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Abstract
Software updates typically require stopping and restarting an ap-
plication, but many systems cannot afford to halt service, or would
prefer not to. Dynamic software updating (DSU) addresses this dif-
ficulty by permitting programs to be updated while they run. DSU
is appealing compared to other approaches for on-line upgrades be-
cause it is quite general and requires no redundant hardware. The
challenge is in making DSU practical: it should be flexible, and yet
safe, efficient, and easy to use.

In this paper, we present Ginseng, a DSU implementation for
C that aims to meet this challenge. We compile programs specially
so that they can be dynamically patched, and generate most of a
dynamic patch automatically. Ginseng performs a series of anal-
yses that when combined with some simple runtime support en-
sure that an update will not violate type-safety while guaranteeing
that data is kept up-to-date. We have used Ginseng to construct and
dynamically apply patches to three substantial open-source server
programs—Very Secure FTP daemon, OpenSSH sshd daemon, and
GNU Zebra. In total, we dynamically patched each program with
three years’ worth of releases. Though the programs changed sub-
stantially, the majority of updates were easy to generate. Perfor-
mance experiments show that all patches could be applied in less
than 5 ms, and that the overhead on application throughput due to
updating support ranged from 0 to at most 32%.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.3.4 [Processors]:
Compilers; C.4 [Performance of Systems]: Reliability, availability,
and serviceability

General Terms Design, Languages, Performance

Keywords dynamic software updating, type wrapping, function
indirection, loop extraction

1. Introduction
Many systems require continuous operation but nonetheless must
be updated to fix bugs and add new features. For ISPs, credit card
providers, brokerages, and on-line stores, being available 24/7 is
synonymous with staying in business: an hour of downtime can
cost hundreds of thousands, or even millions of dollars [26, 28].
Many more systems would prefer on-line upgrades in lieu of hav-
ing to stop and restart the system every time it must be patched;
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an obvious example is the personal operating system. In a large en-
terprise, such reboots can have a large administrative cost [35]. De-
spite this, stop/restart upgrades are common—one study [22] found
that 75% of nearly 6000 outages of high-availability applications
were planned for hardware and software maintenance.

In prior work, we and others have proposed variations of a fine-
grained, compiler-based approach to supporting on-line upgrades
which we call dynamic software updating (DSU). In this approach,
a running program is patched with new code and data on-the-fly,
while it runs. DSU is appealing because of its generality: in princi-
ple any program can be updated in a fine-grained way. There is no
need for redundant hardware or special-purpose software architec-
tures, and application state is naturally preserved between updated
versions, so that current processing is not compromised or inter-
rupted. DSU can also be used naturally to support dynamic pro-
filing, debugging, and “fix-and-continue” software development.
Nonetheless, there has been little implementation experience re-
ported in the literature to suggest that DSU can work in practice for
non-stop services written in mainstream programming languages.
(A review of past work appears in Section 8.)

This paper presents Ginseng, a new DSU implementation for C
programs that aims to satisfy three criteria we believe are necessary
for practicality:

DSU should not require extensive changes to applications. DSU
should permit writing applications in a natural style: while an
application writer should anticipate that software will be upgraded,
he should not have to know what form that update will take.

DSU should restrict the form of dynamic updates as little as
possible. The power and appeal of DSU is to permit applications
to change on the fly at a fine granularity. Thus, programmers should
be able to change data representations, change function prototypes,
reorganize subroutines, etc. as they normally would.

Dynamic updates should be neither hard to write nor hard to
establish as correct. The harder it is to develop applications that
use DSU, the more its benefit of finer granularity and control is
diminished.

To evaluate Ginseng, we have used it to dynamically upgrade three
open-source servers: vsftpd (the Very Secure FTP daemon), the
sshd daemon from the OpenSSH suite, and the zebra server from
the GNU Zebra routing software package.

Based on our experience, we believe Ginseng squarely meets
the first two criteria for the class of single-threaded server appli-
cations we considered, and makes significant headway toward the
third. These programs are realistic, substantial, and in common use.
Though they were not designed with updating in mind, we had to
make only a handful of changes to their source code to make them
safely updateable. Each dynamic update we performed was based
on an actual release, and for each application, we applied updates
corresponding to at least three years’ worth of releases, totaling
as many as twelve different patches in one case. To achieve these
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Figure 1. Building and dynamically updating software with Ginseng.

results, we developed several new implementation techniques, in-
cluding new ways to handle the transformation of data whose type
changes, to allow dynamic updates to infinite loops, and to allow
updates to take effect in programs with function pointers. Though
we have not optimized our implementation, overhead due to updat-
ing is modest: between 0 and 32% on the programs we tested.

Despite the fact that changes were non-trivial, generating and
testing patches was relatively straightforward. We developed tools
to generate most of a dynamic patch automatically by comparing
two program versions, reducing programmer work. More impor-
tantly, Ginseng performs two safety analyses to determine times
during the running program’s execution at which an update can be
performed safely. The theoretical development of our first analysis,
called the updateability analysis, is presented in earlier work [33].
The contribution of this paper is the implementation of that analysis
for the full C programming language, along with some practical ex-
tensions, and the development of a new abstraction-violating alias
analysis for handling some of the low-level features of C. These
safety analyses go a long way toward ensuring correctness, though
the programmer needs a clear “big picture” of the application e.g.,
interactions between components and global invariants.

In short, we make the following contributions in this paper:

1. We present a practical framework to support dynamically up-
dating running C programs. Ours is the most flexible, and ar-
guably the most safe, implementation of a DSU system to date.

2. We present a substantial study of the application of our system
to three sizeable C server programs. Our experience shows that
DSU can be practical for updating realistic server applications
as they are written now, and as they evolve in practice. We
are optimistic that our approach can ultimately be practical for
many non-stop applications, including game servers, operating
systems and embedded systems software.

The next section presents an overview of our approach and outlines
the rest of the paper.

2. Ginseng Overview
Ginseng consists of a compiler, a patch generator and a runtime
system for building updateable software.1 Basic usage is illustrated
in Figure 1, with Ginseng components in white boxes. There are
two stages. First, for the initial version of a program, v0.c, the
compiler generates an updateable executable v0, along with some
prototype and analysis information (Version Data d0). The exe-
cutable is deployed. Second, when the program has changed to a

1 The compiler and patch generator are written in Objective Caml using the
CIL framework [25].The runtime system is a library written in C.

new version (v1.c), the developer provides the new and old code
to the patch generator to generate a patch p1.c representing the
differences. This is passed to the compiler along with the current
version information, and turned into a dynamic patch v0 → v1.
The runtime system links the dynamic patch into the running pro-
gram, completing the on-line update. This process continues for
each subsequent program version.

The Ginseng compiler has two responsibilities. First, it com-
piles programs to be dynamically updateable, so that existing code
will be redirected to replacement functions present in a dynamic
patch. In addition, when a type is updated, existing values of that
type must be transformed to have the new type’s representation,
to be compatible with the new code. Code is compiled to notice
when a typed value is out of date, and if so, to apply the necessary
transformation function. We explain in Section 3 how our imple-
mentation supports these features by transforming a program to use
function indirections and type wrappers.

Second, the Ginseng compiler uses a suite of analyses to ensure
that updates are always type-safe, even when changes are made
to function prototypes or type definitions. The basic idea is to
examine the program to discover assumptions made about the types
of updateable entities (i.e., functions or data) in the continuation of
each program point. These assumptions become constraints on the
timing of updates. For example, a call to int f(int) constrains
the program point just before the call to not allow an update to f
that would change f’s type. The formal details of our analysis are
presented elsewhere [33]; Section 4 discusses its application to C
programs, including several extensions.

The Ginseng patch generator (Section 5) has two responsibili-
ties. First, it identifies those definitions (be they global variables,
functions, or types) that have changed between versions. Second,
for each type definition that has changed, it generates a type trans-
former function used to convert values from a type’s old represen-
tation to the new one. The compiler inserts code so that the program
will make use of these functions following a dynamic patch. If the
new code assumes an invariant about global state, this invariant has
to hold after the update takes place. Users can write optional state
transformer functions that are run at update time to convert global
state and run initialization code for this purpose. Users also may
adjust the generated type transformers as necessary. We found that
writing state transformers or adjusting type transformers was rarely
needed.

The dynamic update itself is carried out by the Ginseng runtime
system (Section 5) linked into the updateable program. Once no-
tified, the runtime system will cause the patch to be dynamically
loaded and linked at the next safe update point. This is essentially a
call into the runtime system inserted by the programmer. Our safety



analysis will annotate these points with constraints as to how defi-
nitions are allowed to change at each particular point. The runtime
system will check that these constraints are satisfied by the current
update, and if so, it “glues” the dynamic patch into the running pro-
gram. In our experience, finding suitable update points in long-lived
server programs is quite straightforward, and the analysis provides
useful feedback as to whether the chosen spots are free from re-
strictions.

The next three sections describe these features of Ginseng in de-
tail, while Sections 6 and 7 describe our experience using Ginseng
and evaluate its performance. We finish with a discussion of related
work and conclude.

3. Enabling On-line Updates
To make programs dynamically updateable we address two main
problems. First, existing code must be able to call new versions of
functions, whether via a direct call or via a function pointer. Sec-
ond, the state of the program must be transformed to be compatible
with the new code. For a type whose definition has changed, exist-
ing values of that type must be transformed to conform to the new
definition.

Ginseng employs two mechanisms to address these two prob-
lems, respectively: function indirection and type-wrapping. We dis-
cuss them in turn below, and show how they can be combined to
update long-running loops.

3.1 Function Indirection
Function indirection is a standard technique that permits old code
to call new function versions by introducing a level of indirection
between a caller and the called function, so that its implementation
can change. For each function f in the program, Ginseng introduces
a global variable f_ptr that initially points to the first version of
f.2 Ginseng encodes version information through name mangling,
f initially being f_v0, then f_v1 and so on. Each direct call to
f within the program is replaced with a call through *f_ptr.
Ginseng also handles function pointers in an interesting way: if
the program passes f as data (i.e., as a function pointer), Ginseng
generates a wrapper function that calls *f_ptr and passes this
wrapper instead. To dynamically update f to version 1, the runtime
system dynamically loads the new version f_v1 and then stores the
address of f_v1 in f_ptr.

3.2 Type Wrapping
The Ginseng updating model enforces what we call representation
consistency [33], in which all values of type T in the program at a
given time must logically be members of T’s most recent version.
The alternative would be to allow multiple versions of a type to
coexist, where code and values of old and new type could inter-
act freely within the program. (Hjálmtýsson and Gray [18] refer to
these approaches as global update and passive partitioning, respec-
tively.) Representation consistency is a useful property because it
more closely models the “forward march” of a program’s on-line
evolution, making it easier to reason about.

To enforce representation consistency, Ginseng must ensure that
when a particular type T’s definition is updated, values of that type
in the running program are updated as well. To do this, a dynamic
patch defines a type transformer function used to transform a value
vT from T’s old definition to its new one. Just like functions, types
are associated with a version, and the type transformer cTn→n+1

converts values of type Tn to be those of type Tn+1. As we explain
later, much of a type transformer function can be generated auto-
matically via a simple comparison of the old and new definitions.

2 Ginseng is more careful than we are in these examples about generating
non-clashing variable names.

Given this basic mechanism, we must address two questions.
First, when are type transformers to be used? Second, how is
updateable data represented?

Applying Type Transformers To transform existing vTn
values

the runtime system must find them all and apply cTn→n+1 to
each. One approach would be to do this eagerly, at update-time;
this would require either implementing a garbage-collector-style
tracing algorithm [14], or maintaining a registry of pointers to
every (live) value of type Tn during execution [4]. More simply, we
could restrict type transformation to only those data reachable from
global variables, and require the programmer to implement the
tracer manually [17]. Finally, we could do it lazily, as the program
executes following the update [12, 7].

Ginseng uses the lazy approach. The compiler renames version
n of the user’s definition of T to be Tn, where the definition of T
simply wraps that of Tn, adding a version field. Given a value
vT (of wrapped type T), Ginseng inserts a coercion function called
conT (for concretization of T) that returns the underlying repre-
sentation. This coercion is inserted wherever vT is used concretely,
i.e., in a way that depends on its definition. For example, this would
happen when accessing a field in a struct. Whenever conT is
called on vT , the coercion function compares vT ’s version n with
the latest version m of T. If n < m, then the necessary type trans-
former functions are composed and applied to vT , changing it in-
place, to yield the up-to-date vTm

(of type Tm).
The lazy approach has a number of benefits. First, it is not lim-

ited to processing only values that are reachable by global vari-
ables; stack-allocated values, or those reachable from stack allo-
cated values are handled easily. Second, it amortizes transforma-
tion costs, reducing the potential pause at update-time that would
be required to transform all data in the program. The drawback
is that per-type access during normal program execution is more
expensive (due to the calls to conT), and the programmer has lit-
tle control over when type transformers are invoked, since this is
determined automatically. Therefore, transformers must be written
to be timing-independent. In our experience, type transformers are
used rarely, and so it may be sensible to use a combination of eager
and lazy application to reduce total overhead.

Without care, it could be possible for a transformed value to
end up being processed by old code, violating representation con-
sistency. This could lead a conT coercion to discover that the ver-
sion n on vT is actually greater than the version m of the type
T expected by the code. A similar situation arises when function
types change: old code might end up calling the new version of a
function assuming it has the old signature. We solve these problems
with some novel safety analyses, described in Section 4.

Type Representations While lazy type updating is not new, there
has been little or no exploration of its implementation, particularly
for a low-level language such as C. Based on our experience, a
given type is likely to grow in size over time, so the representation
of the wrapped type T must allow this. One approach is to define
the wrapper type to use a fixed space, larger than the size of T0

(padding). This strategy allows future updates to T that do not ex-
pand beyond the preallocated padding. The main advantage of the
padding approach is that the allocation strategy for wrapped data is
simple: stack-allocated data in the source program is still stack al-
located in the compiled program, and similarly for malloced data.
This is because type transformation happens in place: the trans-
formed data overwrites the old data in the same storage. On the
other hand, a data type cannot grow beyond the initial padding,
hampering on-line evolution. Padding also changes the cache lo-
cality of data; for example, if a two-word structure in the original
program is expanded to four words, then half as many elements can
fit in a cache line. For simplicity, Ginseng employs this approach.



An alternative approach is to use indirection, and represent the
wrapped type as a pointer to a value of the underlying type. This
mechanism is used in the K42 operating system [20], which sup-
ports updating objects. The indirection approach solves the growth
problem by allowing the size of the wrapped type to grow arbi-
trarily, but introduces an extra dereference per access. More impor-
tantly, the indirection approach makes memory management more
challenging: how should storage for the transformed data be allo-
cated, and what is to happen to the now-unneeded old data? Also,
when data is copied, the indirected data must be copied as well, to
preserve the sharing semantics of the application. The simplest so-
lution would be to have the compiler malloc new representations
and free (or garbage collect) the old ones; this is less performance-
friendly than stack allocation. A better alternative would be to use
regions [34], which have lexically-scoped lifetimes (as with stack
frames), but support dynamic allocation. Of course, a hybrid ap-
proach is also possible: data could start out with some padding, and
an indirection is only added if the padding is ever exceeded.

3.3 Example
Figure 2 presents a simple C program, and how we compile it
to be updateable. The original program is on the left, and the
resulting updateable program in the middle and right columns.
The comments can be ignored; these are the results of the safety
analysis, explained in the next section.

First, we can see that all function definitions have been renamed
to include a version, and that Ginseng has introduced a _ptr vari-
able for each function, to keep a pointer to the most current ver-
sion. Calls to functions are indirected through these pointers. Sec-
ond, we can see that the definition of struct T is now a wrapper
for struct __T0, the original definition. The __con_T function
unwraps a struct T, potentially transforming it first via a call
to __DSU_transform. The __con_T function is called twice in
__call_v0 to extract the underlying value of t. Finally, we can
see that Ginseng has generated __foo_wrap to wrap an indirected
call to foo; this is passed as a function pointer to apply.

3.4 Loops
When a function f is updated, in-flight calls are unaffected, but
all subsequent calls, including recursive ones, take the new f. In
general, this is a good thing, because it makes reasoning about the
timeline of an update simpler. On the other hand, this presents
a problem for functions that implement long-running or infinite
loops: if an update occurs to such a function while the old version
is active, then the new version may not take effect for some time,
or may never take effect.

We solve this problem by a novel transformation we call loop
extraction. The idea is that the body of a loop can be extracted into
a separate function that is called on each iteration of the loop. If the
function containing the loop is later changed, then this extracted
function will notice the changes to the loop on the next iteration.
As the code and state preceding the loop might have changed as
well, the loop function must be parameterized by some loop state.
This state will be transformed using our standard type transformer
mechanism on the next iteration of the loop. Extracting the loop
body into a function parameterized by loop state is similar to
closure conversion followed by lifting.

For illustration, consider the code in the left column of Figure 3.
The programmer directs Ginseng that the loop labeled L1 should be
extracted. The result is shown in the middle and right columns. In
the middle is the extracted loop function, L1_loop, and on the right
side is the rewritten original function foo. The function L1_loop
takes two arguments: struct L1_ls *ls, and int *ret. The
first argument is the loop state, which contains pointers to all of
the local variables and parameters referenced in foo that might be

needed by the loop; we can see in foo where this value is created.
Within L1_loop, references to local variables (x) or parameters (g)
have been changed to refer to them through *(ls).

Within the function foo, the loop function is called on each
loop iteration. Within the extracted loop function, expressions
that would have exited the loop—notably break, continue, and
return statements—are changed to return x, where x is 0 for
break, 1 for continue and 2 for return. In foo, this return code
is checked and the correct action is taken.

If in a subsequent program version the loop in foo were to
change, the extracted versions of the two loops would be different,
with the new one updating the old one. The new version will be
invoked on the loop’s next iteration, and if the new loop requires
additional state (e.g., new local variables or parameters were added
to foo), then this is handled by the type transformer function
for struct L1_ls. This type transformer might perform side-
effecting initialization as well, for code that would have preceded
the execution of the current loop. Note that foo’s callers are neither
aware nor affected by the loop extraction inside the body of foo.

When extracting infinite loops, nothing else needs to be done.
However, if the loop might terminate, we must extract the code that
follows the loop as well, so that an updated loop does not execute
a stale postamble when it completes. This can be done using loop
extraction itself: to extract a statement S, the programmer rewrites
that statement to be while (1){ S; break;}, and then Ginseng
extracts the loop. This was critical for supporting two of our three
benchmark applications, as described in Section 6.

4. Safety Analysis
Let us look again at the example in Figure 2. Suppose the program
has just entered the call function—is it safe to update the type T?
Generally speaking the answer is no, because code t.x assumes
that t is a structure with field x, and a change to the representation
of t could violate this assumption, leading to unexpected behavior.
In this section we look at how Ginseng helps the programmer avoid
choosing bad update points like this one using static analysis.

4.1 Tracking Changes to Types
The example given above illustrates what could happen when old
code accesses new data, essentially violating representation consis-
tency. To prevent this situation from happening, Ginseng applies
a constraint-based, flow-sensitive updateability analysis [33] that
annotates each update point with the set of types that may not be
updated if representation consistency is to be preserved. This set
is called the capability because it defines those types that can be
used by old code that might be on the call stack during execution.
Of course, the capability is a conservative approximation, as it ap-
proximates all possible “stack shapes.” It is computed by propagat-
ing concrete uses of data backwards along the control flow of the
program to possible update points.

Statically-approximated capabilities are illustrated in Figure 2,
where the sets labeled D in the comments define the current capa-
bility; on functions, D defines the capability at the start of the func-
tion and D′ defines it at the end. When T appears in D, it means
that the program has the capability to use data of type T concretely.
An update must not revoke this capability when it is needed. For
example, the concrete use of t at the end of the call function re-
quires T to be in D, which in turn forces apply not to permit an
update to T.

Programmers indicate where updates may occur in the pro-
gram text by inserting a call to a special runtime system function
DSU_update. When our analysis sees this function, it “annotates”
it with the current capability. At run-time this annotation is used
to prevent updates that would violate the static assumption of the
analysis. Moreover, the runtime system ensures that if a type is up-



Original program Updateable program
struct T {

int x; int y;
};

void foo(int* x) {
*x = 1;

}
void apply(void (*fp)(int*),

int* x) {
fp(x);

}
void call() {

struct T t = {1,2};
apply(foo,&t.x);
t.y = 1;

}

struct T {
unsigned int version;
union { struct __T0 data;

char padding[X]; } udata;
};
struct __T0* __con_T(struct T* abs) {

__DSU_transform(abs);
return &abs->udata.data;

}

void * foo_ptr = &__foo_v0;
void * apply_ptr = &__apply_v0;
void * call_ptr = &__call_v0;

void __foo_wrap(int* x) {
(*foo_ptr)(x);

}

struct __T0 { int x; int y; };
/* D=D’={T}, L={T}, x:T */
void __foo_v0(int* x) { *x = 1; }
/* D={foo,T}, D’={T}, L={}, x:T */
void __apply_v0(void (*fp)(int*),

int *x) {
fp(x);

}
/* D={T,apply}, D’={}, L={} */
void __call_v0() {

struct T t = { 0, {.data={1,2}}};
(*apply_ptr)(__foo_wrap,

&(__con_T(&t))->x);
/* D={T} */
&(__con_T(&t))->y = 1;

}

Figure 2. Compiling a program to be dynamically updateable.

Original program Updateable program

int foo(float g) {
int x = 2;
int y = 3;
L1:while (1) {

x = x+1;
if (x == 8) break;
else continue;
if (x == 9) return 42;

}
return 1;

}

struct L1_ls {
float *g; int *x; int *y;

};

int L1_loop(int *ret,
struct L1_ls *ls) {

*(ls->x) = *(ls->x) + 1;
if (*(ls->x) == 8) {

return (0); // break
} else {

return (1); // continue
}
if (*(ls->x) == 9) {

*ret = 42;
return (2); // return

}
return (1); // implicit continue

}

int foo(float g) {
int x = 2;
int y = 3;
struct L1_ls ls;
int retval;
int code;
ls.g = & g; // init loop state
ls.x = & x;
ls.y = & y;
while (1) {

code = L1_loop(&retval, &ls);
if (code == 0) break;
else if (code == 1) continue;
else return (retval);

}
return (1);

}

Figure 3. Loop extraction.

dated, then any functions in the current program that use the type
concretely are updated with it. This allows the static analysis to be
less conservative. In particular, although the constraints on the form
of capabilities induced by concrete usage are propagated backwards
in the control flow, propagation does not continue into the callers of
a function. This propagation is not necessary because the update-
time check ensures that all function calls are always compatible
with any changed type representations.

We have formalized the updateability analysis and proved it
correct in previous work [33]. One contribution of the present work
is the implementation of this analysis for the full C language. Our
implementation extends the basic analysis to also track concrete
uses of functions and global variables, which permits more flexible
updates to them. In the former case, by considering a call as a
concrete use of a function, and function names as types, we can
safely support a change to the type of the function. Similarly,
in the latter case, by taking reads and writes of global variables
as concrete uses, and the name of a global variable as a type,
we can support representation changes to global variables. In our
experience, the types of functions and global variables do change
over time, so this extension has been critical to making DSU work
for real programs.

To illustrate the analysis, consider Figure 2 again. We can see
that function names appear in the initial capability of apply and

call. In the former case, this is because the analysis determines
that fp could be foo at run-time, and thus the call to fp places foo
(and other functions fp could be) into the current capability. For
the latter case, the call to apply within call places it in call’s
initial capability. This means that if we were to attempt an update
at the start of apply (respectively call), then the type of foo
(respectively apply) must either remain unchanged or the new type
be a subtype of the old type [33].

The implementation also properly accounts for both signals and
non-local control transfers via setjmp/longjmp, albeit quite con-
servatively. Since signal handlers can fire at any point in the pro-
gram, we prevent updates from occurring inside a signal handler
(or any function that handler might call), to avoid violating as-
sumptions of the analysis (we could allow updates to occur, but
prevent updates that would change type representations, function
signatures, etc.) We model setjmp/longjmp as non-local goto;
that is, the updateability analysis assumes that any longjmp in the
program could go to any setjmp. The server programs in Section 6
do not employ setjmp/longjmp, but all of them use signals.

In future work, we plan to extend our approach to multithreaded
programs. Because thread executions are interleaved, we will have
to either extend our safety analysis to account for capabilities of
other threads, and/or synchronize threads at safe update points
before allowing an update to take effect [31].



4.2 Abstraction-Violating Aliases
C’s weak type system and low level of abstraction sometimes make
it difficult for us to maintain the illusion that a wrapped type is the
same as its underlying type. In particular, the use of unsafe casts
and the address-of (&) operator can reveal a type’s representation
through an alias. An example of this can be seen in Figure 2 where
apply is called passing the address of field x of struct t. Within
foo, called by apply with this pointer, the statement *x = 1 is
effectively a concrete use of T, but this fact is not clear from x’s
type, which is simply int *. An update to the representation of
struct T while within foo could lead to a runtime error. We have
a similar situation when using a pointer to a typedef as a pointer to
its concrete representation. We say that these aliases are abstraction
violating.

One extreme solution would be to mark structs whose fields
have their address taken as non-updateable. However, this solution
can be relaxed by observing that only as long as an alias into a value
of type T exists is it dangerous to update T. Thus if we know, at each
possible update point, those types whose values might have live
abstraction-violating aliases (AVAs), we can prevent those types
from being changed.

We discover this set of types using a novel abstraction violat-
ing alias analysis. The analysis follows the general approach of
effect reconstruction [23, 10, 1], and is described in more detail in
Stoyle’s thesis [32]. Pointers are annotated with an “effect” which
lists the types whose values they may be pointing into. For exam-
ple, a pointer created by &t.x would include the type of t in its
effect. If such a pointer might be live at an update point, then no
types in its effect may be updated. To approximate the set of live
pointers at a given program point, we simply need to look to the lex-
ical environment of the program at that point, along with the lexical
environments of possible callers to the current function, ultimately
back to main(). For each function, we define a set L as those types
with abstraction violating pointers in at least one of the callers’ en-
vironments. We calculate this set through a simple constraint based
analysis that uses the control flow of the program. Finally, the ca-
pability of each possible update point is extended to include the
current function’s L and the effects appearing in the free variables
of the current environment.

The comments in Figure 2 illustrate the AVA analysis results for
the example, where L’s contents are shown for each function, and
the effect associated with variable x in functions foo and apply is
shown to be T via the notation x:T. Looking at the example, we can
see the call function violates T’s abstraction by taking the address
of t.x, and then passes this pointer to apply. This pointer is not
used concretely in call, so does not effect subsequent computation
in this function: call’s environment has no abstraction violating
pointers. As call is the only caller of apply, its associated L
is empty. However, the environment of the body of apply does
contain an abstraction-violating pointer, namely the parameter x.
Thus when apply calls foo via the pointer fp, T’s abstraction
is violated and the L annotation for foo must contain T. In the
example, we consider all statements as possible update points, and
so extend D according to the results of the AVA analysis. This
is why, for example, T appears in the capability of both foo and
apply. In both cases T is in L or in the effect of a free variable in
the environment (i.e., x).

4.3 Unsafe Casts and void *

To ensure that the program operates correctly, many representation-
revealing casts are disallowed. For example, if we had a declara-
tion struct S { int x; int y; int z; }, a C programmer
might use this as a subtype of struct T from Figure 2, by casting
a struct S * to a struct T *. Given the way that we repre-
sent updateable types, permitting this cast would be unsafe, since

struct S and struct T might have distinct type transformers
and version numbers and treating one as the other may result in
incorrect transformation. As a result, when our analysis discovers
such a cast, it rules both types as non-updateable.

However, it would be too restrictive to handle all such casts
this way. For example, C programmers often use void * to pro-
gram generic types. One might write a “generic” container library
in which a function to insert an element takes a void * as its ar-
gument, while one that extracts an element returns a void *. The
programmer would cast the inserted element to void * and the
returned void * value back to its assumed type. This idiom cor-
responds to parametric polymorphism in languages like ML and
Haskell. Programmers also encode existential types using void *
to build constructs like callback functions, and use upcasts and
downcasts when creating and using callbacks, respectively.

If these idioms are used correctly, then they pose no problem to
Ginseng’s compilation approach since they do not reveal anything
about a type’s representation. However, we cannot treat casts to and
from void * as legal in general, because void * could be used to
“launder” an unsafe cast. For example, we might cast struct S *
to void *, and then the void * to struct T *. Each cast may
seem benign on its own, but becomes unsafe in combination. To
handle this situation, our analysis annotates each void * type in
the program with the set of concrete types that might have been cast
to it, e.g., casting a struct T * to a void * would add struct
T to the set. When casting a void * to struct S *, the analy-
sis ensures the annotation on the void * contains a single ele-
ment, which matches struct S. If it does not, then this is a po-
tentially unsafe cast and both struct T and struct S are made
non-updateable. Since our analysis is not context-sensitive, some
legal downcasts will be forbidden, for example when a container
library is used twice in the program to hold different object types.
Fortunately, such context-sensitivity is rarely necessary in the pro-
grams we have considered. In the worst case, we inspect the pro-
gram manually to decide whether a cast is safe or not, and override
the analysis results in this case with a pragma. We leave to future
work the task of more properly inferring polymorphic usage.

5. Dynamic Patches
Patch Generation For each new release we need to generate a
dynamic patch, which consists of new and updated functions and
global variables, type transformers and state transformers. The Gin-
seng patch generator generates most of a dynamic patch automati-
cally by comparing the old and new versions of a program to dis-
cover the new and modified definitions, and then adds these def-
initions to the patch file, where unchanged definitions are made
extern. It also generates type transformers for all changed types
by attempting to construct a conversion from the old type into the
new type [17]. For example, if a struct type had been extended
by an extra field, the generator would produce code to copy the
common fields and add a default initializer for the added one. This
simplistic approach to patch generation is surprisingly effective, re-
quiring few manual adjustments. After the patch is generated and
the state and/or type transformers are written, we pass the resulting
C file to Ginseng, and the final result is compiled to a shared library
so that it can be linked into the running program.

Runtime System To perform an update, the user sends a signal
to the running program, which alerts the runtime system. Once
the program reaches a safe update point, the runtime system loads
the dynamic patch using dlopen, checks the validity of the patch
and installs it. Ginseng compiles the patch just as it does the
initial version of a program, but also introduces initialization code
to be run at update-time. The initialization code will effectively
“glue” the dynamic patch into the running program by updating the



function indirection pointers for all the updated functions, installing
the type transformers for the updated types, and running the user-
provided state transformer function, if any. Prior to this, it makes
sure that the constraints imposed by the updating analysis on the
current program point are satisfied by the patch; if not then the
update is delayed until the next possible update point.

Our current runtime system has two main limitations. We do
not support patch unloading, so old code and data will persist fol-
lowing an update. Fortunately, this memory leak has been mini-
mal in practice—between 21% and 40% after three years’ worth of
patches for our benchmark applications. Second, dynamic updates
are not transactional. If, during an update, an error is encountered,
we do not yet have a safe mechanism to abort the update and restore
the state to the pre-update one. We plan to address these problems
in future work.

6. Experience
We have used Ginseng to dynamically update three open-source
programs: the Very Secure FTP daemon (vsftpd)3, the OpenSSH
sshd daemon 4, and the zebra routing daemon from the GNU
Zebra routing package 5. We chose these programs because they
are long-running, maintain soft state that could be usefully pre-
served across updates, and are in wide use. For each program we
downloaded releases spanning several years and then applied the
methodology shown in Figure 1. In particular, we compiled the ear-
liest release to be updateable and started running it. Then we gener-
ated dynamic patches for subsequent releases and applied them on-
the-fly in release order, while the program was actively performing
work (serving files, establishing connections, etc.).

With this process, we identified key application features that
make updating the applications easy or hard. We also identified
strong points of our approach (that enabled most of the updates
to be generated automatically), along with issues that need to be
addressed in order to make the updating process easier, more flex-
ible and applicable to a broad category of applications. In the rest
of this section, we describe the applications and their evolution his-
tory, and the manual effort required to dynamically update them;
identify application characteristics and Ginseng features that make
updating feasible; and conclude by reviewing factors that enabled
us to meet the challenges set forth in Section 2.

6.1 Applications
Figure 4 shows the release timeline for each application, along with
the nature of individual releases 6 and the code size of each release.
We briefly discuss each application first, then describe how the
applications changed over a three year period, and finally discuss
the manual effort required to dynamically update them.

Vsftpd stands for “Very Secure FTP Daemon” and is now the de
facto FTP server in major Unix distributions. Vsftpd was first
released in 2002. It began to be widely used with version 1.1.0
and is now at version 2.0.3, so for our study, we considered the
13 versions from 1.1.0 through 2.0.3. As can be seen in Fig-
ure 4, in the time frame we considered there were 3 major fea-
ture enhancements, 3 major bugfixes, 2 minor feature enhance-
ments and 1 minor bugfix.

Sshd is the SSH daemon from the OpenSSH suite, which is the
standard open-source release of the widely-used secure shell

3 http://vsftpd.beasts.org
4 http://www.openssh.com
5 http://www.zebra.org
6 As described at http://freshmeat.net/

Application Source code (LOC)
Type/state xform Gvar changes Patch gen.

(manual) (manual*) auto
vsftpd 162 930 83965
sshd 125 659 248587
zebra 49 244 43173

Table 2. Patch source code breakdown.

protocols. We upgraded sshd 10 times, corresponding to 11
OpenSSH releases (version 3.5p1 to 4.2p1) over three years.

Zebra GNU Zebra is a TCP/IP routing software package for build-
ing dedicated routers that support the RIP, OSPF, and BGP pro-
tocols on top of IPv4 or IPv6. It consists of protocol daemons
(RIPd, OSPFd, BGPd) and a zebra daemon which acts as a
mediator between the protocol daemons and the kernel. The
zebra daemon stores acquired routes, transmits route changes
to the kernel and redistributes route updates to protocol dae-
mons. Storing routes in zebra allows protocol daemons to be
stopped and restarted without discarding and re-learning routes
(which can be a time consuming process). We upgraded zebra
5 times, corresponding to 6 releases (version 0.92a to 0.95a)
over 4 years.

Evolution History Table 1 summarizes the release information
and shows some of the ways the programs changed over time. The
first two grouped columns describe the first and last release we con-
sidered for each program. The last three grouped columns contain
the cumulative number of changes that occurred to the software
over that span. ‘Types’ refers to structs, unions and typedefs to-
gether. Global variable changes consists of changes to either global
variable types or to global variable static initializers. As an exam-
ple reading of the table, notice that for vsftpd, 97 functions were
added, 21 were deleted, 33 functions had their prototype changed,
and 308 functions had the bodies changed. For sshd, 19 types
changed; for zebra, there were 52 global variable changes.

These statistics make clear that a dynamic software updating
system must support changes, additions, and deletions for func-
tions, types and global variables if it is to handle realistic software
evolution. Ginseng supports all these changes, and we have been
able to dynamically update the applications from the earliest to the
latest versions we considered.

Source Code Changes To safely update these applications with
Ginseng required a few small changes to their source code, amount-
ing to around 50 lines of code for vsftpd and sshd and 40 lines for
zebra. The changes consisted of introducing named types for some
global variables (to support changes in types and static initializers),
directives to the compiler (analysis and loop extraction) and in one
case (vsftpd), instantiating an existential use of void *. Another
one-line change to vsftpd is discussed in the next subsection.

For each new release, we would use the Ginseng patch generator
to generate the initial patch, and then verify or complete the auto-
generated type transformers and write state transformers (where
needed, which was rare). This effort was typically minimal. Table 2
presents the breakdown of patches, across all releases, into manual
and auto-generated source code: the first column shows the number
of source code lines we had to write for type and state transformers,
the second column shows code lines we had to write to cope with
changes in global variables’ types or static initializers, and the
third column shows the amount of code coming out of the patch
generator. The code dealing with changes in static initializers for
global variables is frequently a mere copy-paste of the variable’s
static initializer.

http://vsftpd.beasts.org
http://www.openssh.com
http://www.zebra.org
http://freshmeat.net/
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Figure 4. Evolution history of test applications.

Prog. First release Last release Functions Types Global variables
Ver. Date LOC Ver. Date LOC Add Del. Proto Body Add Del. Chg. Add Del. Chg.

changes changes
vstfpd 1.1.0 07/02 10141 2.0.3 03/05 17424 97 21 33 308 12 2 6 72 9 15
sshd 3.5p1 03/02 47424 4.2p1 09/05 58104 131 19 85 752 27 2 19 70 19 29
zebra 0.92a 08/01 41630 0.95a 09/05 45586 134 44 13 321 24 6 4 56 11 52

Table 1. Application update information (all versions).

6.2 Dynamic Updating Catalysts
In the process of updating the three applications, we discovered
four factors that make programs amenable to dynamic updating.

Quiescence. We define a quiescent point in the program as one at
which there are no partially-completed transactions, and all global
state is consistent. Dynamic updates are best applied at such quies-
cent points, and preferably those that are stable throughout a sys-
tem’s lifetime. Fortunately, each application was structured around
an event processing loop, where the end of the loop defines a sta-
ble quiescent point: there are no pending function calls, little or
no data on the stack, and the global state is consistent. At update
time, new versions of the functions are installed and global state is
transformed so at the next iteration of the loop will be effectively
executing the new program.

For instance, vsftpd is structured around two infinite loops:
one for accepting new client connections, and one for handling
commands in existing connections. Here is the simplified structure:

int main() { int accept_loop() {
init(); L2:while (1) {
conn = accept_loop(); fd = accept();
L1:{init_conn(conn); if (!fork())
handle_conn(conn);} return fd; }

} }

void handle_conn(fd) {
L3:while (1) {
read(cmd,fd);}

}

Each time a connection is accepted, the parent forks a new
process and returns from the accept loop within the child pro-
cess. The main function then initializes the connection and calls
handle_con to process user commands. To be able to update the
long running loops, and to handle updates following the accept loop
in main, we used loop extraction (Section 3.4) at each of the three
labeled locations so that they could be properly updated. Note that
although L1 is not a loop, by using loop extraction we were able to

update code on main’s stack (the continuation of accept_loop())
without replacing main itself.

A quiescent point is related to, but not identical with a point with
empty capability (Section 4); its capability may not necessarily be
empty, although it is usually small. On the other hand, an empty
capability does not imply quiescence, but rather indicates there are
no concrete uses of types beyond the current point.

Functional State Transformation. Our mechanisms for trans-
forming global state (state transformers) and local state (type trans-
formers) assume that we can write a function that transforms old
program state into new program state. Unfortunately, sometimes
it is not possible to impose the semantics of the new application
on the existing state; we encountered two such cases in our test
applications. In the upgrade from sshd 3.7.1p2 to sshd 3.8p1 a
new security feature was introduced: the user’s Unix password is
checked during the authentication phase and if the password has
expired, port forwarding will be not be allowed on the SSH con-
nection. However, when upgrading a live connection from version
3.7.1p2 to 3.8p1, the authentication phase has passed already, so
the new policy is not enforced for existing connections (though
they could be shut down forcibly). For new connections requests
coming in after the update, the new check is, of course, performed.

A similar situation arose in going from vsftpd 1.1.1 to 1.1.2.
The new release introduced per-IP address connection limits by
mapping the ID of each connection process with a count related
to remote IP address. These counts are increased when a process
is forked and decremented in a signal handler when a process dies.
Unfortunately, following an update, any current processes will not
have been added to the newly introduced map, and so the signal
handler will not execute properly. In effect, the new state is not a
function of the old state. In this case, the easy remedy is to modify
the 1.1.2 signal handler to not decrement the count if the process
ID is not known.

When transforming some value, a type transformer can only
refer to the old version of the value and global variables, which
means that in principle some transformations may be difficult or
impossible to carry out. In practice we did not find this to be a
problem: for all the 29 type transformers we had to write, the



programmer effort was limited to initializing newly added struct
fields.

Type-safe Programs. As mentioned in Section 4, low-level pro-
gramming idioms might result in types being marked non-updateable
by the analysis. Since having a non-updateable type restricts the
range of possible updates, we would like to maximize the number
of updateable types, so the solution is to either have a more precise
analysis, or inspect specific type uses by hand and override the anal-
ysis for that particular type. For the programs we have considered,
the techniques presented in Sections 4.2 and 4.3 have significantly
increased the precision of the analysis and greatly reduced the need
to inspect the program manually. For instance, in vsftpd, strings
are represented by a struct mystr that carries the proper string
along with length and the allocated size. The address of the string
field is passed to functions, hence revealing struct mystr’s rep-
resentation, but our abstraction violation analysis was able to detect
that the aliases were temporary and did not escape the scope of the
callee, hence the type was updateable at the conclusion of the call.
Polymorphism is employed in all three programs; using the void
* analysis (Section 4.3) we were able to detect type-safe uses of
void *, and reduce the number of casts that have to be manually
inspected. Inline assembly can compromise type safety as well, and
our analysis does not detect type-unsafe uses that might be intro-
duced by assembly code. We only had one such situation in sshd,
and a manual inspection confirmed the type was used safely. In the
end, we manually overrode the analysis only for a handful of types:
0 for vsftpd, 1 for zebra, and 4 for sshd.

Our type wrapping scheme relies on the fact that programs
rarely rely on how types are physically laid out in memory; i.e. that
they are treated abstractly in this respect. Fortunately, this was a
good assumption for these programs. We could not type wrap some
“low level” types, e.g., vsftpd’s representation of an IP address,
since its layout is ultimately fixed by the OS syscall API. On the
other hand, this and low-level structures like this one rarely change,
since they are tied to external specifications.

Robust Design. We wanted our DSU approach to be general
enough to be applied to off-the-shelf software, written without dy-
namic updates in mind (as was the case with our test applications).
However, there are measures developers can take to make applica-
tions more update-friendly. Apart from features mentioned above
(quiescent points, type safety, and abstract types), we have also
found defensive programming and extensive test cases to be help-
ful in developing and validating the updates. All three programs we
looked at were written defensively using assert liberally, which
facilitated error detection, and helped us spot Ginseng bugs rela-
tively easy. By looking at the assertions in the code, we were able
to detect the invariants the programs relied on, and preserve them
across updates. Sshd comes with a rigorous test suite that provides
extensive code coverage, for zebra and vsftpd we created our
own suites to test a broad range of features.

6.3 Summary
We believe we have addressed all the DSU challenges set forth in
Section 2. We did not have to change the applications extensively
to render them updateable. Patch generation was mostly automatic,
and writing the manual parts was easy.

We were able to support a large variety of changes to appli-
cations; as can be seen in Table 1 and Figure 4, the applications
have changed significantly during the last three years. Once we be-
came familiar with the application structure (e.g., interaction be-
tween components, global invariants), writing patches was easy,
with all the infrastructure generated automatically; the only manual
task was to initialize newly added fields, write state transformers,
or make some small code changes.

A combination of factors have helped us address these chal-
lenges: (1) programs were amenable to dynamic updating (easily
identifiable quiescence points the application, application changes
that allowed updates to be written as functions from the old state
to the new state, robust application design and moderate use of
type-unsafe, low-level code), and (2) Ginseng, especially analysis
refinements and support for automation, has made the task of con-
structing and validating updates easy, even for applications in the
range of 50-60 KLOC.

7. Performance
In this section, we evaluate the impact of our approach on update-
able software. We analyzed the overhead introduced by DSU by
subjecting the instrumented applications to a variety of ’real world’
tests. We considered the following aspects:

1. Application performance. We measured the overhead that up-
dateability imposes on an application’s performance by running
’real world’ stress tests. We found that DSU overhead is modest
for I/O bound applications.

2. Memory footprint. Type wrapping, extra version checks and
dynamic patches result in an increased memory footprint for
DSU applications; we found the increase to be negligible for
updateable and updated applications, but after stacking multiple
patches, the memory footprint increase is detectable.

3. Service disruption. We measure the cost of performing an actual
update while the application is in use. The update will cause a
delay in the application’s processing, while the patch is loaded
and applied, and will result in an amortized overhead as data
is transformed. In all the updates we performed, even for large
patches, we found the update time to be less than 5 ms.

We also measured the running time of Ginseng to compile our
benchmark programs, to measure the overhead of compilation and
our analyses.

We conducted our experiments on dual Xeon@2GHz servers
with 1GB of RAM, connected by a 100Mbps Fast Ethernet net-
work. The systems ran Fedora Core 3, kernel version 2.6.10. All C
code, generated by Ginseng or otherwise, was compiled with gcc
3.4.2 at optimization level -O2. Unless otherwise noted, we report
the median of 11 runs.

7.1 Application Performance
In order to assess the impact of updateability on application perfor-
mance, we tried different ’real world’ stress tests on the updateable
applications. For each application, we measure the performance of
its most recent version under four configurations. The stock con-
figuration is the application compiled normally, without updating.
The updateable configuration is the application compiled with up-
dating support. The updated once configuration is the application
after performing one update, whereas the updated streak configu-
ration is the application compiled from its oldest version and then
dynamically updated multiple times to bring it to the most recent
version; this configuration is useful for considering any longer-term
effects on performance due to updating.

Vstfpd. We tested vsftpd performance with two experiments:
connection time and transfer rate. For connection time, we mea-
sured the time it took wget to request 500 files of size 0, and di-
vided by 500. Since wget opens a new connection for each file,
and disk transfers are not involved, we get a picture of the overhead
DSU imposes on FTP clients. As seen in Table 3, the updateable,
updated and streak-updated versions were 3%, 5% and 25% slower
than the stock server. With a difference of at most 1.7 ms, we do
not believe this to be a a problem for FTP users.



Application Connection time (ms)
stock updateable upd. once streak

vsftpd 6.71 6.9 7.04 8.4
sshd 47.62 49.26 49.5 62.89

Application Transfer rate (MB/s)
stock updateable upd. once streak

vsftpd 7.95 7.95 7.97 7.98
sshd 7.85 7.84 7.83 7.84

Table 3. Server performance.

These measurements seem to suggest a progressive slowdown
due to updating. The primary reason for this appears to be poorer
spatial locality. Using OProfile7, we measured the total cycles,
instructions retired, and cache and TLB misses during benchmark
runs of the one-update and streak-updated versions. We found that
the effective CPI of the streak-updated version was consistently
higher, and that this was attributable to cache and TLB misses.
Such misses are understandable: code and data that were close
together in the original program are now spread across multiple
shared libraries.

We also measured the median transfer rate of a single 600 MB
file to a single client. The results are shown in Table 3; the transfer
rates of the different configurations are virtually identical.

Sshd. For sshd we measured the same indicators as for vsftpd,
connection time and transfer rate. For the former, we blasted
the server with 1000 concurrent requests, and measured the total
elapsed time, divided by 1000. (Client-server authentication was
based on public key hence no manual intervention was needed.)
Each client connection immediately exited after it was established
(by running the exit command). The measured connection time is
shown in Table 3. The updateable, updated and streak-updated ver-
sions were 3%, 4% and 32% slower than the stock server. Again,
we do not think the 15ms difference is going to be noticed in prac-
tice. The CPU-intensive nature of authentication and session key
computation accounts for SSH connection time being almost 10
times larger than for FTP. To measure the sustained transfer rate
over SSH we used scp to copy a 600MB file. As shown in Ta-
ble 3, the results are similar to the vsftpd benchmark—the DSU
overhead is undetectable.

Zebra. Since zebra is primarily used for route proxying and re-
distribution, the focus of zebra experiments was different than for
vsftpd and sshd. First, we measured the overhead DSU imposes
on route addition and deletion by starting each protocol daemon
alone with zebra, and have it add and delete 100,000 routes. When
passing routes through the updateable, updated and streak-updated
versions of the zebra daemon, the DSU overhead was 4%, 6% and
12%, compared to the stock case. Second, we measured route re-
distribution performance. We started the RIP daemon, turned on re-
distribution to OSPF and BGP daemons, made RIP add and delete
100,000 routes, and measured the time it took until the route up-
dates were reflected back into the OSPF and BGP routing tables.
Similarly, we timed redistribution of OSPF routes to RIP and BGP
daemons. BGP redistribution is not supported by zebra. The DSU
overhead in the route redistribution case is the same as for the ‘no
redistribution’ case above: 4%, 6% and 12% respectively.

7.2 Memory Footprint
Type wrapping, function indirection, version checking and loop ex-
traction all consume extra space, so updateable applications have

7 http://oprofile.sourceforge.net
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Figure 6. Patch application times.

larger memory footprints. Figure 5 reports memory footprints for
the four scenarios, with quartiles as error bars. Measurements were
made using pmap at the conclusion of each throughput benchmark.
The footprint increases for updateable and updated cases are over-
shadowed by OS variability. However, for the streak updates, the
median footprint increase (relative to the stock version) is 21%,
40% and 27% for vsftpd, sshd and zebra respectively. The larger
footprint increase for streak updates is expected, since dynamic
patches for three years worth of updates are added into the memory
space of the running program, and never unloaded (Section 5).

7.3 Service Disruption
One of the goals of DSU is to avoid service interruption due to the
need to apply software patches. By applying these patches on-line,
we preserve useful application state, leave connections open, and
sustain service. However, the service will still be paused while new
patch files are loaded, and service could be degraded somewhat due
to the application of type transformers at patch time and thereafter.

Figure 6 illustrates the delay introduced by applying a patch; the
delay includes loading the shared object, performing the dynamic
linking and running the state transformer (type transformation time
was hard to measure, and likely very small, and so is not included).
The figure presents measurements for every patch to all of our
program versions, and graphs the elapsed time against the size
of the patch object files. We can see that patch application time
increases linearly with the size of the patch. In terms of service
interruption, DSU is minimally intrusive: in all cases, the time to
perform an update was under 5 milliseconds.

7.4 Compilation
The time to compile various versions of our benchmarks is shown
in Figure 7. The times are divided according to the analysis time
(updateability analysis, AVA analysis and constraint solving using
Banshee [21]), parsing and compilation time, and remaining tasks.

http://oprofile.sourceforge.net
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Figure 7. DSU compilation time breakdown for updateable pro-
grams.

In general, the majority of the overhead is due to the safety anal-
yses, which are whole program, constraint-based analyses. Given
that Ginseng is only needed in the final stages of development, i.e.,
when the application is about to be deployed or when a patch needs
to be generated and compiled, this seems reasonable.

8. Related Work
Over the past thirty years, a variety of approaches have been pro-
posed for dynamically updating running software. In this section
we compare our approach with a few past systems, focusing on dif-
ferences in functionality, safety, and updating model.

Updating Functionality A large number of compiler- or library-
based systems have been developed for C [13, 16, 9, 2], C++ [18,
20], Java [7, 27, 11, 24], and functional languages like ML [12, 14]
and Erlang [3]. Many do not support all of the changes needed to
make dynamic updates in practice. For example, updates cannot
change type definitions or function prototypes [27, 11, 18, 20, 2],
or else only permit such changes for abstract types or encapsulated
objects [20, 14]. In many cases, updates to active code (e.g., long-
running loops) are disallowed [14, 24, 13, 16, 20], and data stored
in local variables may not be transformed [17, 16, 13, 18]. Some
approaches are intentionally less full-featured, targeting “fix and
continue” development [19, 15] or dynamic instrumentation [9].
On the other hand, Erlang [3] and Boyapati et al. [7] are both
quite flexible, and have been used to build and upgrade significant
applications.

Many systems employ the notion of type or state transformer, as
we do. Boyapati et al. [7] improve on our interface by letting one
type transformer look at the old representation of an encapsulated
object, to allow both the parent and the child to be transformed at
once. In our setting, the child will always have to be transformed in-
dependent of the parent, which can make writing transformers more
complicated or impossible (e.g., if a field was moved from a child
object into the parent), though we have not run into this problem
as yet. Duggan [12] also proposes lazy dynamic updates to types
using type transformers, using fold/unfold primitives similar to our
conT/absT. Ours is the first work to explore the implementation of
such primitives.

The most similar system is our own prior work on providing dy-
namic updating in a type-safe C-like language called Popcorn [17].
While that system was fairly flexible, we make three substantial
improvements. First, our prior work could not transform data in lo-
cal variables, could not automatically update function pointers, and

had no support for updating long-running loops. We have found all
of these features to be important in the server programs, and are part
of our current work. Second, while our prior work ensured that all
updates were type-safe, it did not ensure they were representation-
consistent [33], as it permitted multiple versions of a type to co-
exist in the running program. In particular, when a type definition
changed, it required making a copy of existing data having the old
type, opening the possibility that old code could operate on stale
data. Finally, in our prior work we only experimented with a single
program (a port of the Flash web server, about 8000 LOC), and all
updates to it were crafted by us.

Updating Programs Safely A common theme of prior work is
to define “safe states” during a program’s execution in which an
update may take place. Intuitively, we are interested in the question
of whether a change to a system’s code, realized dynamically, will
properly transform the system to reflect the new code base.

Gupta et al. proved that finding such safe states is, in general,
undecidable [16], so any such safety analysis must be conservative.
Many of the systems reviewed make no safety guarantees, which
can lead to, among other things, run-time type errors [3, 13, 18].
One way to avoid run-time type errors is to sacrifice representation-
consistency, as we did in our prior work, mentioned above. Dug-
gan [12] also allows multiple versions of a type to coexist, but
avoids the need to make copies of data by requiring a backward
type transformer to convert data to an older version if it is used
by old code; this prevents the problem of stale data. However, it
may not always be possible to write backward transformers, since
updated types often contain more information than their older ver-
sions.

Our current work ensures representation consistency via static
analysis; an alternative is to do dynamically. Boyapati et al [7]
propose using transactions for this purpose. If code in an old object
would see an updated object, the current transaction is restarted and
old object is itself updated. This basic idea was considered earlier
by Bloom and Day [5, 6] in the context of Argus, a system for
writing distributed, fault-tolerant applications. We plan to explore
the use of transactions in Ginseng in future work.

To avoid the need for rollback, a number of systems aim to en-
sure safety by relying on a notion of quiescence, determined dy-
namically: only entities not in use by the program may be updated.
Dynamic ML [14] supports updating modules M defining abstract
types t. Since by definition clients of M must use values of type t
abstractly, M can be updated to redefine t as long as the old ver-
sion is inactive and thus not using the old representation. The K42
object-oriented operating system [20, 4] permits updates to objects
that are similarly quiescent. It actively achieves this condition by
temporarily preventing new threads from calling methods of a to-
be-updated object; once existing threads have died, the object is
updated and the pending threads may continue. Our safety analy-
sis generalizes these ideas by defining dependency at a finer grain:
we check individual uses of types or functions, rather than uses of
larger linguistic constructs like objects or modules, which are not
directly supported in C.

Updating Models A typical approach to upgrading on-line sys-
tems is to use a load-balancer. It redirects requests away from a
to-be-updated application until it is idle, at which point it can be
halted and replaced with a new version. Such approaches typically
employ redundant hardware, which is undesirable in some settings
(e.g., upgrading a personal OS). Microvisor [22] employs a virtual-
machine monitor (VMM) to follow this basic methodology on a
single node. When an application or OS on a server node is to be
upgraded, a second OS instance is started concurrently on the same
node and upgraded. When the original instance becomes idle, ap-
plications are restarted on the new instance and the machine is de-



virtualized. While Microvisor avoids the need for extra hardware, it
shares the same drawbacks as the load-balancing approach: appli-
cations must be stateless (so they can be stopped and restarted) or
they must be able to save their state under the old version, and then
restore the state under the new version. While checkpointing [29, 8]
or process migration [30] can be used to stop and restart the same
version of an application, it cannot support version changes. DSU
handles application state changes naturally. Since all state is visible
to an update, it can be changed as necessary to be compatible with
the new code. Indeed, one can imagine composing our approach
with checkpointing to combine updating with process migration.

9. Conclusions
This paper has presented Ginseng, a system for updating C pro-
grams while they run, and shown that it can be used to easily
update realistic C programs over long stretches of their lifetimes,
with only a modest performance decrease. Our system is arguably
the most flexible of its kind, and our novel static analyses make
it one of the most safe. Our results suggest that dynamic soft-
ware updating can be practical for upgrading running systems.
We plan to extend our approach to operating systems and multi-
threaded applications. Ginseng is available for download at http:
//www.cs.umd.edu/projects/dsu/.
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