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ABSTRACT
App links, also known as mobile deep links, are URIs that point to
specific pages in an app. App links are essential to many mobile
experiences: Google and Bing use them to link search results di-
rectly to relevant pages in an app and apps use them for cross-app
navigation. However, app links are hard to discover and, since they
must be explicitly built into apps by developers, only exist for a
small fraction of apps. To address these two problems, we propose
Elix, an automated app link extractor. We define link extraction as
a static information flow problem where a link, with its scheme
and parameters, is synthesized by analyzing the data flow between
subsequent pages in an app. As static analysis is prone to false posi-
tives, Elix adopts a novel, path-selective taint analysis that leverages
symbolic execution to reason about path constraints and abandon
infeasible paths. Elix can automatically and correctly discover links
that are exposed by an app, and many others that are not explic-
itly exposed, thus increasing coverage of both link-enabled apps
and link-enabled pages in an app. Elix also simplifies the scheme
of extracted links by reducing complex types to a minimal set of
primitive types. We have implemented Elix on Android and applied
it to 1007 popular Android apps. Elix can extract 80–90% of an app’s
links, and above 80% of the extracted links are stable.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; • Software and its engineering → Au-
tomated static analysis.
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1 INTRODUCTION
App links [2, 6, 17, 20], also known as mobile deep links, are URIs
for specific pages within a mobile app. For instance, the Spotify
app exposes the link “spotify:album:<album-id>”; following that
link takes directly to the page for the album “album-id” in the app.
Just as web links enable many indispensable user experiences on
the web, app links promise the same for mobile apps. Google and
Bing use app links to link search results to relevant pages inside
apps; intelligent assistants use them to delegate user queries to
specific app functionality (e.g., Google Assistant answers the query
“Which movies are playing?” by retrieving movie showtimes via
the IMDB app link imdb:///showtimes?date=2018-12-23); and apps
and webpages use them to deep link to specific pages in an app
(e.g., Google Maps directly invoking Uber’s ride request page).

App links are also appealing to app developers, for various rea-
sons: improved app navigation, improved user retention, and in-
creased app discoverability [24]. These benefits are so crucial that
app developers even pay for various deep linking services (Branch,
Firebase, etc.), and they pay other apps to integrate their app links
(e.g., Uber paid $5 for each new rider brought via app link [49]).
However, despite their promise, the full potential of app links is
yet to be realized. While app stores contain millions of apps, only a
small fraction are linked to by other apps and services [38].

A main reason behind such low coverage is that discovering
“usable” app links at scale is hard. Although app links must be
declared in the app manifest file, the reported URI schemes often
omit parameters that are required to invoke the links, rendering
them useless. As a consequence, current practice for discovering an
app’s links is to analyze its corresponding website [27, 36, 37]. This
is mainly because developers who want to make their app contents
linkable in search engine results are encouraged to have a website
mirroring the app content and reference the URI schemes specified
in the app in each corresponding webpage [3]. Since many apps do
not have a website counterpart (or they do, but developers do not
annotate them with app links), this approach of discovering app
links fromwebpages yields low coverage (§2.2). Moreover, app links
discovered from webpages are often inaccurate, because developers
do not keep them current as the app evolves.

Another reason for low coverage is the lack of app links. Unlike
web deep links, exposing app links requires some developer effort
(45–411 lines of code for a single link, according to [29]). Moreover,
inadvertently exposing a link can be a security risk [28] or forget-
ting to update a link upon an app update makes it undiscoverable
and can render the app/website unstable [32]. Consequently, few
Android/iOS apps expose app links, and when they do, they only
expose a couple of pages within the app; non-popular apps tend to
not expose app links at all [8, 31]. As our study has revealed, even
among the top-1000 Android apps, 55% expose no app links, 20%
expose just one link, and only 25% expose more than 2 links (§5.1).
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To address both problems – discovering existing app links and
the scarcity of available app links – we propose the Elix app link
extractor. For discovery, Elix statically analyzes an app binary to
automatically extract its app links, a process that can scale to a large
number of apps, including apps without webpages or that do not
list app links on their webpages. To address the scarcity challenge,
in addition to the links exposed by the app developer, Elix provides
developers with an automated approach to build new links and
publish them, if the are willing to do so. Thus, Elix increases app
link coverage of both link-enabled apps (i.e., apps whose developers
have manually exposed some app links) and of link-enabled pages
inside each app (i.e., pages that the developer has not explicitly
exposed).

Elix enables this double functionality with three goals in mind: (i)
Coverage: extracting app links from any app and for all pages in an
app, regardless of which app links have been manually exposed by
the app developer. (ii) Path validity: extracted app links must trigger
feasible execution paths in the app. (iii) Practicality: Elix-extracted
app links should be amenable to be used as currently-known app
links. While static app analysis can efficiently achieve the first goal,
achieving also the other goals is challenging.

First, static analysis is prone to false positives, i.e., it can pro-
duce app links for execution paths and behaviors that are not ac-
tually feasible at runtime. To address this issue, Elix uses a novel
mechanism, path-selective taint analysis, that leverages symbolic
execution to reason about path constraints and abandon infeasible
paths. Our path selectivity combines a precise static data-flow (taint)
analysis with the control-abstraction power of symbolic execution,
which yields an effective and efficient link extraction approach.
Additionally, every extracted app link is tested using parameters
automatically discovered through dynamic analysis.

Second, in a mobile app, a page (Activity in Android) is designed
to be invoked by another page by providing some parameters.
For instance, a page showing a restaurant’s information may be
reached from the search page by passing a restaurant identifier
or a Restaurant-type object or some other internal variables. To
extract an app link such as the one for the restaurant information
page, Elix essentially needs to convert an “internal” interface be-
tween two app pages into an external interface invokable through
a parametrized link. An internal interface is likely to take as input
one or more objects with a complex type (tens of fields, potentially)
requiring custom serialization. Due to the complexity and number
of such input objects, directly including them as link parameters
may make the link hard to use, falling short of our practicality goal.
Elix therefore simplifies extracted links by automatically reduc-
ing parameters of complex objects to the minimal set of required
primitive types.

In summary, we make the following contributions. (i) A static
analysis-based approach and tool to automatically discover exposed
and non-exposed Android app links. We improve on the state of
the art for program analysis with selective path analysis: combining
traditional data flow analysis with symbolic execution to reason
about constraints on the structure of the input taint, hence increas-
ing precision without sacrificing efficiency (§3). (ii) A practical
framework to extract, test and validate app links, that can be de-
ployed in existing app stores (§4). The current prototype has been
implemented for Android. (iii) An evaluation on 1007 real-world

Android apps where Elix provides 80% coverage or higher to 87%
of apps; an in-depth analysis of 100 apps (§5); a comparison with
web crawlers-based techniques for app link discovery, where Elix
achieves 6x higher coverage (§2.2).

2 BACKGROUND, MOTIVATION AND GOALS
We motivate the need for app link extraction at scale with a few
concrete use cases. We then discuss limitations of existing solutions
and our goals. We use Android as a reference platform, but our
observations extend to other platforms.

2.1 Target consumers of app links
We have designed Elix with three classes of consumers in mind:
search engines, app developers, and app stores.

Search engines. App links enable indexing and searching of
app contents, so that clicking on a search result on a mobile device
takes the user directly to the relevant page in the app. Ideally, search
engines would like to index all contents in an app, and hence they
would like to have app links to most pages in an app. Search services
that allow users to search app content they visited in the past (e.g.,
“Stuff I’ve Seen” [15]) also require app links. To discover app links,
Google [36], Bing [37] and App Search APIs like URX [27] rely on
web crawlers, under the assumption that developers have added
app URIs as metadata in the app’s corresponding webpage, which is
a requirement to support app indexing [3, 27, 36].1 This approach
cannot discover app links exposed by mobile apps that do not have
a web counterpart, and, as we will show shortly, even when apps
have a corresponding website, it can discover only a tiny portion
of the developer-exposed app links.

In-house app developers. Compared to web URLs, app links
require work to be exposed and are more fragile. Exposing an
app link entails: registering the link URI in the app manifest, then
adding supporting code in the app to validate inputs and launch
the requested page. Others have found that an average of 45–411
lines of code had to be changed to enable a new app link [29]. More
importantly, developers must test and possibly modify the exposed
links every time the app is updated. Elix can bring two advantages.
(i) Each time the app is updated, developers can use Elix to verify
which links are exposed, whether the URI formats declared in the
app manifest are correct, and whether the links execute correctly.
(ii) Elix discovers links to all pages in the app, not just those that
the developer handled and declared in the manifest; using Elix
developers can automatically obtain schemes and parameters for all
links the app could expose, thus reducing the effort when exposing
new links. In a nutshell, Elix helps developers the way compiler
warning/suggestions do – as a warning “you are exposing this link”
or as a suggestion “if you want to expose this link, do this”.

App stores. Currently, app stores cannot extract, leverage, or
validate app links: there is no repository of app links2, and with the
exception of few apps that publish up-to-date app link information
for developers, link discovery is flawed. As we read in developer

1Of course, developers of apps without a website can index the app by themselves,
communicate the index to search engines and update it periodically, but the effort is
high. For doing this, Google provides Personal Content Indexing [19]. Out of the 1007
tested apps, 8 supported it.
2To the best of our knowledge, www.gotschemes.com is the only available repository,
but it contains links for few apps without any guarantees on them being up-to-date.

www.gotschemes.com


Table 1: Comparison of web-based discovery and Elix.

App Exposed links Web discovery Elix discovery
Open Table 10 1 10
Kayak 10 3 10
IMDB 23 0 23
Fandango 15 0 15
Shazam 15 3 15
Eat24 2 2 2
Dictionary.com 8 0 8
CNN 6 2 6
Duolingo 10 0 8
Zomato 10 1 10
Airbnb 19 8 19
ABC news 3 1 3
BBC news 1 0 1
AirWatchESPN 3 0 3
Average (%) 9.6 (100%) 1.5 (16%) 9.5 (99%)

forums, i) it is hard to find out about links exposed by other apps,
even top ones [40, 44, 45, 48]; ii) even when discovered, it is hard
to understand how to parameterize the links [39, 41, 42, 47]; and
iii) there is a need to facilitate developer requests for new app
links [43, 46]. Elix could be integrated in app stores as follows:
when a developer submits a new app or updates an existing one,
Elix analyzes the app and solicits developer consent to publish some
or all of the automatically-extracted links. By integrating Elix, app
stores can enable discovery and testing of app links at scale and
incentivize developers to expose more app links. At the same time,
developers retain control on which links are published.

2.2 Problems addressed by Elix
Elix addresses two fundamental problems in the mobile app ecosys-
tem: (i) exposed app links are hard to discover, and (ii) few app
links are generally exposed by app developers.

P1: Discovery. Current practice to discover app links re-
lies on developers publishing app links on the app’s web-
page or in a sitemap file [3, 6, 18, 27]. If they do so, the
app is added to Google’s index and will appear in search
results. Consider, for instance, the OpenTable app and its
website. The http://www.opentable.com/capo webpage’s source
contains “android-app://com.opentable/vnd.opentable.deeplink/
opentable.com/restaurant/profile?refId=12415&rid=202” which is
in fact the app link to open the OpenTable app on the Capo restau-
rant page (the tag android-app is used to identify Android app
links). Yet, that is the only link listed on the entire website; many
links like /ratings/showratings, /search/results or /reservation that
are exposed by the app are missing from the website. On the other
hand, sitemap files, if used, usually list more app links but they omit
link parameters, thus making the links unusable. Generally, pub-
lishing app links on webpages is not popular. More than two-thirds
of top ranking websites with an app do not use app indexing [38],
and, by definition, this approach does not work for apps without a
website.

We verified our claims with an in-depth analysis of 14 popular
Android apps which list various app links in their manifest file. As
shown in Table 1, we discovered app links for these apps using

Table 2: App link declarations in Android apps. In each ex-
ample, the first row reports the link’s target activity and pa-
rameters, and each of the following rows reports the URI
format(s) declared in the appmanifest. Parameters are often
missing from the URI (e.g., date and movieId in the 2nd link)
andmultiple URIs (2nd and 3rd links) are often specified for
the same activity, but they have identical functionality (i.e.,
they point to the same page in the app).

Zillow: HomeDetailsActivity:[itemId] % get house information
<data host=www.zillow.com pattern=/homedetails/.* scheme=http/>
IMDB: ShowtimesActivity:[date, movieId] % get movie showtimes
<data host=” prefix=/showtimes scheme=imdb/>
<data host=*.imdb.com prefix=/showtimes scheme=http/>
OpenTable: RestaurantProfileActivity:[restaurantId] % get rest profile
<data host=m.opentable.com prefix=/restaurant/profile scheme=https/>
<data host=m.opentable.co.uk prefix=/restaurant/profile scheme=https/>
<data host=www.opentable.com prefix=/restaurant/profile scheme=http/>
... (28 definitions for the same link)

three approaches: (i) to obtain a ground truth on the links exposed,
we examined the app bytecode to extract the full URI format of
all links listed in the manifest and to identify which UI page they
reference (column 2 in the table); (ii) we manually searched for
app links listed in the page sources of the websites of these apps
(column 3); and (iii) we used Elix (column 4). Web discovery was
able to find only 16% of all exposed app links. Instead, Elix was able
to correctly discover links for all exposed pages, except for 2 in the
Duolingo app (due to static analysis timeouts).3

P2: Coverage. Elix is useful not only for discovering currently-
exposed links, but also for discovering new ones. Still a minority
of Android and iOS apps expose app links. In Azim et al. [8], 23%
of 14k top Android apps were found to expose some app links
(typically fewer than 3), whereas non-popular apps do not expose
any links. We counted the number of app link URIs in the manifests
of 1007 most popular Android apps on Google Play in July 2017.
This number represents an overestimate of the number of pages
reachable in the app because apps often list multiple URI formats for
links pointing to the same page (e.g., in Table 2 imdb:///showtimes
and http://*.imdb.com/showtimes are different URIs, but point to
the same page). We found that 55% of apps list no URIs, 20% declare
one, and only 25% declare more than two. The average number of
unique pages in these apps is 38 which means that even for apps
exposing app links the majority of the pages in the app are not
linkable.

2.3 Goals and possible solutions
To address the current situation, we propose automated app link
extraction: we seek to extract valid app links that guarantee good
coverage of app pages, and are practical to use. We discuss possible
approaches to achieve this goal. The discussion is summarized in
Table 3.

3Elix’s discovered links have URIs slightly different from those listed on the app
websites, but they serve the same purpose. More examples of Elix-extracted app links
will follow later in this section.



Table 3: Possible approaches for discovering developer-coded app links and extracting new app links.

Approach Discovery of links Properties
exposed new Coverage Validity Practicality

Manifest-based discovery Yes No Low Yes No
Dynamic analysis Yes Yes Low Yes No
State-of-the-art static analysis Yes Yes High No No
Elix Yes Yes High Yes Yes

Manifest-based discovery. Exposed app links must be declared
in the app manifest, so one scalable way to discover developer-
coded app links is to statically analyze manifest files. However,
manifest files typically contain “URI patterns” rather than complete
definitions of app links. Such patterns often omit parameters that
are required to invoke the links, rendering them useless. Table 2
shows some examples. The manifest of the IMDB app, for example,
lists the /showtimes link for retrieving a movie showtimes for a
certain date, but omits the required date and movieId parameters.
Likewise, the OpenTable’s restaurant/profile app link omits the
restaurantId parameter.

Dynamic analysis. App link parameters could be intercepted at
runtime, at every page transition, but this would require automati-
cally running every app and visiting all its pages. This approach is
unlikely to scale because dynamic app analysis suffers from poor
coverage – measurements studies [12] show that with existing tools
only 40% of an app’s pages can be automatically visited. Moreover,
abstracting from raw app logs to a usable and concise URI format
including parameter types and constraints is not always feasible,
unless an extensive collection of traces is available. As an example,
Figure 1 shows the message intercepted when loading MapActivity
in the Android OpenTable app (this message is called intent in An-
droid). In intent.bundle one can identify the parameters and their
values, such as restaurant and streetViewExtra used to create the
target page. However, a large part of the intercepted parameters are
not essential; in this case, only two are actually needed to invoke
the page, as we show later.

intent.bundle :{

restaurant :{type:com.opentable.models.Restaurant(@Parcelable),

value:{"address":"3649 Mission Inn Ave",

"city":"Riverside",

"phone":"8883264448",

"profilePhoto": {"id":"23674228" ,...},

"restaurantId":150262 ,

"restaurantName":"Bella Trattoria Restaurant",

...}

},

streetViewExtra:{type:java.lang.Boolean ,value:true},

intent.action: null ,

intent.uri: null ,

intent.component: ComponentInfo{com.opentable/com.opentable.

activities.restaurant.info.MapActivity}

Figure 1: Example of intent intercepted at runtime in the
OpenTable Android app. The highlighted parameters are
the only ones that the target page actually requires to be
launched. Elix correctly identifies them.

State of the art static analysis. Another approach is to rely on
static analysis. Unlike dynamic analysis, static analysis provides

good coverage, so an alternative for capturing page parameters
would be to trace such parameters statically. However, static analy-
sis suffers from false positives (i.e., some of the paths it identifies
might be infeasible hence could fail to provide reliable app links)
and precision vs. scalability trade-offs (i.e., we can have an efficient
but imprecise analysis, or a precise but inefficient one). Moreover,
because we are effectively trying to extract an internal app interface
that the developer did not specify to be invoked externally, even
though static analysis could capture it correctly, its API might not
be practical. An internal interface is likely to take as input large
objects with tens of fields and require custom serialization. Instead,
we want to produce app links with straightforward schemes.

Elix’s static analysis. To address these problems, simply capturing
page parameters is insufficient. Instead Elix discovers how these
parameters “flow” in the code generating the page (e.g., some param-
eters could be left unused, or others might be mutually exclusive).
Going back to the previous example of OpenTable’sMapActivity,
Elix extracts the first link shown in Figure 2. The restaurant pa-
rameter in the intent in Figure 1, which dynamic analysis would
capture, is replaced by string:restaurantName, which is the only
field (out of the 61 com.opentable.models.Restaurant contains) re-
ally needed to invoke the link. Hence, Elix significantly simplifies
the link scheme compared to what dynamic analysis or standard
static analysis would output. Another advantage of Elix is its abil-
ity to identify parameter constraints thus ensuring extracted links
execute reliably. Figure 2 shows more examples of Elix-extracted
app links, and §5.4 gives examples of links with constraints.

3 EXTRACTING APP LINKS USING STATIC
ANALYSIS

We describe Elix’s design. To address the aforementioned chal-
lenges, Elix makes two key advances: i) it introduces a novel com-
bination of taint tracking and symbolic execution which enables
precise yet scalable analysis; and ii) it tackles the intricacies of
the Android platform to permit analysis of real-world, substantial
Android apps. We have chosen Android for its popularity; other
phone platforms follow a similar model and likely exhibit similar
challenges.

We first present an overview of the Android system and apps.
An Android app consists of a collection of activities (pages), where
each activity represents a single screen with a UI. Each activity
is independent of the others. While activities are usually invoked
from within the app, developers can set some activities as invokable
from a different app, by exposing an app link, called deep link or dy-
namic link in Android. Activities are activated by an asynchronous
message called an intent. For example, an app can send an intent
to the Camera app, asking it to take a picture; or an app can post



# OpenTable - view restaurant information on a map

Activity: com.opentable.a ctivities.restaurant.info.Map Activity

p1: string :(com.opentable.models.Restaurant)_restaurant{

restaurantN ame} // complex object reduction

p2: bool:E XTRA_ENABLE_DINING_MODE_UI

p3: bool:streetViewExtra

# OpenTable - submit restaurant review

Activity: com.opentable.a ctivities.review.SubmitReviewActivity

p1: string :E XTRA_RESTAURANT_NAME

p2: string :EXTRA_EMAIL

p3: int:(com.opentable.dataservices.mobilerest.model.Review)_

EXTRA_REVIEW{restaurantid} // complex object reduction

# IMDB - get movie information

Activity: com.imdb.mobi le.a ctivity.FragmentTitle Activity

p1: string:com.imdb.mobile. tconst

# IMDB - view showti mes for a movie on a day

Activity: com.imdb.mobile. showti mes.Showti me sActivity

p1: string:com.imdb.mobile. tconst

p2: string:com.imdb.mobile.date

# IMDB - get the profile of a cele brity

Activity: com.imdb.mobi le.a ctivity.FragmentName Activity

p1: string:com.imdb.mobile. nconst

# BBCNews - get a colle ction of news

Activity: bbc.mobile.news.v3.app.Colle ctionActivity

p1: string:title

p2: bool:from_push

p3: string:uri

# BBCNews - get a piece of news

Activity: bbc.mobile.news.v3.app.Item Activity

p1: string:uri

p2: int:pager_index

p3: string:title

Figure 2: Examples of app links extracted by Elix. For
each link, we report the activity name and the list of
parameters (type:parameter_name). The first two exam-
ples show links where Elix was able to reduce complex
objects to the required primitive types (e.g., restaurant-
Name of type string is extracted from restaurant of type
com.opentable.models.Restaurant).

an item on Facebook by sending an intent to the Facebook app. An
intent defines the action to perform and may specify the URI of the
data to act on. Activities are listed in the app’s manifest file. For
each activity, the developer can specify one or more intent filters
that declare the capabilities of the activity so that it can respond
to intents from other apps. To expose a deep link, the activity’s
intent filter must include one or more <data> tags, where each tag
represents a URI format, as shown in Table 2.

3.1 Overview and challenges
Taint analysis is used to track the propagation of information from
a source to a sink. It is widely used in security, e.g., to find out
whether information from a privacy-sensitive source, such as the
user’s GPS location, is sent, potentially after some processing, to
an insecure sink, such as an advertising server [13]. Taint analysis
can be dynamic or static. Dynamic taint analysis usually requires
an instrumented platform to add “taint tags” that track data [16,
53]; dynamic approaches, however, have coverage problems as
they rely on high-quality inputs for good coverage (and require
instrumentation which may perturb normal app execution). Static
taint tracking [7], on the other hand, is sound and scales well, but is
prone to false positives and presents a precision–scalability trade-
off.

Example: Link extraction for a restaurant app.We illustrate
the challenges in using static taint tracking for app link extraction
using a sample restaurant app. Figure 3 (left) shows the source code.
An activity for showing restaurant information receives a request to
start (sent from the previous activity the user was on). The request’s
parameters are passed via an Intent object (line 2). The activity
receives the information that will be displayed on the screen from
a Bundle-type object contained in intent (a Bundle is a key-value
store, essentially). If this is not the first time the activity is started,
bundle is retrieved from the persistent storage savedInstanceState,
which basically means the activity will show the same restaurant
as in the previous run. On line 9 the activity starts looking into
the request’s parameter intent.getAction(). Lines 10–16 handle the
case of a request with action=VIEW. The app fetches the restaurant
complex object from the link parameters and displays the restaurant
name (line 12), and then sets the Google Maps location to the
restaurant’s location loc (line 15). Lines 17–22 handle the case of a
request with action=SEARCH: a list of nearby restaurants is extracted
from the bundle and iterated upon (the “for” loop on lines 20–22).

Link extraction desiderata. Each time an activity must be
started, an intent carrying the parameters necessary to its construc-
tion is passed to it. The carried parameters and how they are used
in the activity code implicitly define one or multiple paths to start
that activity. Elix identifies and saves these paths in the format of
app links. Based on the code above, an app link extractor should:
i) accurately extract separate app links for the View and Search
functions, and ii) for each link, simplify the inputs by reducing the
number of object fields (e.g., the restaurant object) so the app link
can be invoked more easily (but still reliably).

Why is taint analysis alone inadequate? The information
flow inferred by a state-of-the-art, but not path-selective, static
taint analysis [7] is shown in Figure 3 (center). We indicate the
data flow with arrows and the tainted data with an ‘*’; sinks and
sources are marked explicitly. Numbers on the right indicate the
position in the source code. Taint analysis is configured so that
intent (on line 2) is marked as a SOURCE, and everything coming
out of bundle as a SINK. The analysis of which parameters flow
and how they flow from SOURCE to SINK will inform the app link
generation. Since intent is tainted, line 7 will taint the bundle thus
this taint will propagate to the intent.getAction() branches on lines 9
and 17. Moreover, all objects extracted from the bundle, which were
marked as sinks, will be tainted: rid (line 10), restaurant (line 11),
loc (line 14), query (line 18), and nearby (line 19). The problem
occurs on line 23 where lack of path selectivity between the line
9 and line 17 branches conflates all 6 fields into a single 6-field
object (action, rid, restaurant, loc, query, and nearby), instead of
the correct 2-object extraction with 4 fields (action, rid, restaurant,
loc) and 3 fields (action, query, nearby), respectively. Therefore,
even an advanced static analysis would incorrectly extract a single
app link with six parameters. This is a false positive. Attempting to
invoke such a link may produce an incorrect result or fail.

How Elix correctly extracts the app links. In §3.2.4 we ex-
plain Elix’s process (Figure 3, right), and how it correctly extracts
two distinct app links. To do so and to meet the desiderata above,
Elix introduces two new techniques: i) Path-selective taint tracking
with symbolic execution, and ii) Complex object reduction.



Source code Taint analysis Elix

1 void onCreate(Bundle savedInstanceState) {
2 Intent intent = getIntent(); // tainted
3 Bundle bundle = null;
4 if (savedInstanceState != null) // branch not tainted
5 bundle = savedInstanceState;
6 else
7 bundle = intent.getBundle(); // tainted
8

9 if (intent.getAction().equals( "action.VIEW")) { // tainted branch
10 int rid = bundle.getInt("rid");
11 Restaurant restaurant = (Restaurant)

bundle.getSerializable("restaurant"); // get complex object;
cast set as sink

12 titleView.setText(this.restaurant.getName()); // complex object
reduction: only the title field is used, so the serializable
object can be reduced to just contain that field

13

14 RestaurantLocation loc= (RestaurantLocation)
bundle.getParcelable("location");

15 GoogleMapsApi.setLocation(loc); // call to Google Maps API (3rd
party lib); disable complex object reduction

16

17 } else if (intent.getAction().equals( "action.SEARCH")) { // tainted
branch

18 String query = bundle.getString("query");
19 List<Restaurant> nearby = bundle .getParcelable("nearby_restaurants");
20 for (Restaurant r : nearby) { // tainted loop
21 ... // process r
22 }
23 }
24 }

}
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Figure 3: Source code (left); static analysis-inferred information flow (center); Elix path-selective information flow (right).

3.2 Elix design
Figure 4 shows Elix’s architecture. In the following we describe all
its components.

3.2.1 Setting up the static analysis.
Harness generation. Static analyses need starting (entry)

points identifying where the execution starts. Android apps, unlike
traditional Java programs, do not have a main() method that would
serve as single entry. Rather, each activity is managed by the An-
droid framework by invoking the activity’s lifecycle callbacks, e.g.,
onCreate(), onStart(), etc. Elix synthesizes harnesses (“mock” entry
points in a mock main() method) for this purpose.

Note that, as shown in Figure 4, Elix analyzes each app activity,
activity_1 . . . activity_n, separately. This is possible because activi-
ties are self-contained, and advantageous as it keeps the approach
scalable (approaches that perform whole-app analysis have scala-
bility issues due to large memory and time demands [26, 50, 52]).

Taint propagation. Interest in Android security has led to
many static taint trackers for Android, e.g., FlowDroid [7], Aman-
droid [50], or DroidSafe [26]. To leverage such trackers, our insight
is that app link discovery can be encoded as a taint tracking problem,
and imprecision can be alleviated with path-selectivity via symbolic
execution. Since taint trackers look for information flow (taint)
from a source to a sink, Elix defines a set of sources and a set
of sinks. Intents are used to pass parameters between activities,
and each activity is associated with an intent, so we define Activ-
ity.getIntent() as a source. For sinks, Elix finds which parameters
have been fetched from the intent by activity code. The parameters

inside an intent include action, extra bundle data, data uri, etc. We
set all the data fetch API methods as sinks, such as intent.getData(),
intent.getIntExtra(String key), etc. (more details in §3.3).

Taint propagation is based on the IFDS algorithm [34] whose
complexity is polynomial. Elix runs taint propagation until converg-
ing (reaching a fix-point) and saves the result into a taint summary
cache. Later, the symbolic executor queries the cache in constant
time to get the taint status of each variable during path exploration.
Taint summaries play a key role in the performance of path-selective
analysis.

Taint summaries. Taint summaries save the taint status of
variables for each analyzed method. The summary uses the format
<sp,d1>→ <n,d2,{d3}>, where sp is the start point of the method,
and d1 is the tainted status for a method input parameter; n is the
current statement, d2 is the incoming taint, and d3 a set of out-
going taints. The summary’s semantics is: if at the entry point of a
method, d1 holds, then at statement n, d2 also holds; after executing
d2, it will produce a set of d3 values. This summary representation
is inspired by the classical IFDS framework [34] and FlowDroid’s
data-flow representation [7]. For the code in Figure 3, an example
of taint summary is <onCreate,0>→ <line2,0,{intent*}>, where
<onCreate,0> means at the entry of method onCreate the taint
state is empty, and <line2,0,{intent*}> means at line 2 the in-taint
state is empty but the out-taint state is {intent*} because getIntent()
is the taint source. Another example is <onCreate,0>→ <line10,
{intent*, bundle*}, {intent*, bundle*, rid*}> meaning at line 10 the
in-taint states are intent* from line 2 and bundle* from line 7; the
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out-taint states are intent* and bundle* from the in-taint states and
rid* generated at line 10.

Summaries play an important role in our analysis as they prevent
redundant analysis of a method with the same taint parameters. An
analysis tool can directly query the taint summaries of the onCreate
function at line 10 and know how many variables are tainted and
what the chain of taint propagation is. In the example of rid*, the
propagation chain is intent* → bundle*→ rid*. We leverage taint
summaries for more precise path constraints analysis, as described
shortly.

3.2.2 Path-selective taint tracking via symbolic execution.
Static taint analysis can be imprecise if path conditions (con-

straints) are not considered. Figure 3 has illustrated how ignor-
ing path conditions leads to incorrect links, because the analysis
conflates results from separate branches (line 23). Elix avoids this
imprecision through symbolic execution to achieve path-selective
taint tracking.

Elix’s symbolic executor. Symbolic execution is a technique
that allows symbolic reasoning about program state (symbolic state)
and conditions to be met for executing a certain path (path con-
straints). Variables whose values are known are said to have concrete
values; variables whose value is not known are handled symbol-
ically, e.g., we assign symbolic value X to program variable x. A
symbolic executor “executes” the program in the symbolic domain,
e.g., after program statement x=x+1 the new symbolic value of Xwill
beX+1. Path conditions are logical ANDs among branch conditions
encountered so far. A branch “forks” the path into two mutually
exclusive new paths. For example, if the current branch condition is
π :X>1 and the next statement is if (y>42), the branch forks π into (i)
π1:X>1 && Y>42 on the then branch and (ii) π2:X>1 && Y≤42 on
the else branch. As other examples, in Figure 3, the path condition
for reaching line 7 is savedInstanceState == null; similarly, the con-
dition for reaching line 18 is intent.getAction() == “action.SEARCH”.
Of course, these are simplified examples; actual path conditions are
much more complex.

Elix encodes taint status and path conditions in the taint sum-
mary by keeping track of program counter, current method, and call
stack in the symbolic state. The executor updates the symbolic state
(including current path condition) after each statement. Unlike tra-
ditional interpreters, Elix’s executor keeps the taint summary from

the previous taint propagation stage. The taint summary indicates
i) whether the current method’s arguments are tainted, and ii) the
taint state of the next statement. If the current statement is a taint
sink, Elix’s executor saves the sink and all the pre-conditions so far
as path constraints for this sink. Later, it uses this information to
generate an app link.

Elix path selectivity. As path forking occurs whenever a
branch is encountered, symbolic execution can suffer severely due
to path explosion. Inspired by ESP [14], Elix avoids this problem
via a new path selectivity approach that uses path merging and
path killing. The key idea is to only fork paths at branches that
have dependencies to the input intent, i.e., tainted branches, and
merging paths at untainted branches. Note that during taint propa-
gation, IFDS aggressively merges taint properties at every branch
exit causing false positives. Therefore, path-selective analysis only
needs to handle those tainted branches to de-couple merged taint
status.

Path merging. Each branch point b has a corresponding post-
dominator pd.4 The pair <b,pd> specifies the scope of the branch,
and within this scope, all the statements are control-dependent on
branch b. Elix uses the post-dominator pd as merge point. When all
the paths reach their merge point, the executor starts merging them.
Note that traditional symbolic executors never perform pathmerges,
or use a limited version of path merge. In our merge algorithm,
we generally merge paths, with one exception: we do not merge
if either of the branch condition operand is tainted. This selective
merging algorithm collects structural constraints for the intent that
avoid conflict conditions due to the intent itself. In our experiments,
we found that many branches are not tainted, thus Elix’s merging
is effective at avoiding path explosion.

Path killing. A path is killed at a statement (or branch condi-
tion) which invalidates the current path, e.g., an assertion or a
setIntent(Intent intent) method that overrides the tainted intent
with a fresh one. This is because we aim to find paths that are
affected by the intent from the environment. In addition, Elix kills
a path with branch conditions such as getIntent() == null or get-
Intent().getExtras() == null, corresponding to app links with no
parameters.

3.2.3 Complex object reduction.
It is common for an activity to fetch complex objects from the

intent. For example, APIs Serializable getSerializableExtra(String
key) and Parcelable getParcelableExtra(String key) fetch objects
that implement Serializable or Parcelable interfaces, respectively.
Objects implementing Serializable and Parcelable interfaces can be
very complex and with several tens or hundreds of primitive fields
(e.g., the Restaurant class in the OpenTable example in Figure 1 has
61 primitive fields while the Reservation class in the Airbnb app
has 1162). Exposing such a complex type in an app link would make
the link hard to use, hence would not meet our practicality goal.
However, in practice, only a few fields of these complex objects are
used frequently. Based on this insight, Elix performs a second round
of taint propagation by starting from the Serializable getSerializable-
Extra(String key) and Parcelable getParcelableExtra(String key) as
the source of taint, and keeps track of the fields used. For example,

4For any statement b, its post-dominator pd is the first statement that will be executed
on any path from b to program end.



if Elix finds a restaurant object fetched from getSerializable and
of type Restaurant, and observes restaurant.getName() being ac-
cessed, then it knows that the name field of the Restaurant object is
used. The accessed fields are saved and reported as part of the link
indicating the potential usage of the complex object in the analyzed
activity. If there are no accessed fields, the object is removed from
the link parameters. Note that Elix simplifies the parameters in a
conservative way. If a tainted complex object flows into a system
method that exceeds Elix’s analysis scope (e.g., Fragments), Elix
assumes all its fields are used and stops simplifying.

3.2.4 Putting it all together.
Elix successfully meets the desiderata laid out in §3.1; the analy-

sis process is shown in Figure 3 (right). Diamonds represent branch
statements, arrows indicate data flow, and tainted data is marked
with ‘*’. Note that Elix merges the two paths at line 8 because the
branch at line 4 is not tainted indicating this branch is not related
with intent structure constraints. As a result bundle on line 8 will
be tainted. The branch on line 9, however, is tainted so on line 23
Elix does not perform a merge. Rather Elix path-selects, i.e., splits
the analysis for the then/else branches on lines 9 and 17. So Elix ex-
tracts two links from the two separate branches. Elix also performs
complex object reduction as follows: due to the getSerializable API
(line 11) we know that restaurant is a complex object. Because only
the name field is used (line 12), Elix simplifies restaurant to a single
field, “name”. However, the complex object loc cannot be simplified
since it is passed to the framework (line 15) which could perform
arbitrary processing on it. Therefore, so far Elix has extracted a link
VIEW with parameters int:rid, string:restaurant.name and Restau-
rantLocation:location. Next, Elix analyzes the other branch (lines
17–22) and extracts a link SEARCH with parameters string:query and
[Restaurant]list:nearby_restaurants.

3.3 Implementation
We wrote Elix’s symbolic executor from scratch. To build Elix’s
taint analysis we leveraged FlowDroid [7], but modified it in various
ways.

We provided FlowDroid with our list of sources and sinks. As all
link parameters are extracted via Activity.getIntent(), we set this
as the only source. For sinks, we need to consider all object types
which may be stored in an intent: action, extra bundle data, data
uri, etc. We set all the data fetch API methods for these objects as
sinks (e.g., intent.getAction(), intent.getData(), etc.); Bundle.get*()
are set as sinks too – if a bundle is fetched from a tainted intent,
then the data fetched from it is also tainted (like in Figure 3). Note
that having only one source significantly reduces the number of
taints, hence reducing FlowDroid’s running time.

Elix extends FlowDroid in several aspects so it can analyze an
extensive number of real-world apps and support our usage setting.

First, Elix generates separate harness methods (modeling the ac-
tivity lifecycle callback and UI callbacks) for each activity, instead of
a single harness for all activities, as FlowDroid does. This is because
we aim to generate links for each activity. Moreover, setting the
analysis scope to individual activities saves memory because taint
results are not shared across activities. Also, Elix’s harnesses use
an object-sensitive model which is more precise than FlowDroid’s.

Second, we had to overcome several engineering challenges to be
able to run Elix on commercial apps. For example, commercial apps
can be spread across multiple .dex files, so we added support for
multi-dex analysis. Another challenge was intermediate language
(IR) ambiguity: FlowDroid uses Jimple, a 3-address non-SSA format,
as their IR. The non-SSA language may introduce ambiguity during
backward taint propagation because local register names may be
reused – we modified the IR to eliminate such ambiguities.

Third, Elix extends FlowDroid’s call graph to account formessage
passing: we add call edges upon discovering calls to the message-
passing API, e.g., Handler.sendMessage(), Handler.post(Runnable),
etc. Thus, Elix has better coverage than FlowDroid.

3.4 Limitations
Elix has three main technical limitations, which can be addressed
with more engineering effort.

First, it does not handle Fragments. In Android, an Activity can in-
clude one ormultiple Fragments, which are a kind of “sub-activities”,
each associated with a UI portion (e.g., tabs in a screen). A Frag-
ment has its own lifecycle and receives its own input events. Elix
does not yet model the Fragment lifecycle so false negatives can
arise if non-tainted parameters are consumed by Fragments. More
importantly, the presence of Fragments can limit the effectiveness
of complex object reduction (§3.2.3). As reported in §5.2, while we
have not seen many such occurrences these may be more common
in the future.

Second, it does not handle Dependency injection (DI). DI aims to
make a software class more reusable and testable by decoupling
hard dependencies between objects, e.g., instead of a class instantiat-
ing a specific logging service, that service is injected by an external
framework. DI has been adopted also bymobile apps. DI poses static
analysis challenges. Static analysis relies on “hard coded” object
dependencies for pointer analysis and call-graph construction. To
precisely know which object is injected, Elix would need to analyze
DI code, which is tedious given the many existing DI frameworks,
e.g., Dagger [23], Roboguice [21], ButterKnife [51]. Injected objects
may contain code that uses tainted variables thus affecting Elix’s
precision.

Finally, dependencies between activities not captured through
intent passing can also be problematic. If an app uses other ways
(e.g., file system, network) to pass data between activities and those
data dependencies are not captured by the input intent, the app
links that Elix discovers may be in partial state or fail. Addressing
this problem requires dynamically identifying such dependencies
and replaying the whole sequence of activities as done in uLink [8]
and Aladdin [29].

4 ELIX IN ACTION
We describe additional modules provided by the Elix framework to
execute and test extracted app links.

4.1 Executing app links
In order to execute Elix-extracted app links, developers must take
two steps. First, they need to update their app’s manifest file with
the URI schemes extracted by Elix, for all the new pages they intend
to expose. Second, they need to add to their app the Link Executor
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module which takes care of assembling an Intent object from the
specified link parameters and invoking the target activity, in the
following way.

Given a parameterized app link, the Link Executor parses
it, verifies that its constraints are satisfied, and generates an
intent for its target activity. Links extracted by Elix use the
URI format elix://<pkg>/<act-name>?[<params>]. The URI
host points to the target app’s package name (pkg) while the
URI path contains the target activity name (act-name). Then
the link contains query parameters (params), each formatted
as <type>_<key>{<[field]>}=<value>, where the list of class
fields ([field]) is present only if type is a complex object to
which Elix applied input reduction. For example, the notation
(com.opentable.models.Restaurant)_restaurant{restaurantName}
means that the parameter with key=restaurant and of
type=com.opentable.models.Restaurant has been reduced
to the single field restaurantName. Possible link constraints are
encoded separately as <type>_<key>=<condition>. Examples of
Elix-extracted links are provided in Figure 2 and Figure 8.

For primitive-typed parameters (integers, strings, floats, etc.),
the executor simply extracts the key and value, and saves them to
the intent. For complex objects that implement the Parcelable or
Serializable interfaces, the process is more involved. To simplify the
link parameterization process, we allow an app or service invoking
a link to specify only primitive types, thus not requiring it to obtain
the APK of the target app. To do so, offline, Elix automatically exe-
cutes every app (more details on this later) and inspects intercepted
intents to extract the structures of complex objects. At runtime,
the executor uses the class type specified in the invoked link to
load the target app’s APK dynamically and find the specific class
structure for the object (i.e., object structures are logged in JSON
format and are transformed into Java objects using Gson [25]). The
fields corresponding to the keys passed in the link are then set and
the whole object is saved into an intent. Finally, with the assembled
intent, the executor invokes the target activity.

4.2 Testing app links
We built an automated pipeline (see Figure 5) that given a list
of Elix-extracted links collects activity logs, parameterizes links,

executes them, and classifies their result as success or failure. Apps
are executed on physical phones (Nexus 5) and Virtual Machines
(VMs). VMs are hosted in Azure Hyper-V and run Android X86
6.0 [5]. We modified Android 6.0 to log various information each
time a new activity is loaded, as described later. Note that for our
evaluation we tried to execute all Elix-extracted links. In reality, a
developer would run through testing only the links that are already
exposed or that have to be exposed.

Link parameterization. To discover app links, Elix does not
require any dynamic analysis of the app. However, we use dynamic
analysis for automatically logging structures of complex objects (as
described above), testing extracted links and enriching the docu-
mentation of the link schemes with examples of usage. We use UI
automation tools [12] to collect activity logs. These tools can be
configured to simulate user interactions with an app (by tapping
on buttons, filling out text boxes, swiping pages) and to navigate
various pages. By default, we use the Android Monkey [4] and
configure it to generate 35k random UI events (touch, scroll, swipe,
etc.) with a delay of 500 msec between events. For apps requiring
login, we create an account and save the credential state, which
is restored at each Monkey run. Each time Monkey transitions to
a new activity, we collect an example of app link invocation, in-
cluding keys/values of its parameters (an example log is shown in
Figure 1). Unfortunately, Monkey generally fails to visit all activi-
ties of an app, but parameter keys and complex objects are likely
to recur in links for different activities of the same app, so even
though Monkey is not able to visit all the activities, we can collect
parameters for many of the extracted links. In this way, during
testing, we try to parameterize any app link discovered by Elix

Execution and validation. Tests are launched from a PC con-
nected to VMs/phones via ADB. We collect crash logs, intent signa-
tures, UI trees including text contained in all textual UI elements,
and page screenshots. We use this data to automatically classify
each link as (i) a valid link that successfully executed, (ii) an in-
valid link that failed, or (iii) a link whose test outcome is unclear
or that could not be parameterized automatically. Crash logs and
presence/absence of intent dumps and a screenshot which are col-
lected when a page loads are the most important features. In case of
indecision we compare sizes of UI trees, amount of text and number
of images against lower-bound thresholds. Screenshots are also
useful for a quick manual inspection. For the evaluation in this
paper, we used this testing infrastructure but we also randomly
inspected many of the logs. In general, false negatives were rare.
False positives occurred mainly when a link executed, but did not
lead to the target page (e.g., a page with a popup error). Many im-
provements are possible here, such as a more advanced analysis of
the collected screenshots.

5 EVALUATION
We evaluate Elix based on the goals we have set in §2.3: high cov-
erage, link validity, and practicality. In addition, we show that our
static analysis implementation is efficient and that testing of ex-
tracted links can be automated to scale to large numbers of apps.
At the end of this section, we also provide a comparison of Elix
with a “non-path-selective link extractor”.
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All experiments were executed using the testing infrastructure
described in §4.2. Static analysis was performed on two machines:
an Intel(R) Xeon(R) CPU E5-2687W v2 3.40GHz with 64 GB RAM
and an Intel(R) Xeon(R) CPU E5-1650W v3 3.50GHz with 32 GB
RAM. The differences between execution times on the twomachines
were negligible.

We used a total of 1007 Android apps, selected as follows. We
identified the top 60 apps in 18 popular categories (excluding games)
from Google Play Store and downloaded their APKs from https://
www.apkmirror.com (which ensures that APKs are real and created
by their respective developers). Some APKs were not available at
this site, and hence some categories had fewer than 60 apps. The
downloaded apps had an average size of the APK files of 20.9 kB,
and had on average 38.2 activities.

5.1 Coverage and time of static analysis
We ran Elix with a maximum analysis time per activity of 30 min-
utes. Across the 1007 apps, out of 38,419 activities analyzed, 34,156
activities succeeded (88.90%), 3,900 timed out (10.15%), and 363
failed (0.95%). Timeouts mainly occurred in FlowDroid’s taint prop-
agation stage which is computation-intensive, and sometimes in
Elix’s symbolic executor. Failures were mostly due to corner cases
which we do not handle yet, e.g., missing method body when ap-
plying complex object reduction.

Across all apps, Elix extracted a total of 57,750 links (on average
1.7 links per activity). Figure 6a reports the CDF of the percentage
of app activities with app links extracted. 87% of apps have 80%
coverage or higher (i.e., Elix extracted app links for 80% of an app’s
activities), and 32% achieve 100% coverage (i.e., Elix extracts links
for all activities). We conclude Elix is able to extract app links for
most pages in an app.

Moreover, as Figure 6b shows, Elix (blue line) significantly in-
creases the coverage of an app’s pages provided using today’s
developer-coded app links (orange dashed line). We estimated the
number of developer-coded links by counting the deep link URIs
declared in the app manifests. Keeping in mind this count is an
over-estimate of the number of unique pages an app exposes (§2.2),
we observe that 45% of the 1007 top Android apps expose 1 or more
deep links and only 25% expose more than 2; Elix extracts more
than 2 apps links for 98% of apps and more than 25 for 50% of apps.

App analysis times indicate Elix’s efficiency. The average analysis
time for successful activities was 103.9 seconds (maximum was 29.9
minutes); for 80% of the apps, analyzing a single activity took less
than 2 minutes (Figure 6c).

5.2 Link validity
To verify that the paths extracted by Elix translate into practical
links, we executed links from 100 apps. We used the testing in-
frastructure described in §4.2 to automatically collect instances of
link parameters (using Monkey), generate parameterized links, and
execute them in our testbed of phones and VMs. Across the 100
apps, Monkey provided an average coverage of 29.3% of an app’s
activities5, which allowed us to automatically parameterize a total
of 1,386 links (corresponding to 40% of all the links Elix extracted
for the 100 test apps). These links were executed and, using the
collected logs, classified as successful or failed. Links that could not
be automatically parameterized were excluded from testing.

Overall, the average success rate per app was 84%. As we can
see in Figure 7, for more than 80% of the apps the success rate
was above 67% and for 50% of the apps was over 92%. We found
three main causes of failure, listed in order of prevalence. 1) Depen-
dency injection: the link was missing a required parameter due to

5This result is in agreement with an extensive comparison study [12] of popular UI
automation tools.

https://www.apkmirror.com
https://www.apkmirror.com


Table 4: App link coverage (number of activities for which Elix extracted at least an app link compared to the total number of
activities present in the app) and validity (how many of the tested links executed correctly) for 25 sample apps.

App Category Coverage App link validity
# activities # activities w/ link(s) # tested links success failure

IMDB Entertainment 67 67 14 12 2
Netflix Entertainment 47 45 10 9 1
Spotify Music&Audio 82 53 27 22 5
TuneIn Radio Music&Audio 18 16 13 12 1
OpenTable Food&Drinks 54 52 13 12 1
DominosPizza Food&Drinks 37 37 24 23 1
Zomato Food&Drinks 106 104 27 26 1
Wunderground Weather 41 39 15 14 1
Kindle Books&Ref 95 83 40 27 13
Dictionary.com Books&Ref 29 28 19 18 1
CNN News News 31 28 10 9 1
AllRecipes Lifestyle 20 20 11 10 1
Walmart Shopping 71 70 47 44 3
Wish Shopping 45 37 34 32 2
Etsy Shopping 36 36 26 22 4
Zillow House&Home 47 47 23 20 3
Trulia House&Home 29 27 10 10 0
Vine Video 43 42 15 14 1
Instagram Social 24 22 13 8 5
WebMD Health&Fitness 38 38 20 17 3
Duolingo Education 28 21 14 10 4
GasBuddy Travel&Local 34 33 17 17 0
Hotel Tonight Travel&Local 41 41 21 18 3
Tripit Travel&Local 72 72 29 22 7
ESPN Sports 39 26 15 14 1
Average 47.0 43.4 20.3 17.7 2.6

dependency injection not yet supported by Elix (see §3.4). 2) Link
Executor limitations: links failed when i) they required parameters
of type Bundle, ParcelableArray or ParcelableArrayList whose seri-
alization/deserialization is not yet supported by our Link Executor,
and ii) their parameters included field types of a class declared
as a Java Interface so our Link Executor was not able to load the
appropriate constructor (the constructor name should be captured
during static analysis). 3) False negatives due to Fragments (§3.4).
We conclude that Elix generated working links in the majority of
cases, and that failures were due to tractable engineering issues.

For brevity we omit detailed results for all tested apps, but to
give some concrete examples, Table 4 reports detailed results for 25
of the apps we executed. The table shows the number of activities
for which one or more links were extracted (4th column) and the
number of links tested (5th column) along with the outcome (last
two columns). On average, 87% (17.7 out of 20.3) of the tested links
worked reliably. We inspected the logs of the 65 failures across the
25 apps and found that dependency injection was the most common
cause (31 out of 65), followed by Link Executor (18 out of 65) and
Fragment limitations (12 out of 65). In four cases, the link failed
due to app-specific issues (e.g., a system error or a dialog which
could not be created).

Overall, Elix was able to successfully extract reliable links from
many Android apps, from an extensive range of categories.

5.3 Reduction in link parameters
To demonstrate that Elix is effective at reducing the complexity
of extracted links, we compared the link schemes before and after
running the second taint propagation pass (§3.2.3), which attempts
to minimize the number of complex-typed parameters. On average,
complex data types were reduced by 44.9%. The removed/reduced
complex objects were quite large. By examining the number of
fields in the removed or reduced complex objects, we found the
average reduction in terms of primitive types was 32.8 fields per
each removed/reduced object, so a significant simplification in the
link scheme. The number of complex types could be reduced even
more by extending our taint propagation to Fragments.

5.4 Comparison with non-path-selective static
analysis

To give some insights on the importance of Elix’s novel path-
selective approach, we implemented a non-path-selective link ex-
tractor that uses FlowDroid (with our modifications). We used four
popular apps (Airbnb, Walmart, Netflix, and Fandango), and ex-
tracted links using both Elix and the non-path-selective extractor.
In total, Elix generated 682 links for 297 activities (on average, 2.3
links per activity). The non-path-selective extractor generated 1



Elix

# C1 constraint

android.intent.action == "SEARCH"

# C2 constraint

(com.airbnb.utils.SettingDeepLink)_setting_deep_link == EXIST

# applink 1: search room listings, under C1=true

Activity: com.airbnb.activities.ManageListingActivity

p1: string:android.intent.action

# applink 2: update room details, under (C1=false & C2=true)

Activity: com.airbnb.activities.ManageListingActivity

p1: string:android.intent.action

p2: int:(com.airbnb.utils.SettingDeepLink)_setting_deep_link{ordinal}

# applink 3: view current listings, under (C1=false & C2=false)

Activity: com.airbnb.activities.ManageListingActivity

p1: string:android.intent.action

p2: Parcelable:(com.airbnb.models.Listing)_managed_listing

Non-path-selective extractor

# single applink without constrains which fails

Activity: com.airbnb.activities.ManageListingActivity

p1: string:android.intent.action

p2: Parcelable:(com.airbnb.models.Listing)_managed_listing

p3: Serializable:(com.airbnb.utils.SettingDeepLink)_setting_deep_link

Figure 8: Links and constraints extracted by Elix and a non-
path-selective extractor for the ManageListingActivity of
the Airbnb Android app.

link per activity, with no constraints. It incorrectly conflated all pa-
rameters of different paths in one path because it ignores control de-
pendencies. This can lead to invalid links. For example, for Airbnb’s
ManageListingActivity, which is used for managing room listings
by an owner, Elix extracted three links with 1 or 2 constraints each
(shown in Figure 8). If android.intent.action equals SEARCH, the
app link opens a page for searching through the owner’s listings;
otherwise, depending on whether the parameter setting_deep_link
is specified or not, it opens a page for updating a room details or
for viewing a list of rooms currently listed, respectively. The single
link extracted by the non-path-selective extractor fails to capture
these constraints and the three different functionalities. Moreover,
Elix’s links are simpler thanks to complex object reduction. We
also found cases (e.g., Netflix’sMovieDetailsActivity), where Elix
was able to capture constraints about critical parameters that if not
present or if set incorrectly would trigger exceptions.

The non-path-selective extractor ran faster than Elix. On average,
the analysis of an activity took 37.8 seconds with the non-path-
selective extractor and 49.1 seconds with Elix, but Elix’s execution
time was still acceptable.

6 RELATEDWORK
The closest systems to Elix are uLink [8] and Aladdin [29]. Both
uLink and Aladdin are frameworks to allow users to record links
to specific states (i.e., activities or fragments) in an Android app.
uLink records intents at runtime as opaque byte arrays, and it
can only record links, effectively bookmarks, to pages a user has
explicitly visited. Instead, Elix extracts parameterized URIs and
achieves high coverage by using static analysis. uLink is also built
as a library, thus requiring modifications to the app’s source code.
Aladdin exposes app links by synthesizing the shortest path from
an app entry to the target activity with the help of a static activity
navigation graph and a dynamically-constructed set of parameters

to reach that activity. Aladdin’s parameter construction is unsound
because it only considers the shortest path to the target and the
constructed parameters are only a subset of the total parameters.
Compared to Aladdin, Elix’s link parameter construction is sound
since it relies on sound static analysis and the precision is improved
by path-selective tuning. Aladdin also does not provide support
for intents with Parcelable/Serializable objects. DroidLink [30] is
somewhat similar to uLink and Aladdin: it allows activities to be
accessed directly via app links by constructing an activity transition
graph, computing the shortest path that allows a certain activity to
be reached, generating a hash of the path and repackaging the app
to accept these hashes via intent filters. DroidLink, just as uLink
and Aladdin, is based on dynamic analysis, hence shares the same
disadvantages. DroidLink has been tested on 5 apps only.

The idea of applying static taint analysis techniques to app link
extraction is relatively new. Elix leverages FlowDroid; however,
FlowDroid is path-insensitive, dataflow-oriented and produces false
positives; we built a new static symbolic executor to remedy this.
Traditional dynamic symbolic execution (DSE) [10, 11] leverages
a mix of symbolic and concrete execution. DSE has several appli-
cations: higher code coverage, testing [10], input generation [22],
security, etc. However, DSE can be limited by path explosion. Al-
though progress has been made [33, 35], using DSE in large systems
such as Android remains a challenge. For example, Anand et al. [1]
used DSE to generate input events for app GUI testing; classical
DSE did not complete for k = 4 event sequence within 12 hours,
and even with their proposed pruning algorithms the length of the
event sequence was bounded to k = 4. The main reason behind
path explosion is the number of symbolic values selected, and the
branches or loop conditions that are affected by the symbolic val-
ues because DSE forks a new path at each symbolic branch. Elix
proposes static path-selective taint analysis that only forks paths
at tainted branches and merges paths at post-dominators of un-
tainted branches. Our approach is inspired by Thresher [9] and
Saturn [52]. Thresher’s goal is different from ours though, and it
uses backward symbolic execution, while we perform forward sym-
bolic analysis. Saturn uses method summaries for inter-procedural
analysis and is path sensitive, but it is too heavyweight for complex
systems. Instead, Elix takes a hybrid approach: it collects selective
path constraints from plain dataflow-based taint results.

7 CONCLUSIONS
We have presented Elix, an approach that automates app link extrac-
tion. The approach hinges on a precise yet scalable path-selective
static analysis that was achieved by combining taint analysis with
symbolic execution. Our long-term goal is to allow developers to
automatically create links for all app pages they want to expose.
While there is still a long way to achieve this vision, our experi-
ments on 1007 popular Android apps show that Elix works well for
a variety of apps.
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