen as their top DA behavior; in
fact, for Personalization apps, Lock Screen is their only DA
behavior. This is expected, as many Personalization apps are
often various types of themed lock screen launchers.

4 DEATHLESS DEVICE ADMINISTRATOR

Deathless Device Administrator (DDA) apps represent DA
apps that prevent the user from uninstalling the app. To do
so, DDAs exploit vulnerabilities or weaknesses in the pro-
cedures Android uses for handling DAs. Accordingly, we
introduce three types of DDA and exemplify that behavior
on actual apps. We derived these three types of behavior via
a semi-automated process (installing, checking DA status,
attempting to deactivate DA) on 4,135 apps that had DA per-
missions, as described in Section 6.2. Based on the observed
behavior, we constructed DAAX (described in Section 5), a
static analyzer designed to expose potential DDA behavior.

4.1 DDA-Reset

Definition. DDA-RESET apps prevent the user from disabling
an app’s DA capabilities; DDA-RESET is irrecoverable — the
only way to remove an app that uses DDA-RESET is to restore
the phone to factory settings.

Example 1. Sberbank_Online. The app disguises itself as an
online banking app (for Russian bank Sberbank), to steal user
credentials. The malware asks for administrator privileges
upon installation, which, if permitted, can inflict serious
harm to the victim’s device. The app can also intercept SMS
messages and incoming calls which could be a step to side-
step the bank’s OTP (One Time Password) requirements.

The app becomes “deathless” by preventing users from
deactivating the app’s DA privileges. To prevent the pop-up
(warning dialog), DDA apps add carefully designed code into
method onDisableRequested(), as explained next.

Figure 3 shows Smali (Android bytecode) disassembled
from the real malware; for clarity irrelevant code is removed.
After the system notifies the app that its DA will be deac-
tivated, the app’s onDisableRequested() callback is invoked. This
callback’s body is shown on lines 1-19. The callback first

prepares a new activity com.android. settings (lines 4-8), which
will be used to dismiss the warning dialog. Note that this
new activity is not in foreground yet, as stopAppSwitch() is still in
effect (Figure 1, top left) for five seconds. Then, the callback
locks the screen (lockNow() on line 13) and starts a new thread
(start on line 18, thread body on lines 21-36) to lock (line 29)
and sleep (lines 32) repeatedly, lasting more than five sec-
onds. Thus, the system’s warning window won’t show, as the
screen is locked. Five seconds later, the new activity switches
to the foreground, thus dismissing the warning window.

As a result, the user had no chance to see and heed the
warning dialog and to permit DA deactivation.

Example 2. Check Point Capsule Connect, a VPN app [20],
was found by DAAX as DDA-RESET in December 2018, re-
ported to Google in February 2019, and removed from Google
Play around March 2019. As shown in Figure 4, when deac-
tivating DA, the app pops a warning dialog and locks the
phone with an unknown password. Unfortunately, to recover
access to the device, the user must perform a factory reset.

Example 3. Mobile Tracker is a popular app (1,000,000+ in-
stalls) [32] that DAAX detected as DDA-RESET. We reported
it to Google in February 2019; its DA capabilities have been
removed while this paper was being prepared. The app can
track device activity, delete files when the device is lost/s-
tolen, etc. When disabling DA, clicking the deactivation but-
ton renders the Settings app unresponsive for extensive pe-
riods; eventually the app pops up a window finally asking
the user to confirm the DA deactivation. Even if the user
selects OK, the DA checkbox is still checked, and the Settings
app crashes, which is shown in Figure 5. After restarting the
phone, Mobile Tracker’s DA checkbox remains checked. We
found that (1) the app keeps verifying the “checked” status of
the DA checkbox; if unchecked, a separate thread will turn it
back on; and (2) the Settings crash is caused by Mobile Tracker
continuously sending it the intent DEVICE_ADMIN_DISABLED.

4.2 DDA-Hide

Definition. Apps in the DDA-HIDE category hide themselves
from the DA list in Settings app, i.e., the user cannot even see
that the app is operating as a DA.

Example. Bandwidth Meter monitors network connections
and displays Internet speed. When the user attempts to unin-
stall the app, Android shows a message that the app cannot
be uninstalled, as the app is DA. However, the app does not
appear in Settings” DA app list. The Hidden Device Admin
Scanner app by Trend Micro failed to find this app. While
Trend Micro’s Mobile Security & Antivirus flags Bandwidth Me-
ter as a potential unwanted app, it does not remove the app
(it can only find it).

This hiding behavior is caused by a security vulnerability
in the Settings app, which omits to show a DA app in the list.

System requests DA deactivation

1 .method public onDisableRequested(Landroid/content/Context;Landroid/content/Intent;)Ljava/lang/CharSequence;

2 .param p1, "context" # Landroid/content/Context; .param p2, "intent" # Landroid/content/Intent;

3 invoke-virtual {p1}, Landroid/content/Context;->getPackageManager()Landroid/content/pm/...

4 const-string v3, "com.android.settings" <«

5 invoke-virtual {v2, v3}, Landroid/content/pm/PackageManager;->getLaunchintentFor; €— Prepare background
6 move-result-object v1 ; .local v1, "outOfDialog":Landroid/content/Intent; const/high ~€— activity to dismiss the
7 invoke-virtual {v1, v2}, Landroid/content/Intent;->setFlags(l)Landroid/content/Intent; ~ €— . .

8 invoke-virtual {p1, v1}, Landroid/content/Context;->startActivity(Landroid/content/Intent;) €= warning dialog

9 const-string v2, "device_policy"
10 invoke-virtual {p1, v2}, Landroid/content/Context;->getSystemService(Ljava/lang/String;)Ljava/lang/Object;
1" move-result-object vO
12 .local v0, "dpm":Landroid/app/admin/DevicePolicyManager;
13 invoke-virtual {v0}, Landroid/app/admin/DevicePolicyManager;->lockNow()V
14 new-instance v2, Ljava/lang/Thread;
15 new-instance v3, Lkrep/itmtd/ywtjexf/UampleUverlayUhowUctivity$MyAdmin$1;
16 invoke-direct {v3, p0, v0}, Lkrep/itmtd/ywtjexf/UampleUverlayUhowUctivity$MyAdmin$1;-
17 invoke-direct {v2, v3}, Ljava/lang/Thread;-><init>(Ljava/lang/Runnable;)V

18 invoke-virtual {v2}, Ljava/lang/Thread;->start()V ... <€ [Start new thread }
19 .end method

20 L

21 .method public run()V [

22 const/4 v1, 0x0 ; .local v1, .. New thread J‘

23 :goto_0

24 const/16 v2, 0x46
25 if-It v1, v2, :cond_0
26 return-void

27 :cond_0

28 iget-object v2, p0, Lkrep/itmtd/ywtjexf/UampleUverlayUhowUctivity$MyAdmin$1;->val$dpm:... a
29 invoke-virtual {v2}, Landroid/app/admin/DevicePolicyManager;->lockNow()V Lock screen o
30 const-wide/16 v2, 0x64 8
31 ‘try_start_0 —
32 invoke-static {v2, v3}, Ljava/lang/Thread;->sleep(J)V € Sleep 100ms
33 ‘try_end_0
34 .catch Ljava/lang/InterruptedException; {:try_start_0 .. :try_end_0} :catch_0
35 goto :goto_0
36 .end method W
{ Bring warning dialog-dismissing activity into the foreground <
Figure 3: Smali code extracted from malware Sberbank_Online.
< m 11:37 PM | Fri, March 15 &
= D @
Mobile Secure -
€' \obile Secure Administrator requires user interaction
5 BLmO

privileges on the device.

FRI, JANUARY 23

Activating this admin app will allow Mobile
Secure to perform the following actions:

X i X X * Erase all data

Disabling admin mode will lock Erase phone's data without warning, by
your device. Only an administrator Unfortunately, Settings has performing factory data reset.

will be able to unlock it. Are you stopped. Change screen unlock password
sure? Change screen unlock password

Charged

Set password rules
Cancel Control the screen unlock password length
and character restrictions

Monitor screen unlock attempts
Monitor the number of incorrect passwords
typed. when unlocking the screen, and lock the
phone or erase all the phone's data if too many
incorrect passwords are typed.

Lock the screen
Control how and when the screen locks

NO SIM CARD — EMERGENCY CALLS * Set screen unlock password
EMERGENCY CALL expiration
Control how frequently the screen unlock
CANCEL ACTIVATE
Figure 4: Capsule Warning (left); locked screen (right). Figure 5: Mobile Tracker crashes Android Settings (left);

SAP Mobile Secure app keeps popping up notifications

and DA activation window with sounds (right).
Specifically, when updating the DA app list, the Settings app

will first get the list of all activated DA apps and the list of all
enabled DA. Only when an app is in both the Activated and apps can be activated without being enabled, and use this
Enabled lists, the Settings app will show it. However, some artifact to hide from the Settings’ DA app list.

4.3 DDA-Expert

Definition. DDA-EXPERT apps could in principle be deac-
tivated but doing so is difficult for the average user. For
example, malware Dowgin modifies the appearance of the
check box in the DA list to disguise the fact that the app is
still DA-active after deactivating the DA. The user can click
the check box again to deactivate the DA. In actuality, this
activates DA again. However, the user does not realize this
trick and assumes that the DA cannot be deactivated.

Example 1. AppLock, one of the most downloaded screen
lock apps on Google Play (100,000,000+ installs) [24], was
detected as DDA-ExXPERT by DAAX in December 2018 and
reported to Google in February 2019. The issues have since
been fixed. When the user attempted to deactivate DA, a
password window popped up, demanding a password un-
known to the user, caused by calling Android API’S lockNow().
However, if the user had used the app to set up a password,
the user can enter it and bypass the window, thus being able
to deactivate the DA. According to our investigation, this is
implemented by calling Android API method lockNow() Within
the callback function onDisableRequested().

Example 2. MaaS360 Mobile Device Management is a cloud-

based mobile device management app (1,000,000+ installs) [31];

DAAX found DDA-EXPERT behavior which we reported to
Google; the behavior has been corrected. Essentially when
a user attempted to deactivate DA after multiple presses,
Settings crashed, deactivating eventually. While it may not
seem serious at a glance, many users have reported and ve-
hemently complained of the inability to uninstall the app.’
We found that Settings’ crash is caused by MaaS360 sending
intent DEVICE_ADMIN_DISABLED to Settings on a continuous basis.

Example 3. SAP Mobile Secure for Android is a device man-
agement client. As of March 17, 2019 the app is still available
on Google Play [27], with DDA behavior still present. The
app becomes “resistant” once the user attempts to deactivate
DA. Specifically, as shown in Figure 5 (right), upon deactivat-
ing DA, the app keeps popping up a notification with sound
and shows the DA activation dialog, which forces the user
to re-activate DA. Even after restarting the phone, the notifi-
cation and sound resume. Only when DA is re-activated, the
notification and sound would stop.

Example 4. Habyts Agent [26] combines screen time man-
agement, parental controls, and a motivation/rewards system.
After pressing the DA deactivation button, the app shows
a warning window. Upon returning to the DA list, the DA
status is still on. We found that the app creates a new thread

3Excerpts from two recent reviews on Google Play: (1) “This freaking app
locked my phone completely cant even use my own home screen or my other
apps is in emergency mode wont let me do a thing how in the hell do I remove
it???” (2) “not letting me uninstall a single thing in my phone. I cant even
deactivate this app to uninstall it Imao. Its dictating what i can and cant have
on my phone... dont download it” [31].

>

to turn on DA in the background. As of March 17, 2019, the
app is still on Google Play and exhibiting these issues.

5 DETECTING DDA

This section presents our implementation, DAAX, which uses
static analysis to recognize DDA apps effectively and ef-
ficiently. Figure 6 (left) shows DAAX’s architecture. DAAX
takes as input an APK (the format Android apps are dis-
tributed in) and outputs a list of potential DDA behaviors. We
use Soot [16] to convert the app’s Dalvik bytecode into the
Jimple Intermediate Representation [16] and FlowDroid/Ic-
cTA [17] [29] to perform alias and call graph analyses. The
module DA Receiver Analysis analyzes the app’s XML mani-
fest and then the bytecode to see whether a DA broadcast
receiver administrator is claimed and implemented. The mod-
ule DA Activation Analysis checks whether the app requests
DA privileges. The module Pre-Deactivation Analysis checks
whether the app prevents DA deactivation. The module Post-
Deactivation Analysis checks whether the app forces the user
into reactivating DA privileges.

5.1 DA Receiver Analysis

Detecting whether an app uses DA involves two checks: an
XML analysis for the manifest and then a bytecode anal-
ysis. We first check the manifest for the BIND_DEVICE_ADMIN
permission (this permission ensures that only the system can
interact with the receiver, not other apps, to avoid this DA
app from becoming a confused deputy); and the pDevicE_ ADMIN_
ENABLED intent filter (which allows the app to become a Broad-
cast Receiver).

However, checking the manifest only is not always suffi-
cient for two reasons: (1) apps can declare the permission
and filter, yet not use DA capabilities; (2) DDA-HIDE apps
can claim the permission but not declare the intent filter, as
explained shortly. Therefore, our second step is a bytecode
analysis: an app using DA has to implement a DA broad-
cast receiver (subclassing DeviceAdminReceiver and implement-
ing a series of callbacks that are triggered when particular
events occur). We analyze the bytecode to find the subclass
of DeviceAdminReceiver and the callback methods. The most essen-
tial callback method that should be implemented is onEnabled(),
which is called after the system has enabled DA for the app.

We define an app as DA only when it claims and imple-
ments the DA broadcast receiver, as well as activates DA
capabilities. We have found apps that fail to take these ac-
tions — DAAX does not consider such apps as DA.

5.2 DA Activation Analysis

The user must explicitly activate DA capabilities for an app
in order for DA privileges to be conferred. If the user chooses
not to activate DA, the app will still be present on the device,

APK

Pre-Deactivation

Alias & call
graph analyses

Soot/ Analysis

DDA-RESET

Normal DA
P

Flowdroid/
lccTA Dismissing .
| Dialog Analysis)

DA Receiver
Analysis

’
I Blocking Dialog !

DA Activation

X

Post-Deactivation
Analysis

1: Forward control-flow analysis

Root of call graph

|

2: Backward dataflow

(def-use chain) analysis
Scope 4:

application
Q—‘— Scope 3:

= \ activity

S g—r—rScope 2:

0\ | callback method

/ def'n \g=rr—Scope 1:

Vi | | caller method

CFG & CG
Def-use chains

Jimple IR et Analysis '\ _ _Azah/sls_ K
Control Flow | |1 Bytecode ip 1
CallGraph) \—===~- I(Return Value :
T

—

| ‘ DDA-EXPERT

Relevant
DA callbacks

Relevant API calls (param) / Variables

Figure 6: DAAX architecture (left); analysis strategy (right).

but policies that require DA will not be enforceable due
to a lack of DA capabilities. The process of enabling DA
begins when the user performs an action that triggers the
ACTION_ADD_DEVICE_ADMIN intent.

1 // Launch the activity to prompt the user for DA activation

2 Intent intent = new Intent(DevicePolicyManager.
ACTION_ADD_DEVICE_ADMIN);

3 intent.putExtra(DevicePolicyManager.EXTRA_DEVICE_ADMIN,
mDeviceAdminSample);

4 intent.putExtra(DevicePolicyManager.EXTRA_ADD_EXPLANATION,

5 mActivity. getString (R. string .add_admin_extra_app_text));

6 startActivityForResult (intent, REQUEST CODE_ENABLE_ADMIN)

The code above shows a typical DA activation procedure
(for legibility, we only show the relevant parts). Our DA Acti-
vation Analysis finds such behavior; the algorithm (Figure 6
(right)), combines forward control-flow analysis with back-
ward def-use chain analysis. Note that the static analyses
used in subsequent modules follow a similar strategy.

The forward control-flow analysis searches the call graphs
and control-flow graphs of each app activity to find all call
sites of DA-relevant API methods. For the DA Activation
Analysis, the relevant API methods are startActivity (and start
ActivityForResult (). The backward def-use chain analysis deter-
mines the methods’ parameter values; in the case of DA
Activation Analysis, the parameters are intent action and
request code. We determine that the app is activating DA
only if the intent is ACTION_ADD_DEVICE_ADMIN and at the same
time the request code is REQUEST_CODE_ENABLE_ADMIN.

To improve performance, our algorithm is incremental,
unwinding the backward analysis’ scope to larger scopes
(rather than analyze the whole app as a forward analysis
would do). As shown in Figure 6 (right), the algorithm tra-
verses def-use chains along control-flow paths within the
current method, then in the top-level callback method, then
in the activity, and finally in the whole app — until the chain
ends. In practice most of the backward def-use analysis will
end in the current method or the top-level callback method.

5.3 Pre-Deactivation Analysis

As discussed in Section 2, DDA apps implement callback
method onDisableRequested() to prevent the user from deactivat-
ing DA. Our Pre-Deactivation Analysis detects this automat-
ically by looking for the app’s attempt to block and dismiss
dialogs, as follows.

5.3.1 Return Value Analysis. According to the DA protocol,
if onDisableRequested() returns an empty string, the Settings app
will directly deactivate DA without showing a warning dialog
(and hence without allowing the user to decide whether to
proceed). Therefore we first find all exits of onDisableRequested()
and its descendants, then perform backward def-use chain
analysis to determine whether the method returns an empty
string. The analysis returns (Ret in Section 5.5) TRUE for
non-empty strings and FALSE for empty strings.

5.3.2 Dismissing Dialog Analysis. DDA apps need to cre-
ate a new activity to dismiss the deactivation warning di-
alog (when switching to a new activity, the dialog of the
old activity will be destroyed). Therefore, we check whether
API methods startActivity () OY startActivityForResult () are called
within onDisableRequested() With argument FLAG_ACTIVITY_NEW_TASK
(which will create a new activity).

5.3.3 Blocking Dialog Analysis. During the period when an
activity switch is prohibited by the system, DDA apps need
to block the warning dialog. This can be accomplished in
several ways:

Lock screen + sleep. The DDA app calls lockNow() to lock the
phone immediately and then sleep. Once the user unlocks the
phone, the app locks it again and again. Thus, the warning
dialog will not pop up. Our analysis checks whether lockNow()
and sleep () are called, either in the method onDisableRequested()
itself, or its descendants, or on paths to exits.

Transparent alert window + sleep. The DDA app creates
a transparent system alert window to always stay in the
foreground and cover the warning dialog. At the same time,
an app thread sleeps for a period of time then removes the

)
[Find the sleep(s) or postDelayed(s)
function call

No
} + Not
DDA-RESET
Yes
No
[Use constant propagation to determine s 1
Tt

| v Potential
FURSNS JV N es DDA-RESET
¢ _Loop unroll ; a No]
Yes
v
DDA-RESET

Figure 7: Timing analysis.

alert window. Our analysis detects when a new window is
created within onDisableRequested() With certain characteristics:
the type is “system alert”, has no color (i.e., is transparent),
and is not focusable. Via XML analysis of resource files, we
also analyze the resource properties of the window to check
its parameters (as they can be set via the resource files instead
of in the bytecode).

Reset password + lock screen. The DDA app calls method
resetPassword () immediately after the call to lockNow() Within the
callback onDisableRequested(). The resetPassword () changes the pass-
word for unlocking the device. When the user tries to unlock
the device, the Settings app pops up an alert dialog to ask the
user for a password that, of course, is unknown to the user.
As a consequence, the callback method never returns and
thus the warning dialog cannot appear. Our analysis searches
for resetPassword() and lockNow() in the callback, its descendants,
and on paths to exits. For example, malware log-amd-Jisut
employs this mechanism.

Delay the return. To delay the return of onDisableRequested(),
the DDA app calls sleep) OF postDelayed() method. If the delay
time is long enough, the warning dialog will not show. Hence
our analysis checks for calls to sleep () Or postDelayed().

If the app is using the above approaches (except the third
one) we further perform an analysis to compute the sleep
time s in the callback method onDisableRequested). When the
user is on the disable DA screen, Android calls stopAppSwitch()
to prevent interaction/interference from other apps. But the
blocking time is limited to the predefined time length Arp_
swITCH_DELAY_TIME (ASDT). Meanwhile, the Settings app pops
up the warning dialog for the user to disable DA. After the
time limit, other apps can then move to the foreground. The
DDA app thus has to block the warning dialog for a longer
time than the time limit App_swiTcH_DELAY_TIME (in other words,
s > ASDT). Figure 7 shows the algorithm.

If sleep () OF postDelayed() cannot be found we do not further
pursue the app as DDA-RESET; while an app could theoret-
ically time the sleeping via other means, those approaches
are not portable. We use constant propagation (and loop

unrolling if sleep () Or postDelayed() are in a loop) to determine
the value of s. If this value can be computed statically and
s > ASDT, the app is DDA-RESET. In any other case, e.g., the
value of s cannot be computed statically, we declare the app
as potential DDA-RESET. Note that this approach could lead
to a false positive due to over-approximation.

5.4 Post-Deactivation Analysis

According to Figure 1, the callback method onbDisabled() will be
invoked after the DA is deactivated. However, a DDA can
lure the user into activating DA again by calling startActivity ()
Or startActivityForResult (), as discussed in Section 5.2. A DDA
can also call startActivityForResult () repeatedly to force the user
to activate DA if the user has clicked ‘Cancel’ on the DA acti-
vation dialog, or has clicked ‘Back’. Our analysis of onDisabled()
determines whether the app requests to activate DA. Method
startActivityForResult () returns a result code that is either RESULT_OK

if the operation was successful or ResuLT canceLep if the
user backed out, or the operation failed for some reason.
The app is effectively forcing the user to activate DA if
startActivityForResult () is called repeatedly when startActivityForResult
() returns RESULT_CANCELED.

5.5 Determining DDA

DDA-Reset and DDA-Expert. For each of the six static
analyses in Figure 6 (left) we use the abbreviations Rec (DA
Receiver Analysis), Act (DA Activation Analysis), Ret (Re-
turn Value Analysis), Dis (Dismissing Dialog Analysis), Blo
(Blocking Dialog Analysis), Pos (Post-Deactivation Analysis)
to indicate that the outcome of that analysis is TRUE. We
can now define the DDA-RESET and DDA-EXPERT detection
rules based on analyses’ outcome:

DA = Rec&Act

DDA-RESET = DA&((Ret&Dis&Blo)|Pos)

DDA-EXPERT = DA&Ret&(Dis|Blo)&!Pos

DDA-Hide. As discussed previously, if an app has per-
mission BIND_DEVICE_ADMIN but without DEVICE_ADMIN_ENABLED
in the manifest, we flag it as DDA-HIDE, i.e., Hiding DA.
We also flag it as DDA-HIDE if its attribute DeviceAdmin_visible
is false. Such apps can hide in the DA list and thus the user
cannot deactivate the DA. We show the code from malware
com.android.system.admin for such a scenario:

1 <receiver android:label="System" android:name=".0CIICoO"

2 android:permission="android.perm.BIND_DEVICE_ADMIN">

3 android:name="android.app.device_admin"

4 android:resource="@xml/ccclocc"/> <intent— filter > <action

5 android:name="com.strain.admin.DEVICE_ADMIN_ENABLED"/>
6 </intent— filter > </ receiver >

Please note the action name com.strain.admin.DEVICE_ADMIN_
ENABLED is fake. A real action name should be android.app.action .
DEVICE_ADMIN_ENABLED. Therefore, this app can hide from the
DA list in the Settings app.

6 EVALUATION

We present the experimental setup and evaluate our ap-
proach along two dimensions. First, effectiveness: is the ap-
proach effective at identifying DDAs? What are the main
causes of false positives/false negatives? Second, efficiency:
does the analysis complete in a reasonable amount of time?

6.1 Dataset

We have analyzed 39,459 apps: 20,467 malicious and 18,992
benign. The benign apps are from Google Play, AndroZoo [7],
and AppsApk [14]. The malware apps are from Drebin [15],

DroidCat [2], Kharon [3], AndroMalShare [1], Malware Genome

Project [40], Android Malware Dataset [36] and Offensive
Computing [4]. We chose these apps using several criteria
which we believe are necessary for making meaningful ob-
servations. The 20,467 malicious apps came from dozens of
different families. The 18,992 benign apps: (a) cover differ-
ent categories, e.g., Utilities, Email & SMS, Games, Health
& Fitness, Wallpapers, Photography, Weather, News, Edu-
cation, Browser, Map, Call & Contacts; and (b) have variety
in terms of popularity, e.g., many apps have over 1 million
installs while Facebook has over 1 billion installs. The entire
dataset of 39,459 apps has variety in terms of size, from 2.5
KB (com.kharamly.tests) to 416 MB (com.netease.dhxy.mi).

6.2 Workflow and Ground Truth

We now describe our workflow, testbed, and Ground Truth
procedure used for discovering and confirming DDA.

Step 1 (automatic). All 39,459 apps’ manifests were checked

for the BIND_DEVICE_ADMIN permission using two separate pro-
cedures: (1) using DAAX and (2) using grep on the Manifest
extracted via Apkanalyzer*. We confirmed that we could
check for the permission using at least one of these methods;
this yielded 4,135 apps.

Step 2 (automatic). We used scripts to install the 4,135
apps that had DA permission and then to check, via the UI
Automator® whether the app appears in the Settings DA list.

Step 3 (manual). We then manually:

o Attempted to deactivate DA, restart Settings and check
whether DA is still deactivated. This reveals DDA-
RESET and DDA-EXPERT apps.

o Checked those cases where an app had the DA permis-
sion but was not appearing in the Settings’ list. This
reveals DDA-HIDE apps.

This split the 4,135 apps into 3,350 that were not DDA
and 785 that were actual observed DDA, or reported DDA
by DAAX.

4https://developer.android.com/studio/command-line/apkanalyzer
Shttps://developer.android.com/training/testing/ui-automator

Replication testbed. All behaviors, either revealed by DAAX
or manually (in the 785 apps), were verified by the authors
on at least three phones from a five-phone pool: two Google
Nexus 5s running Android 4.4.4 and 6.0.1, respectively; an LG
G4 running Android 5.1; a Google Pixel 3 running Android
9; and a Galaxy]J7 Crown running Android 8.

Ground Truth. Ground Truth is essential for finding False
Positives or False Negatives, hence determining effectiveness.
We determined Ground Truth via the automated and manual
process described above (steps 2 and 3): we manually checked
all 4,135 apps with DA permission, which was efficient due to
batch processing and the fact that 3,350 apps were not DDA.
The remaining 785 DDA or reported as DDA by DAAX were
subject to extensive analysis (step 3). The process yielded 578
true DDAs aka True Positives (with confirmed, replicated
DDA behavior on multiple devices).

6.3 Effectiveness

From the 39,459 apps, DAAX could analyze 38,229 (1,230
apps failed due to timeouts or Soot instability, as explained
shortly). Among these, DAAX reported 691 as DDA: 286 DDA-
ReseT, 7 DDA-HIDE and 398 DDA-EXPERT.

Using the Section 6.2 process, we confirmed 244 DDA-
RESET, 7 DDA-HIDE and 327 DDA-EXPERT apps (i.e., 578
total). When DAAX reported 691 DDAs, it over-reported 113
apps (false positives) and under-reported 94. Table 3 shows
the true positives, false positives (reported by DAAX but be-
havior not confirmed), false negatives (app with confirmed
behavior but missed by DAAX), precision, and recall. Per Ta-
ble 3 the precision is 83.7%, while the recall is 86%; hence
the F-measure is 84.8%.

These results allow us to conclude that DAAX is effective.

Figure 8 breaks down the true number of DDAs: among
the 578 true DDAs, 468 were in malware and 110 in benign
apps. We found that DDA-RESET and DDA-EXPERT were the
most prevalent DDAs for malware (241 and 220, respectively),
while DDA-EXPERT was the most prevalent for benign apps
(107). Note that effectively DDA-RESET and DDA-HIDE apps
cannot be uninstalled, thus these techniques are very rarely
employed by benign apps.

False negatives. The major reasons for false negatives are:
(1) the AXMLPrinter used in DAAX can not properly analyze
the content of AndroidManifest.xml to determine whether
the APK contains the permission BIND_DEVICE_ADMIN (specifi-
cally, the AXMLPrinter failed with an ArraylndexOutOfBoundsException

— an example is krep.itmtd.ywtjexf-1.apk). (2) Some apps are
too big to finish analysis within a limited time (we set this
limit to 20,000 seconds, i.e., 5.5 hours). (3) DAAX failed to
analyze some apps because the apps are obfuscated, or the
front-end analyzer Soot failed for various reasons.

https://developer.android.com/studio/command-line/apkanalyzer
https://developer.android.com/training/testing/ui-automator

Table 3: Effectiveness results.

True|Over-reported

(FP)

Under-reported
(FN)

Precision Recall F-measure

42 |

35 |

244

44+42

244
244+35

85.3%87.5

= 85.3% 85.3+87.5

=87.5% |2 * =86.3%

| DDA-Hide 7| 0

1]

10087.5 - 93'3%

7 _ 7
70 = 100% ‘ 100+87.5

740 7+1 = 87-5% ‘ 2 x

| DDA-Reset | 244 |
|
|

‘DDA—Expert 327 ‘ 71 ‘

58 |

327 327
327+71 327+58

9 4 82:2:84.9 _ g3 5o

= 82.2% 82.2+84.9

= 84.9%

300

250 241

220

200 -+

W Malicious

107 M Benign

100

50
3 7 0

DDA-Reset DDA-Hide DDA-Expert

Figure 8: DDA prevalence by type.

False positives. The major reasons for the false positives
are: (1) Some sophisticated DDA-EXPERT apps are reported
as DDA-RESET. For example, in the Capsule app, upon de-
activating DA the app will lock the screen and require the
user to enter an unknown password. After rebooting the
phone, the app requires the user to enter a cloud registration
key. However, eventually it can be deactivated because of a
bug in the app. Another example is Security Center (Chinese
name): the app’s DA cannot be deactivated on the first try,
but it can be after restarting the phone. (2) Alias, data-flow,
and control-flow analyses are over-approximating, which is
inherent in static analysis.

In-store apps. Table 4 shows more Google Play DDA apps
detected by DAAX. Six of them were detected in December
2018 and reported to Google at the end of February 2019;
these were all fixed or removed from Google Play Store be-
fore 03/15/2019. For the 5 fixed apps, we compared them with
the versions in December 2018, and found that DA behavior
was fixed or removed. For the last four apps, detected in
March 2019 and currently still on Google Play, the report is
pending, so app status or its DA behavior might change in the
future. Detailed app descriptions can be found in Section 4.

6.4 Efficiency

We measured efficiency by noting the wall-clock time for
each app while we were running 7-10 DAAX instances in

parallel® on an 8-core, 16-threads Xeon E5-2687W v2. In total,
this took 30.1 CPU-core days (2,604,672 CPU-core seconds).
As the analysis times are significantly different, we divide
the apps into two data sets: DA and non-DA. As explained in
Section 5.1, DAAX considers as DA only those apps that both
claim and implement the DA broadcast receiver. DAAX has
separated the 39,459 apps into 4,135 DA apps and 35,324 non-
DA apps. We show the detailed efficiency results in Table 5.
The “Bytecode size” grouped columns show that the datasets
had substantial variety in terms of app size, and some apps’
bytecode size was as large as 416 MB. The “Time” grouped
columns show running time statistics for each dataset. For
DA apps, the median analysis time was 205 seconds while
the mean was 348 seconds. Table 6 shows the stage-by-stage
breakdown of the 348 seconds into percentages of total anal-
ysis time. For non-DA apps, the mean analysis time was
33 seconds while the median was 27 seconds; these lower
times for non-DA times are expected, because DAAX stops
the static analysis if a DA broadcast receiver is not found.
This allows us to conclude that DAAX is efficient.

7 DDA BEHAVIOR EVOLUTION ACROSS
ANDROID VERSIONS

We performed a longitudinal study to measure the effective-
ness of each DDA attack vector, and see how the Android
version influences (permits or prohibits) DDA. While in Sec-
tion 6.2 an app was deemed DDA if it could be confirmed on
at least three devices/versions, here we only focus on apps
that could be installed and run on five Android versions (5.1,
6.0.1, 7.1, 8.0, and 9.0), i.e., March 2015-August 2018, as this
allows us to make more conclusive longitudinal observations.
This stronger selection criterion reduced the number of apps
to 301 malicious and 42 benign apps (compared to 468 mal-
ware and 110 benign apps for the three-version setup) for
two main reasons. First, many apps were designed for late
versions of Android hence failed to install on early versions;
e.g., if the manifest specifies android: minSdkVersion-23, which cor-
responds to Android 6.0, the app will not install on Android
5.1. Second, old versions of apps that still run on Android
5.1 would immediately force an upgrade when started on

®Naturally, when running a single instance of DAAX at a time, per-app
analysis time would be lower than what we report here.

Table 4: Google Play DDA apps.

App DDA type ‘ Detected ‘ Reported ‘ Status
Check Point Capsule Connect DDA-RESET | Dec. 2018 Feb. 2019 App Removed
Mobile Tracker DDA-RESET | Dec. 2018 Feb. 2019 DDA issues fixed
App Lock DDA-ExPERT | Dec. 2018 Feb. 2019 DDA issues fixed
MaaS360 Mobile Device Management | DDA-ExPERT | Dec. 2018 Feb. 2019 DDA issues fixed
Safe & Found DDA-ExPERT | Dec. 2018 Feb. 2019 DDA issues fixed
VMware WorkSpace ONE DDA-ExPERT | Dec. 2018 Feb. 2019 DDA issues fixed
SAP Mobile Secure for Android DDA-EXPERT | Mar. 2019 | Report pending | Currently on Google Play
Habyts Agent DDA-EXPERT | Mar. 2019 | Report pending | Currently on Google Play
Digi Family Safety DDA-EXPERT | Mar. 2019 | Report pending | Currently on Google Play
Codeproof LG Mobile Security DDA-EXPERT | Mar. 2019 | Report pending | Currently on Google Play

Table 5: Efficiency results.

Dataset ‘ Bytecode size (KB) H Time (seconds)
| min [max | average | median || min | max | average | median |
DA (4,135 apps) 11 49,747 2,860 1,311 71 | 19,693 348 205
non-DA (35,324 apps) 2.5 | 425,984 5,604 3,504 2 1,026 33 27
Malicious i
100% 100% Benign 98%
90% 90%
80% 80% .
71% 70% 74%
70% 70% 67% 67%
60% 60% 57%
51% 50%
50% 50%
43% 42%

40% 0, 40%

33% 36%
30% 30%
20% 20%

11% 10%
10% l 10%
1% 1% 1% 1% 1% 2% 2% 2% 2% 2% 0% 0% 0% 0% 0%
0% —— —_— 0% — —
DDA-RESET DDA-HIDE DDA-EXPERT DDA-RESET DDA-HIDE DDA-EXPERT
H51 ®601 m71 m8 m9 H51 601 m71 m8 m9

Figure 9: DDA prevalence across five Android versions in malicious apps (left) and benign apps (right).

Table 6: Breakdown of analysis time by stage.

begin with several general observations. First, DDA-EXPERT
was the most prevalent behavior for both malicious and be-

‘ Stage ‘ Fraction of time ‘ nign apps, respectively. Second, only three malicious apps
APK Unpacking 0.86% employed DDA-HIDE; no benign apps employed it. Third,
DA Receiver Analysis 0.25% as DDA-RESET apps cannot be uninstalled, these techniques
DA Activation Analysis 8.39% are very rarely employed by benign apps (one app, Check
Pre-Deactivation Analysis 82.38% Point C.apsule Connec't). We now make several longitudinal
Post-Deactivation Analysis 8.16% (evolution) observations.

8.0 or 9.0; however, allowing the upgrade would violate our

requirement to run the same APK on all five OS versions.
Figure 9 shows DDA prevalence: percentage of apps ex-

hibiting that behavior in a particular Android version. We

Benign apps. Among benign apps with DDA-RESET, the
behavior is the same regardless of the Android version. How-
ever, DDA-EXPERT applications have decreased with more
recent Android versions. This is due to app behavior being
ameliorated by the OS version, as explained shortly.

Malicious apps. DDA-RESET was prevalent in older ver-
sions of Android until Android 7.1 where the trend switched
to DDA-ExPERT. This is due to the following reasons that are
purely OS oriented. Apps with DDA-RESET in older versions
often had an overlay that would prevent the user from, pow-
ering down the phone, accessing Settings, or the device itself,
thus blocking the user from initiating any further activities
and forcing the user to perform a factory reset. However,
starting in Android 8.0, for some of these apps with an inva-
sive overlay, a notification in the Notification Drawer [9] warns
the user that the specified app has access to draw over other
apps. When opening the notification, the system sends the
user to the Settings option for the app hence allowing the
user to disable the app’s ability to draw over other apps and
ultimately bypassing the invasive app overlay. Once that
happens, the user is able to deactivate the DDA and unin-
stall the app. This is why in later versions of Android the
DDA-RESET behavior for some apps becomes DDA-EXPERT.

In addition, starting in Android 7.1 the user has the ability
to uninstall a DA app directly within Settings (not just disable
DA). In older versions, some apps with DDA-RESET would
incessantly keep popping up the Settings option to activate
DA once the user would deactivate the DA. With no other
way to remove the app and stop the harassment, the user
would end up having to factory-reset the phone. In Android
7.1 and later, however, once the behavior manifests, the user
can uninstall the app immediately once the Settings option
pops up. Despite these improvements in the Android OS,
DDA-RESET behavior still exists, albeit in smaller numbers.

8 MALWARE DDA FAMILIES

We discovered that DDA behavior in malware apps induces
DDA families: a family of DDA samples shares similar DA
icons or names in the DA list in the Settings app, or similar
package names in the manifest files. More importantly, they
share very similar behaviors when disabling DA in the Set-
tings app. Finally, we inspected their bytecode (they share
very similar DA handling code). Table 7 summarizes the 15
families we obtained. Entries (Y’ or ‘N’) in the “Deactivat-
able” column indicate whether a typical user would be able
to deactivate DA for that family. The families with ‘N’ em-
ploy a range of maneuvers to prevent deactivation. While we
were able to ultimately deactivate those apps, some measures
we had to take were quite convoluted, beyond resetting to
factory settings, e.g., removing the battery — well beyond
the purview and expectations of a typical user. The name of
each family is extracted from the name of the apps in Settings’
DA list. These names are usually different from app names,
and different apps can share the same name in the DA list.
Some family names are in non-Latin script (e.g., Russian,
Chinese), so we transliterated those. For brevity, we describe

Table 7: DDA Families.

DDA Family Deacti- | # Samples
vatable
Adobe Core Importing N 1
Android_6_Update N 1
Sberbank N 2
Phone locator Y 2
Administrator Identification N 4
Firm module Update N 9
Tele2 MMS-Centre N 9
Dynamic screen lock Y 11
Adobe Flash Player core N 11
System update N 15
Adobe Flash Player_P*rnDroid N 21
P*rn Droid Y 38
Hello World N 66
Installation N 102
Adobe Flash Player Y 152

the behavior of a few ‘N’ families — the remaining families
are essentially DDA-RESET or DDA-EXPERT.

Administrator Identification. The app blacks out, locks the
screen for 5 seconds, then shows a screen for entering a
password - this password is unknown to the user. The user’s
only option is to restart the phone.

Firm module Update. The screen is locked and shows a web
error. The user can thereafter no longer access the phone -
this family is essentially ransomware.

Adobe Flash Player core. The app waits for several seconds
and then pops up the message: “Please enter password of
local storage for deleting Adobe Flash Player plugin”; again,
this password is unknown to the user. The app cannot be
uninstalled, including when attempting to force uninstall via
adb. The only effective measure is a factory reset.

Hello World. This family is ransomware: apps cannot be
uninstalled, including via adb. The screen is locked after
activating DA, and the app asks for $100 to unlock the phone.

We also mapped the relationships between DDA families,
defined by us, and AMD malware families, defined by Wei et
al. [36]. For brevity we omit a detailed description, but make
two observations. First, several DDA:AMD families map 1:1,
e.g., Sberbank : Krep or HelloWorld : Jisut which strengthens
the validity of our family identification. Second, AMD apps
in the same family can use a variety of DDA techniques,
e.g., Fusob can use System update and Firm module update to
conduct their nefarious business.

9 POTENTIAL SOLUTIONS

Android runs on more than 2 billion devices — about 74% of
mobile devices worldwide [33, 34]. To reduce the DDA risk,

Table 8: Number of “hidden” DA apps and their origin.

Phone Android| DA App Provenance
version |Google|Vendor|Other
LG G6 8.0 2 4 3
LG G4 5.1 2 4 1
Samsung Galaxy S9 8.0 2 8 2
Google Pixel 3 9.0 6 0 0
Google (LG) Nexus 5| 6.0.1 3 0 0
Moto G5 Plus 8.1 2 1 0
Moto E 2nd Gen. 5.1 2 1 0
Huawei P Smart 8.0 3 0 0
Samsung Galaxy S3 4.4.2 2 0 1
Nexus (Huawei) 6P 8.1.0 2 1 0

we believe that developers following Google’s recommen-
dation to switch apps from DA to AE (Section 2) would be
by far the most effective measure. Absent that, we foresee
several measures the platform can take.

Remove untrusted app code from the critical path.
Per the protocol in Figure 1, untrusted (and generally un-
trustworthy) app code is on the critical path between the
user and completing actions such as disable DA or uninstall.
The Android platform could rework this protocol to avoid
trusting the app, e.g., by simply requiring that the DA de-
activation message be a string in the manifest (which the
platform can simply display, instead of executing app code).

Force-expose all DA apps in Settings. The immediate
benefit would be to prevent DDA-HIDE. However, this ex-
posing can serve a broader purpose — make users aware of
all installed apps which require DA privileges. In the process
of analyzing DA behavior, we discovered that phones come
with up to a dozen preinstalled, hidden DA apps that have
DA privileges but do not appear in Settings. An analysis on
10 different phones is presented in Table 8. The last three
columns show where these apps are coming from.

First, Google/Android: apps such as Find My Device and
Google Pay are DA, but visible; interestingly, Gmail is also DA
but invisible — users cannot tell without “pulling” the apps
from the phone and unpacking the app.

Next, phone vendors can pre-install apps: LG pre-installs
4 apps on G4/G6 and Samsung pre-installs 8 apps on the
Galaxy S9 - e.g., for diagnosis, debugging, email. Such apps
might increase the attack surface/violate the principle of
least privilege, e.g., the HTCLogger app [12].

Finally, “other” preinstalled DA apps, e.g., Vlingo, occa-
sionally crash and leave the users puzzled (since they do not
appear in the installed app list, they cannot be uninstalled)
or worse, exfiltrate user data [6].

10 RELATED WORK

A variety of techniques have been proposed to detect and
characterize malicious behavior. However, we were not able
to find any approach that focused on Device Administrator.
The only mentions of the malicious potential of DA apps
were in the malware bulletins issued by mobile security com-
panies [18, 21-23, 28, 30, 37]; note that those mentions refer
to individual threats (apps), rather than broader issues.
Malware behavior characterization via program analysis.
SmartDroid combines static and dynamic analysis to expose
the behavior of Android malware in Ul-based triggers [38].
MAST uses permissions, intent filters, native code, and zip
files for multiple correspondence analysis which measures
the correlation with qualitative data [19]. DREBIN [15] uses
both static analysis and machine learning to optimize anal-
ysis and detection patterns. Apposcopy [25], DroidAnalyt-
ics [39], and DroidAPIMiner [5] use static analysis to analyze
malware properties but do not analyze DA behavior. None
of the aforementioned approaches touch on DA, though.
Malware families. Zhou and Jiang [41] have categorized
1,260 malware samples into 49 families. However their focus
was on non-DA behavior: malware installation, activation,
privilege escalation, turning the phone into a bot, etc.

11 CONCLUSIONS

We characterize and quantify both legitimate and nefarious
use of DA capabilities in Android apps. Based on these ob-
servations we have constructed DAAX, a static analyzer that
exposes potential DDA behavior in a given Android app. We
ran static and dynamic analyses on large corpora of benign
apps and malicious apps. DAAX has revealed potential issues
in more than 500 apps; the confirmed issues have been re-
ported to Google’s Android Security team. Our study and
tool can improve Android security by helping end-users,
developers, and app marketplaces analyze DA behavior.

ACKNOWLEDGMENTS

We thank our shepherd Ardalan Amiri Sani and the anony-
mous reviewers for their feedback. This material is based
upon work supported by the National Science Foundation
under Grant No. CNS-1617584. Research was sponsored by
the Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-13-2-0045 (ARL
Cyber Security CRA). The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

(1]
(2]

(3]
(4]

— —
O [
= =

[10

=

(11

—

[12

—

(13]

(14

—
—
w

=

(16]

(17]

(18]

[19

—

[20]

2017. AndroMalShare. http://sanddroid.xjtu.edu.cn:8080.

2017. The DroidCat Dataset. http://www.people.vcu.edu/~rashidib/
Res_files/DroidCatDataset.htm.

2017. Kharon project. http://kharon.gforge.inria.fr/index.html.
2017. Open Malware. http://www .offensivecomputing.net/
search.cgi?search=android.

Yousra Aafer, Wenliang Du, and Heng Yin. 2013. Droidapiminer:
Mining api-level features for robust malware detection in android. In
International Conference on Security and Privacy in Communication
Systems. Springer, 86-103.

Aaron Tilton. 2012. Vlingo Privacy Breach: Data Sent to Remote
Servers Without Consent. https://www.androidpit.com/Vlingo-
security-flaw.

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon.
2016. AndroZoo: Collecting Millions of Android Apps for the Research
Community. In Proceedings of the 13th International Conference on
Mining Software Repositories (MSR ’16). ACM, New York, NY, USA,
468-471. https://doi.org/10.1145/2901739.2903508
Android Open Source Project. 2019. Android Enterprise.
//developers.google.com/android/work/overview.

Android Open Source Project. 2019. Android Notifications Overview:
Status bar and notification drawer. https://developer.android.com/
guide/topics/ui/notifiers/notifications#bar-and-drawer.

Android Open Source Project. 2019. Device admin deprecation. https:
//developers.google.com/android/work/device-admin-deprecation.
Android Open Source Project. 2019. Device administration overview.
https://developer.android.com/guide/topics/admin/device-admin.
Android Police. 2011. Massive Security Vulnerability In HTC An-
droid Devices. http://www.androidpolice.com/2011/10/01/massive-
security-vulnerability-in-htc-android-devices.

Apple, Inc. 2019. Managing Devices & Corporate Data on
i0S. https://www.apple.com/business/resources/docs/Managing
Devices_and_Corporate_Data_on_iOS.pdf.

AppsApk. 2019. AppsApk. https://www.appsapk.com.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Kon-
rad Rieck, and CERT Siemens. 2014. DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket.. In NDSS.

Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2017. The Soot-
based Toolchain for Analyzing Android Apps. In Proceedings of the 4th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft ’17). IEEE Press, Piscataway, NJ, USA, 13-24. https:
//doi.org/10.1109/MOBILESoft.2017.2

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android Apps. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’14). ACM, New York, NY,
USA, 259-269. https://doi.org/10.1145/2594291.2594299

Lianne Caetano. 2013. Obad.a — What You Need to Know About
the Latest Android Threat. https://securingtomorrow.mcafee.com/
consumer/mobile-security/obad-a-what-you-need-to-know-about-
the-latest-android-threat/.

Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William
Enck. 2013. Mast: Triage for market-scale mobile malware analysis.
In Proceedings of the sixth ACM conference on Security and privacy in
wireless and mobile networks. ACM, 13-24.

Check Point Software Technologies. 2018. Check Point Cap-
sule Connect. https://play.google.com/store/apps/details?id=
com.checkpoint.CloudConnector.

https:

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

Check Point Software Technologies Ltd. [n.d.]. Charger Malware Calls
and Raises the Risk on Google Play. https://blog.checkpoint.com/
2017/01/24/charger-malware/.

Android Central Community. 2018. Can’t Remove Device Adminis-
trator. https://forums.androidcentral.com/general-help-how/50088-
cant-remove-device-administrator. html.

Santiago Cortes. 2013. Android.Obad. https://www.symantec.com/
security-center/writeup/2013-060411-4146-99.

DoMobile Lab. 2019. AppLock. https://play.google.com/store/apps/
details?id=com.domobile.applock.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy:
Semantics-based detection of android malware through static analysis.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 576-587.

Habyts Parenting. 2019. Habyts - Easier Screen Time. https:
//play.google.com/store/apps/details?id=com.habyts.agent&hl=
en_US.

Sybase Inc. 2019. SAP Mobile Secure for Android.
play.google.com/store/apps/details?id=com.Android. Afaria.
Swati Khandelwal. 2018. Facebook Password Stealing Apps Found on
Android Play Store. https://thehackernews.com/2018/01/facebook-
password-hacking-android.html.

https://

Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick McDaniel. 2015. IccTA: Detecting Inter-component
Privacy Leaks in Android Apps. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press,
Piscataway, NJ, USA, 280-291. http://dl.acm.org/citation.cfm?id=
2818754.2818791

Robert Lipovsky and Lukas Stefanko. 2018. Android Ran-
somware: from Android Defender to Doublelocker. https:
/Iwww.welivesecurity.com/wp-content/uploads/2018/02/Android_
Ransomware_From_Android_Defender_to_Doublelocker.pdf.
MaaS360. 2019. MaaS360 MDM. https://play.google.com/store/apps/
details?id=com.fiberlink.maas360.android.control.

Naveeninfotech. 2019. Mobile Tracker. https://play.google.com/store/
apps/details?id=com.nav.mobile.tracker.

Ben Popper. 2017. Google announces over 2 billion monthly active
devices on Android. https://www.theverge.com/2017/5/17/15654454/
android-reaches-2-billion-monthly-active-users.

Statcounter GlobalStats. 2019. Mobile Operating System Market Share
Worldwide.
worldwide.
Tom Watkins. 2017. Why it’s time for enterprises to adopt
Android’s modern device management APIs. https:
//www .blog.google/products/android-enterprise/why-its-time-
enterprises-adopt-androids-modern-device-management-apis/.
Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou.
2017. Deep Ground Truth Analysis of Current Android Malware.
In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA’17). Springer, Bonn, Germany,
252-276.

Martin Zhang. 2016. Android ransomware variant uses
clickjacking to become device administrator. https:
/[www .symantec.com/connect/blogs/android-ransomware-variant-

http://gs.statcounter.com/os-market-share/mobile/

uses-clickjacking-become-device-administrator.

Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong,
Xinhui Han, and Wei Zou. 2012. Smartdroid: an automatic system
for revealing ui-based trigger conditions in android applications. In
Proceedings of the second ACM workshop on Security and privacy in
smartphones and mobile devices. ACM, 93-104.

http://sanddroid.xjtu.edu.cn:8080
http://www.people.vcu.edu/~rashidib/Res_files/DroidCatDataset.htm
http://www.people.vcu.edu/~rashidib/Res_files/DroidCatDataset.htm
http://kharon.gforge.inria.fr/index.html
http://www.offensivecomputing.net/search.cgi?search=android
http://www.offensivecomputing.net/search.cgi?search=android
https://www.androidpit.com/Vlingo-security-flaw
https://www.androidpit.com/Vlingo-security-flaw
https://doi.org/10.1145/2901739.2903508
https://developers.google.com/android/work/overview
https://developers.google.com/android/work/overview
https://developer.android.com/guide/topics/ui/notifiers/notifications#bar-and-drawer
https://developer.android.com/guide/topics/ui/notifiers/notifications#bar-and-drawer
https://developers.google.com/android/work/device-admin-deprecation
https://developers.google.com/android/work/device-admin-deprecation
https://developer.android.com/guide/topics/admin/device-admin
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices
https://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf
https://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf
https://www.appsapk.com
https://doi.org/10.1109/MOBILESoft.2017.2
https://doi.org/10.1109/MOBILESoft.2017.2
https://doi.org/10.1145/2594291.2594299
https://securingtomorrow.mcafee.com/consumer/mobile-security/obad-a-what-you-need-to-know-about-the-latest-android-threat/
https://securingtomorrow.mcafee.com/consumer/mobile-security/obad-a-what-you-need-to-know-about-the-latest-android-threat/
https://securingtomorrow.mcafee.com/consumer/mobile-security/obad-a-what-you-need-to-know-about-the-latest-android-threat/
https://play.google.com/store/apps/details?id=com.checkpoint.CloudConnector
https://play.google.com/store/apps/details?id=com.checkpoint.CloudConnector
https://blog.checkpoint.com/2017/01/24/charger-malware/
https://blog.checkpoint.com/2017/01/24/charger-malware/
https://forums.androidcentral.com/general-help-how/50088-cant-remove-device-administrator.html
https://forums.androidcentral.com/general-help-how/50088-cant-remove-device-administrator.html
https://www.symantec.com/security-center/writeup/2013-060411-4146-99
https://www.symantec.com/security-center/writeup/2013-060411-4146-99
https://play.google.com/store/apps/details?id=com.domobile.applock
https://play.google.com/store/apps/details?id=com.domobile.applock
https://play.google.com/store/apps/details?id=com.habyts.agent&hl=en_US
https://play.google.com/store/apps/details?id=com.habyts.agent&hl=en_US
https://play.google.com/store/apps/details?id=com.habyts.agent&hl=en_US
https://play.google.com/store/apps/details?id=com.Android.Afaria
https://play.google.com/store/apps/details?id=com.Android.Afaria
https://thehackernews.com/2018/01/facebook-password-hacking-android.html
https://thehackernews.com/2018/01/facebook-password-hacking-android.html
http://dl.acm.org/citation.cfm?id=2818754.2818791
http://dl.acm.org/citation.cfm?id=2818754.2818791
https://www.welivesecurity.com/wp-content/uploads/2018/02/Android_Ransomware_From_Android_Defender_to_Doublelocker.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/02/Android_Ransomware_From_Android_Defender_to_Doublelocker.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/02/Android_Ransomware_From_Android_Defender_to_Doublelocker.pdf
https://play.google.com/store/apps/details?id=com.fiberlink.maas360.android.control
https://play.google.com/store/apps/details?id=com.fiberlink.maas360.android.control
https://play.google.com/store/apps/details?id=com.nav.mobile.tracker
https://play.google.com/store/apps/details?id=com.nav.mobile.tracker
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.blog.google/products/android-enterprise/why-its-time-enterprises-adopt-androids-modern-device-management-apis/
https://www.blog.google/products/android-enterprise/why-its-time-enterprises-adopt-androids-modern-device-management-apis/
https://www.blog.google/products/android-enterprise/why-its-time-enterprises-adopt-androids-modern-device-management-apis/
https://www.symantec.com/connect/blogs/android-ransomware-variant-uses-clickjacking-become-device-administrator
https://www.symantec.com/connect/blogs/android-ransomware-variant-uses-clickjacking-become-device-administrator
https://www.symantec.com/connect/blogs/android-ransomware-variant-uses-clickjacking-become-device-administrator

[39] Min Zheng, Mingshen Sun, and John CS Lui. 2013. Droid analytics: a

[40

=

signature based analytic system to collect, extract, analyze and asso-
ciate android malware. In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2013 12th IEEE International Conference
on. IEEE, 163-171.

Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Char-
acterization and Evolution. In Proceedings of the 2012 IEEE Symposium

on Security and Privacy (SP ’12). IEEE Computer Society, Washington,
DC, USA, 95-109. https://doi.org/10.1109/SP.2012.16

[41] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware:
Characterization and evolution. In Security and Privacy (SP), 2012 IEEE
Symposium on. IEEE, 95-109.

https://doi.org/10.1109/SP.2012.16

	Abstract
	1 Introduction
	2 Device Administrator Overview
	2.1 DA Timeline
	2.2 DA Status Lifecycle
	2.3 Deactivation Procedure

	3 Benign DA Characterization
	3.1 DA Behaviors (Privileges)
	3.2 DA Across App Categories

	4 Deathless Device Administrator
	4.1 DDA-Reset
	4.2 DDA-Hide
	4.3 DDA-Expert

	5 Detecting DDA
	5.1 DA Receiver Analysis
	5.2 DA Activation Analysis
	5.3 Pre-Deactivation Analysis
	5.4 Post-Deactivation Analysis
	5.5 Determining DDA

	6 Evaluation
	6.1 Dataset
	6.2 Workflow and Ground Truth
	6.3 Effectiveness
	6.4 Efficiency

	7 DDA Behavior Evolution Across Android Versions
	8 Malware DDA Families
	9 Potential Solutions
	10 Related Work
	11 Conclusions
	Acknowledgments
	References

