
Safe and Timely Dynamic Updates for Multi-threaded Programs

Iulian Neamtiu
University of California, Riverside

Riverside, CA 92521, USA
neamtiu@cs.ucr.edu

Michael Hicks
University of Maryland

College Park, MD 20742, USA
mwh@cs.umd.edu

Abstract
Many dynamic updating systems have been developed that enable a
program to be patched while it runs, to fix bugs or add new features.
This paper explores techniques for supporting dynamic updates to
multi-threaded programs, focusing on the problem of applying an
update in a timely fashion while still producing correct behavior.
Past work has shown that this tension of safety versus timeliness
can be balanced for single-threaded programs. For multi-threaded
programs, the task is more difficult because myriad thread inter-
actions complicate understanding the possible program states to
which a patch could be applied. Our approach allows the program-
mer to specify a few program points (e.g., one per thread) at which
a patch may be applied, which simplifies reasoning about safety.
To improve timeliness, a combination of static analysis and run-
time support automatically expands these few points to many more
that produce behavior equivalent to the originals. Experiments with
thirteen realistic updates to three multi-threaded servers show that
we can safely perform a dynamic update within milliseconds when
more straightforward alternatives would delay some updates indef-
initely.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.4 [Processors]: Compil-
ers; C.4 [Performance of Systems]: Reliability, availability, and
serviceability

General Terms Languages, Performance, Reliability

Keywords dynamic software updating, update safety, update
timeliness, multi-threading

1. Introduction
Continuous operation is a requirement of many of today’s computer
systems. Nonetheless, such systems must be updated to fix bugs and
add new features. To permit on-line updates, many researchers have
proposed variations of an approach called dynamic software updat-
ing (DSU). In this approach, a running program is patched with
new code and data on the fly, while it runs. DSU is appealing be-
cause of its generality: in principle any program can be updated in a
fine-grained way, without need for redundant hardware or special-
purpose software architectures. Application state is naturally pre-
served between updated versions, so that current processing is not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

compromised or interrupted. General-purpose DSU systems have
been shown to successfully support long strings of updates derived
from actual releases of server applications (Neamtiu et al. 2006;
Chen et al. 2007) and operating systems (Baumann et al. 2007),
while more specialized systems support smaller bug fixes or secu-
rity patches (Makris and Ryu 2007; Altekar et al. 2005; Sidiroglou
et al. 2007).

The primary challenge in building a DSU system is balancing
flexibility and safety: the system should support as many kinds of
dynamic changes as possible, and it must provide means to en-
sure that an program update is well-timed, to avoid incorrect be-
havior (Gupta et al. 1996). To see why timing is important, con-
sider that many programs change functions’ type signatures as they
evolve (Neamtiu et al. 2005, 2006). If a patch changes function f’s
type signature, applying the patch just before the program is about
to call f would result in a type error since the caller still presumes
f’s old signature. To avoid such problems, some DSU systems im-
pose some automatic timing restrictions. For example, a system
may require that updated functions not be running when a patch
is applied (Soules et al. 2003; Baumann et al. 2007; Altekar et al.
2005; Arnold and Kaashoek 2009). Since changing a function’s
type signature necessitates changing its callers, we can be sure, us-
ing this constraint, that no code will be running that presumes the
old signature. Despite the reliance of some systems on purely au-
tomatic checks (Soules et al. 2003; Baumann et al. 2007; Altekar
et al. 2005; Arnold and Kaashoek 2009), these are in general in-
sufficient to ensure safety (Gupta et al. 1996), so manual assistance
may be needed to further constrain legal update times (Hicks and
Nettles 2005; Stoyle et al. 2007).

Here lies a tension: timing constraints are needed to ensure that
an update will be applied safely, but if the constraints are too strict,
they may prevent the update from taking place at all. For exam-
ple, if a patch may only be applied when changed functions are
not active, a change to a function running an infinite loop will be
delayed indefinitely. For single-threaded programs, the safety/time-
liness trade-off can be managed with some care, e.g., by extracting
infinite loops into separate functions that occasionally become in-
active (Neamtiu et al. 2006). However, many long-running systems
that could benefit from DSU are multi-threaded, and for them the
situation is far worse. As explained further in Section 2, myriad in-
teractions among threads complicates reasoning about safety, and
may render approaches to control timing ineffective. For example,
while a single thread may be sure to eventually exit an extracted
loop body, there is no guarantee that all threads will eventually exit
it at once to allow it to be updated (Makris and Ryu 2007).

This paper explores new ideas for balancing the tension between
safety and timeliness when dynamically updating multi-threaded
programs. We start with the idea that the programmer will specify
Σ, a handful of safe update points, perhaps one or two per thread,
which are program locations at which an update may take place. In
a multi-threaded setting, a dynamic patch π may be applied when

all threads become quiescent, meaning they have each reached an
update point ` ∈ Σ and that all automatic timing restrictions,
such as activeness, have been satisfied. By keeping |Σ| small, it
is relatively straightforward for the programmer to reason that π
will be applied correctly. We could implement this semantics by
barrier-synchronizing all threads at update points `, but doing so
could degrade performance (while threads block, or even deadlock)
and fail to achieve quiescence quickly because fewer update points
implies greater delays between the times they are reached.

Therefore, to improve timeliness while retaining the same level
of safety, we propose two novel concepts, described in Section 3:
induced update points and relaxed synchronization. An induced up-
date point for a given patch π is a program point `π 6∈ Σ such
that applying π at `π is equivalent to having applied π at some
` ∈ Σ. Thus, induced update points expand the points at which an
update may take place without increasing the burden of reasoning
about safety. However, expanding the number of possible update
points reduces, but does not eliminate, the drawbacks of barrier
synchronization. Therefore, we have also developed a technique we
call relaxed synchronization that eliminates the need for threads to
block at update points. The basic insight is the following. Suppose
that a consecutive range of program statements s1, ..., sn qualify
as induced update points for Σ and π. Instead of potentially syn-
chronizing at each si, a thread t “checks in” when it reaches s1
to indicate that, until told otherwise, its execution is safe with re-
spect to π. Thread t may then immediately proceed with executing
s2, ...sn, “checking out” after executing sn to indicate that apply-
ing π would no longer be safe. Once all threads have checked in,
π can be applied safely. Check-in points often create more oppor-
tunities for updating (whole blocks of code, rather than particular
statements) and allow threads to continue to execute until quies-
cence is reached, avoiding performance degradation and deadlock.

We have implemented these techniques as an extension to Gin-
seng, a freely available DSU framework for C programs (Sec-
tion 4). We call our extended system STUMP (for Safe and Timely
Updates to Multi-threaded Programs). We have used STUMP
to dynamically update three open-source, multi-threaded server
programs—the Icecast streaming server, the Memcached caching
server, and the Space Tyrant game server—with updates that cor-
respond to thirteen actual releases that span one year (Section 5).
Experimental results in Section 6 show that induced update points
and relaxed synchronization effectively balance safety and time-
liness for these programs: with only a few update points (1 or 2
per thread) and a few other annotations, we could reach quiescence
very quickly, typically in less than ten milliseconds. Without these
mechanisms some patches failed to take effect at all, and others
took hundreds of milliseconds or several seconds to apply. We also
measured the impact of STUMP’s update support on application
performance and found that the slowdown for application-specific
benchmarks is modest, less than 7% for all applications.

In summary, the main contributions of this paper are as follows:

• We introduce two techniques—induced update points and re-
laxed synchronization—for balancing safety and timeliness
when dymamically updating multi-threaded programs.
• We implement these ideas in STUMP, a framework for dynam-

ically updating C programs, and find that STUMP is effective
in practice: all updates we considered can be successfully ap-
plied in short order, while overhead on application performance
is small.

2. Balancing safety and timeliness
Given run-time support for on-line program updates, we must un-
derstand how to use this support safely, and yet in such a man-
ner that an update can be applied in a timely fashion. This section

1 typedef struct event { int e id ; ... } evt ;
2 void process(evt∗ ev) {
3 switch (ev→ e id) { case X: m(ev); ... case Y: n(ev);... };
4 log(ev→ e id);
5 }
6 void clean(evt∗ ev) { ... }
7 void handle thread () {
8 while (1) {
9 /∗ definite update point ∗/

10 evt∗ ev = get event ();
11 /∗ candidate induced update point ∗/
12 process(ev);
13 clean(ev);
14 } }

(a) Original version

1 typedef struct event { char∗ name; int e id ; ... } evt ;
2 void process(evt∗ ev) {
3 switch (ev→ e id) { case X: m(ev); ... case Y: n(ev);... };
4 /∗ no log() call ∗/
5 }
6 void clean(evt∗ ev) { /∗ added: ∗/ log(ev→ e id); ... }
7 /∗ handle thread () as before ∗/

(b) Changes in new version

Figure 1. Example program and update

explains why balancing these tensions is difficult, particularly for
multi-threaded programs.

2.1 Example
Figure 1(a) depicts a simple server in which n threads execute the
handle thread function to process events extracted from a global
queue (via the potentially blocking call get event, code not shown).
Events are values of the type evt, which contains an e id field
(among others not shown) for identifying the event’s type. The
process function is called to actually handle each event, dispatch-
ing to other functions based on the e id field, and logging the re-
sult when it completes (via the log function). The clean function
performs further post-processing. (The comments in handle thread
will become clear later.)

Figure 1(b) shows a sample update to this program, which
changes the definition of the evt type to add a new field and changes
the implementations of the process and clean functions. Notice
that the log function has been moved from the end of the process
function in the old version to the beginning of the clean function in
the new version.

Several existing DSU systems could support this update or one
like it, including POLUS (Chen et al. 2007), Ginseng (Neamtiu
et al. 2006), DLpop (Hicks and Nettles 2005), Jvolve (Subramanian
et al. 2009), K42 (Baumann et al. 2007; K42), and UpStare (Makris
and Bazzi 2009). While the mechanisms differ between systems,
essentially the definitions in Figure 1(b) would be gathered into a
dynamic patch along with a type transformer function to convert
values whose type definition has changed.1 In our example, the
dynamic patch would contain a type transformer for struct event.
This function might initialize the new name field to ”none” while
preserving the contents of the other (unchanged) fields.

2.2 Safe patch application
Given a dynamic patch, the next question is: when during the
original program’s execution can it be applied safely? Most DSU

1 A type transformer’s application could occur when the update is ap-
plied (Hicks and Nettles 2005; Subramanian et al. 2009) or as needed during
execution (Neamtiu et al. 2006; Chen et al. 2007; Baumann et al. 2007).

systems apply a patch according to a combination of manually
specified and automatically determined timing constraints.

A typical automatically determined constraint is that functions
changed by a patch may not be running when the patch is ap-
plied (Soules et al. 2003; Baumann et al. 2007; Altekar et al. 2005;
Arnold and Kaashoek 2009; Subramanian et al. 2009). To see why
such a constraint might be needed, suppose our update was to be
applied just before the call to log in the process function on line 4
of the old program (when an active function is updated, the old
version continues to run and the new version takes effect on the
next call (Chen et al. 2007; Hicks and Nettles 2005; Neamtiu et al.
2006)). Therefore, in the old process code there is a subtle prob-
lem: this function has been compiled to assume that e id is the first
field of evt, but now that evt has been updated, it is the second
field. Therefore, this old code will mistakenly access char ∗name
as if it were the int e id , a type error. The activeness constraint
would prevent this problem, and indeed ensures type safety so long
as the new program version, compiled from scratch, is itself type-
correct (Walton 2001; Stoyle et al. 2007).

We may be tempted to believe that “activeness” checking is
sufficient to ensure an update will be applied correctly, and indeed
this presumption is made by some existing systems (Arnold and
Kaashoek 2009; Baumann et al. 2007). Unfortunately, Gupta (Gupta
et al. 1996) has shown that automatically determining a valid time
at which to apply a dynamic patch is in general undecidable. In-
deed, we can see why activeness is insufficient in our example.
Suppose that the update were to take effect just after the call to
process(ev) on line 12 of handle thread. If there is only a single
thread running handle thread, then no changed code is active. The
next call is to the new clean function, whose first action is to call
log. But this is probably not what we wanted: just prior to the up-
date, the old process function would have called log (on line 4) for
this same event; so this update timing has precipitated a redundant
log entry.

Given that automatic timing constraints are insufficient, many
DSU systems allow the programmer to assist in controlling up-
date timing. There are two basic approaches: identify a whitelist
of program locations, termed update points, that are valid for an
update (Hicks and Nettles 2005; Neamtiu et al. 2006; Makris and
Bazzi 2009); or specify a blacklist of functions that must be inactive
prior to updating (Lee 1983; Gupta et al. 1996; Chen et al. 2007).

With such manual controls in hand, prior work has explored
applying updates at “quiescent points” in a program’s execu-
tion (Soules et al. 2003; Baumann et al. 2007; Neamtiu et al. 2006).
For example, a quiescent point could be just prior to a complete it-
eration of an event processing loop. Intuitively, writing correct state
transformation code to take effect at quiescent points is relatively
easy because the program is not in the middle of some high-level
activity, and invariants concerning global data structures are clear.
In our example, we could imagine requiring the update to take place
at the start of handle thread’s loop on line 9, since this is when it is
about to begin its basic high-level activities.

2.3 Timely patch application
Unfortunately, while timing restrictions are clearly necessary for
ensuring safety, they can significantly delay when a patch is actu-
ally applied. Indeed, the activeness restriction precludes patch ap-
plication indefinitely if a changed function is always active, as is
the handle thread function in our example. We can solve this par-
ticular problem by extracting the bodies of infinite loops into sep-
arate functions which become inactive on each iteration (Neamtiu
et al. 2006). With such support (or support for more fine-grained
updates to active code (Makris and Bazzi 2009)), a single quies-
cent point often suffices to assure timeliness for single-threaded
programs, e.g., because events are processed relatively quickly.

Unfortunately, for multi-threaded programs, the task of choos-
ing suitable update points is much more difficult because the state
of all threads must be considered when choosing appropriate times.
One approach would be to identify a small number of safe update
points for each thread (e.g., just one or two) and apply an update
only when all threads have reached safe update points. In our ex-
ample, we would apply the update only when all threads running
handle thread have completed a loop iteration. This approach eases
reasoning about patch correctness because only a few system states
need to be considered. On the other hand, this approach could se-
riously compromise timeliness, since it may be very difficult or
unlikely for all threads to reach update points at once. We could
improve the chances by expanding the number of update points per
thread, but doing so complicates the programmer’s reasoning that
a patch is correct, and may lead to problems such as those we have
described. Overall, the number of system states that must be con-
sidered will be nm where m is the number of threads, and n is the
number of update points per thread.

Thus we must find some way to balance the need to easily
reason about a patch’s correctness while not unduly delaying the
time at which it can be applied.

3. Safe and timely dynamic updates
This section describes how we can balance safety and timeliness
when applying a dynamic patch. We use the following program-
ming model. To update a program P , the programmer provides an
update specificationU , which is a pair (π,Σ) where π is a dynamic
patch and Σ is a set of update points. The patch π is a map from
variables to new or updated definitions (or the type transformer, for
changed types). We write changes(π) to denote the names of func-
tions, variables and type definitions changed by the patch. Each
update point in Σ is simply a location (i.e., line number) ` in the
program. The intended semantics is that π should be applied when
the program counter of each thread t in P has reached an update
point ` ∈ Σ, and any automatic safety checks (e.g., activeness) are
satisfied. Our goal is to apply the patch as quickly as possible.

3.1 Simple approach: barrier synchronization
Once U becomes available, a simple approach to applying it safely
is to treat each update point ` ∈ Σ as a barrier and block any thread
that reaches it. Once all threads have synchronized, the patch is
applied, and the threads are resumed.

While pleasingly simple, the barrier approach has two main
drawbacks. First, there is the possibility of deadlock. For exam-
ple, if thread t blocks at some point ` while holding a lock, then
any other thread attempting to acquire the lock will never make
progress toward reaching some ` ∈ Σ. The second problem is re-
lated: even if all threads eventually synchronize, application perfor-
mance may suffer in the meantime. For example, suppose thread t1
is responsible for accepting new connections while t2 performs per-
connection event processing. If t1 reaches point ` fairly quickly, but
t2 takes much longer to reach point `′, say because it must complete
a lengthy transaction first, then the entire system will be prevented
from accepting new connections, and performance will suffer. In
the limit, the barrier approach may needlessly block threads that
are completely unaffected by the changes in a patch π.

Our way forward is to observe that it does not matter if the
update takes place when all threads are actually at points in Σ.
Rather, we use induced update points (described in Section 3.2)
and relaxed synchronization (Section 3.3) to apply the patch π if
the effect of the update will be semantically equivalent to having
applied the patch when the PC of each thread is at one of the
update points ` ∈ Σ. This expands the number of program points
that permit a patch to take effect, improving timeliness, without
increasing the reasoning burden on the programmer.

Lines Trace 1 Trace 2 Trace 3

9 (def-upd) X ×
10 g {1} g {1, 2} g {1}
11 update g update p,c update g,p

12 p {1, 2} p {2} p {2}
3 e,m {1, 2} e,m {1, 2} e,m {1, 2}
4 l, e {1, 2}
13 c {1, 2} c {2} c {1, 2}
6 l, e {1, 2}
9 (def-upd) X ×

(a) Roll-forward (b) Rollback (c) Disallowed

Figure 2. Examples of legal and illegal induced updates.

3.2 Induced update points
Given a specification U = (π,Σ), an induced update point is a
program point `′ such that if π is applied when a thread reaches
`′, the program will behave as if the patch had been applied at
some update point ` ∈ Σ. Given a set of candidate update points
ξ, our task is to determine, via static analysis, which of those
` ∈ ξ that meet this criterion. In our Ginseng implementation
(Section 4), we require programmers to specify ξ, but here we make
no assumptions about how ξ is generated.

3.2.1 Version-consistent traces
The key concept we will use is the notion of a version-consistent ex-
ecution trace. This idea is illustrated in Figure 2. Each of the right
three columns represents an execution trace of the handle thread
function from Figure 1(a), starting at line 9 and iterating once
around the loop. Each element of the trace consists of an identi-
fier followed by a set of versions. Identifiers can be functions (indi-
cating the function was called), global variables (indicating a read
or write), and type names (indicating a variable with that type was
read or written). We abbreviate the longer identifiers used in Fig-
ure 1(a) with just their first letter in the trace, e.g., g stands for a
call to get event, and e stands for a read/write from an evt value.
The version set indicates the version of an identifier at the point
where that identifier is used. Accesses to variables changed by π
will always have a version set containing a single element, {1} be-
fore the patch is applied, and {2} afterward. When a variable is
not changed by the patch its definition is the same in both program
versions. Hence its version set is {1, 2}.

A trace also contains update events “update changes(π)” to in-
dicate patch π has been dynamically applied. All the specifications
(π,Σ) we consider have Σ = {9}; that is, the patch π may only
appear to take effect at line 9. We refer to this as the definite update
point, since it defines what the programmer believes will result in
correct behavior (line 9 is annotated in the first column for refer-
ence). If given ξ = {11}, then we must determine whether apply-
ing π at line 11 would have the same effect as updating at line 9.

Figure 2(a) considers the case when changes(π) = {g}; that
is, it contains a changed version of function get event. In this case,
11 is indeed an induced update point: the execution of the program
is equivalent to having performed the update at line 9, at the end
of the trace marked with a X. To see why, consider the version set
of each function that was called. In the trace in Figure 2(a), we can
see that all version sets include version 1, the old version, and thus
the program will behave just as if we “rolled forward” the program
to line 14 before performing the update.

Figure 2(b) considers changes(π) = {p, c}. In this case, 11 is
still an induced update point, but now the effect of the program is

equivalent to having performed the update at line 9 at the start of
the trace. This is because all accesses can be attributed to version
2, the new version, just as they would be if we had rolled back the
program to perform the update at line 9.

Figure 2(c) considers changes(π) = {g, p}. In this case there
is no program version that all accesses share, so 11 is not valid.

3.2.2 Version consistency via static analysis
To predict whether a patch π applied at some ` ∈ ξ will induce a
version-consistent trace, we can statically analyze the program to
approximate all relevant behavior that could occur in an execution
including `. In particular, we wish to find a static approximation
of the execution behavior from any preceding definite update point
to `, which we shall call the prior effect α`, and an approximation
of the execution from ` to the first occurrence of a definite update
point, which we call the future effect ω` (Neamtiu et al. 2008). For
determining version consistency, we are interested in those events
we considered in our traces above: calls to functions, reads/writes
from/to global variables, and accesses to values of named type.
We are not interested in the number or order of these events, but
only in the names of the functions, variables, or types involved.
Thus a prior/future effect at ` can be characterized as the set of all
definition names involved in events that could occur before/after `.

For ` = 11 in our example program we have α` = {g}
and ω` = {p, e,m, n, l, c}. The reason for the former is easy to
see: before reaching line 11 on an execution starting from line 9,
the only interesting event is the call to get event. For the latter,
we can see that before again reaching line 9, the program will
execute process and clean, and these functions may themselves
access values of evt type and call functions log, m, or n. On the
other hand g is not included because get event will not be called
before line 9 is reached. We will discuss how these effects are
computed in the next subsection.

We can determine whether applying a patch π at some ` ∈ ξ
will result in a version-consistent trace using contextual effects.
For each `, we compute its prior and future effects α` and ω`,
respectively. If changes(π) ∩ ω` = ∅ we know that all definitions
possibly accessed after ` up to the next definite update point can
be attributed to the old version since they are unaffected by π.
Thus ` can be considered a roll-forward induced update point.
This condition holds for changes(π) = {g} in our example,
as shown in Figure 2(a). On the other hand, if changes(π) ∩
α` = ∅, then the patch π has not modified any variables possibly
accessed since the last definite update point. In this case, these
accesses can also be attributed to the new version, and thus ` can
be considered a rollback induced update point. This condition holds
for changes(π) = {p, c} in our example, as shown in Figure 2(b).
Neither condition holds for changes(π) = {g, p}, so for this
particular patch ` is not valid, as shown in Figure 2(c).

3.2.3 Contextual effects
Now we explain how to compute prior and future effects for the
purpose of determining induced update points. Our approach is to
use a generalization of effect inference (Talpin and Jouvelot 1992)
called contextual effect inference (Neamtiu et al. 2008).

In a traditional effect system, the effect ε of some program ex-
pression e characterizes an aspect of e’s non-functional behavior,
for example the names of locks e allocates (Pratikakis et al. 2006),
or the abstract names of memory locations e dereferences (Talpin
and Jouvelot 1992). For enforcing version consistency our notion
of effect is as we just described: a set containing the names of func-
tions that are called, global variables that are read or written (and
likewise, static names for dereferenced pointers, acquired from a
points-to analysis), and types whose instances—whether local or
global—are read or written.

The contextual effect Φ of an expression e consists of a triple
[α; ε;ω], where ε is the normal effect of e; α is the prior effect,
which characterizes the computation since the last definite update
point up to (but not including) e; and ω is the future effect, which
characterizes the computation following e, up until the next definite
update point. We compute contextual effects using a constraint-
based analysis that we express as a series of inference rules. In
our prior paper (Neamtiu et al. 2008), we proved that, for single-
threaded programs, valid induced update points produce version-
consistent executions when prior and future effects are computed
with our contextual effects analysis. This basic proof is extended to
multi-threaded programs in the first author’s dissertation (Neamtiu
2008). We give a flavor of the analysis here, and refer the interested
reader to our prior work for details (Neamtiu et al. 2008).

Suppose we have two statements in sequence s1; s2 which have
contextual effects Φ1 and Φ2, respectively. Then the contextual
effect Φ of the two statements in sequence is according to the
judgment Φ1 B Φ2 ↪→ Φ defined as follows:

XFlow-Ctxt

Φ1 = [α1; ε1; (ε2 ∪ ω2)]
Φ2 = [(ε1 ∪ α1); ε2;ω2]
Φ = [α1; (ε1 ∪ ε2);ω2]

Φ1 B Φ2 ↪→ Φ

There are three key elements of this rule. First, if ε1 is the normal
effect of s1, then because s1 precedes s2, ε1 must be included in
the prior effect of Φ2. Conversely, if ε2 is the normal effect of s2,
then because s2 follows s1, ε2 must be included in the future effect
of Φ1. Finally, the contextual effect of the sequence s1; s2 has the
prior effect of Φ1, the future effect of Φ2, and its normal effect is
the union of the normal effects of the two statements.

The Xflow-Ctxt rule is essentially constraining the form of prior
and future effects according to the normal effects of each statement.
Thus we can use standard techniques to generate per-statement
effects ε and generate additional constraints for the prior and future
effects α and ω (Neamtiu et al. 2008).

The effects α and ω are also constrained by the placement of
definite update points. In the general case, there could be many
definite update points reachable from a given statement s. Like-
wise, several definite update points could reach s, and these could
be in the same function as s or in its function’s callers or callees.
While implementing contextual effects for this general case is pos-
sible, doing so is unnecessarily complicated and computationally
expensive. Therefore, we employ a simpler model, described next.

As an alternative to Σ, a set of definite update points, we define
Σ̂ to be a set of pairs of definite update points. When computing
the prior effect α at `, instead of finding all possible update points
in Σ that could reach `, we only consider a single point `1 such
that (`1, `2) ∈ Σ̂ and (`1, `2) defines a lexical scope that encloses
`. By “enclose,” we mean that ` could literally occur in between
`1 and `2 in the program text, or it could be in a function called,
directly or transitively, by a statement between `1 and `2. The
future effect ω of ` is analogously computed with respect to `2.
Since pairs (`1, `2) define a lexical scope, we call them update
scopes. To be sound, there can be at most one update scope that
encloses a given `, meaning that update scopes may neither nest
nor overlap. Moreover, only candidate update points ` ∈ ξ enclosed
within scopes (`1, `2) ∈ Σ̂ are permitted. With these restrictions,
we compute contextual effects for the whole program as follows:

• For each block of statements `1 :s1; ...; `2 :s2 where (`1, `2) ∈
Σ̂ we compute the contextual effects of each statement in that
scope, constraining the prior effectα1 of s1 and the future effect
ωn of sn to be the empty set, thus delimiting the extent of
prior and future effects computed within the scope. We will also
compute the contextual effects of functions called by s1...sn.

1 void process(evt∗ ev) { α ; ε ; ω

2 switch (ev→ e id) { {g} {e} {e,m, n, l, c}
3 case X: m(ev); ... {g, e} {m, e} {e, l, c}
4 case Y: n(ev); ... {g, e} {n, e} {e, l, c}
5 }; log(ev→ e id); {g, e,m, n} {l, e} {c}
6 }
7 void handle thread () {
8 while (1) {
9 /∗ `1 ∗/

10 evt∗ ev = get event (); {} {g} {p, e,m, n, l, c}
11 /∗ ind . upd. pt. ∗/ {g} {} {p, e,m, n, l, c}
12 process(ev); {g} {p, e,m, n, l} {c}
13 clean(ev); {g, p, e,m, n, l} {c} {}
14 /∗ `2 ∗/ }
15 }

Figure 3. Contextual effects for example in Fig. 1(a).

• We cannot allow induced update points in functions, such as
those in libraries, that could be called from both within and out-
side an update scope. Therefore we add the additional constraint
that the prior and future effects of each thread function (i.e.,
main or functions passed to pthread create) include the set of all
possible events, written>. Thus any candidate update point in a
function called from outside an update scope will have prior and
future effect >, effectively precluding an induced update point.
On the other hand, functions called only from within update
scopes will not be so restricted, since the effects of scopes are
computed independently of the functions they reside in. Note
there is no problem with a function called from within multiple
(non-nested) update scopes—the prior and future effects in this
function will naturally approximate the limits imposed by all
enclosing scopes.
• Finally, we rule out nested update scopes during inference by

not bounding the prior and future effects of update scopes with
the empty set, as stated above, but rather with a marker set {K}.
Then we check that the statements immediately outside each
update scope do not have K in their prior or future effects.

Figure 3 shows the contextual effects computed for process and
handle thread from our example program (Figure 1(a)), modified
to use an update scope (`1, `2) shown in comments. This scope is
essentially the same as the single definite update point we used be-
fore, and the prior and future effects of the candidate update point
at line 11 are as indicated in the previous subsection. There are a
few other things to notice. First, notice that line 12’s normal ef-
fect includes the call to process and the effect of executing its body.
Second, notice that the prior and future effects within process prop-
erly include the events that take place in its caller, handle thread.
Finally, notice the handling of the switch statement in process: the
prior/future effects of the code in each of the cases assumes that
the other branches are not executed (e.g., n is not in the prior/fu-
ture effect at line 3, and m is not in the prior/future effect at line 4),
but the prior/future effect of the code that precedes or follows the
switch as a whole conservatively presumes that all branches were
executed (and hence both m and n are mentioned in the effects).

3.3 Relaxed synchronization
While induced update points increase a thread’s opportunities for
applying a dynamic update, they still force the thread to block,
and thus do not eliminate the potential for degraded performance
and deadlock. Therefore we have developed a second technique we
call relaxed synchronization that avoids the need to block at update
points while still greatly improving the chances that an update will
be applied quickly.

We now present the idea behind relaxed synchronization. Sup-
pose we have a sequence of statements s1...sn at locations `1...`n,
respectively, that execute within some update scope. Further sup-
pose each of the `i in `1...`n is a valid induced update point for
patch π, which implies that π could be safely applied while a thread
is executing any of s1...sn. As an optimization, then, there is no
need to block when a thread first reaches `1. Instead, the thread
can “check in” with the run-time system to indicate it has reached
a point at which it is safe to apply π. Then it may continue its ex-
ecution. When the thread reaches `n it must inform the run-time
system it is no longer safe to perform the update; thus it “checks
out,” and again resumes execution. When all threads have checked
in, the update may commence. If the update is still taking place
when a thread reaches a check-out point, it simply waits for the
update to complete.

We can implement this idea as follows. For each ` ∈ ξ enclosed
in some update scope (`1, `2) ∈ Σ̂, we will determine whether `
is a legal check-in point (otherwise, it is a check-out point). Let L
denote the set of all `′ ∈ ξ reachable from an execution starting
at `. Let LS denote the set of locations `i of all statements si
that, starting from `, could be executed prior to reaching some
`′ ∈ L ∪ {`2}. Then ` is a valid check-in point if all `i ∈ LS
are valid induced update points. Otherwise, ` must be considered a
check-out point.

In the prior subsection we argued that it would be difficult
to compute contextual effects if we had to determine all definite
update points that could be reached after executing a given definite
update point. Similarly, it would be difficult to determine the sets
L and LS , above. We simplify the problem in the same way: rather
than specify individual candidate update points ` ∈ ξ, we specify
candidate update scopes (`(, `)) ∈ ξ̂, with the interpretation that
`(is a potential check-in point, and `) is a check-out point. Since
the two form a lexical scope, the statements s1; ...; sn between
them are readily apparent. Moreover, to check that each of these
statements is a valid induced update point, if ε is the normal effect
of the block s1; ...; sn (which we already compute as a matter of
course), then it suffices to compute

S
1≤i≤n αi ≡ α1 ∪ ε andS

1≤i≤n ωi ≡ ωn ∪ ε ≡ ω1. We call the former the check-in prior
effect of `(and the latter the check-in future effect of `(. For each
(`(, `)) pair for which our validity check using prior and future
check-in effects is satisfied, at run-time the thread will check in
when reaching `(and check out at `). Those pairs for which this
check is not satisfied will have no run-time effect.

Returning to our example (Figure 3), consider (11,14) as a
candidate scope. The normal effect ε of the statements process(ev);
clean(ev) in this scope is {p, e,m, n, l, c}. Thus the prior check-
in effect is {g} ∪ {p, e,m, n, l, c} = {g, p, e,m, n, l, c} and the
future check-in effect is {} ∪ {p, e,m, n, l, c} = {p, e,m, n, l, c}.
So 11 would be a valid check-in point for π where changes(π) =
{g} since this does not conflict with the future check-in effect, but
would not be considered valid for π where changes(π) = {p}
since p appears in both the prior and future check-in effects. Note
the clear tradeoff here. The larger the check-in scope, the larger the
check-in effects and the less likely a check-in point will be valid.
On the other hand, the smaller the check-in scope, the less likely
that all threads will be simultaneously executing in valid scopes
when an update is available. As we show with our experimental
results in Section 6, we find a few well-chosen check-ins and
relaxed synchronization to be largely beneficial.

A more complicated variation of relaxed synchronization is
proved sound in the first author’s dissertation (Neamtiu 2008); we
believe it would be straightforward to extend the argument there to
the present system.

4. Implementation
We have implemented induced update points and relaxed synchro-
nization as extensions to Ginseng v1.2.2,2 a DSU compiler for
single-threaded C programs (Neamtiu et al. 2006). We call our
extended version STUMP (for Safe and Timely Updates to Multi-
threaded Programs). We believe our techniques could be imple-
mented for other DSU systems as well.

4.1 Background: DSU in Ginseng
In Ginseng, a dynamic patch π consists of definitions—functions,
types, or global variables—that have been added or changed since
the last (deployed) program version. The dynamic patch is com-
piled into a shared object file and then loaded into the specially
compiled running program to take effect. In an updatable program,
all direct function calls are compiled to be indirected through func-
tion pointers, and after the patch is loaded, the targets of the func-
tion pointers are redirected to the newly loaded versions.

To support changes to type definitions, Ginseng compiles all
accesses to typed values to be through concretization functions.
For example, if p has type struct T∗, then Ginseng will compile
the source-program expression p→ x to be con struct T (p)→ x
instead. This function will examine the contents of its argument
to see whether it has been updated to the new version of type
struct T, and if so, it executes a user-defined type transformer
function to bring it up to date. Ginseng uses a simple compilation
strategy to make this check, and the transformation, possible: all
values of a named type that are updatable are given an extra version
field and padded to permit future growth.

The programmer may also define a state transformer function
ST. Function ST() is called at the time the update is applied and
contains code needed to set up the state of the new program, e.g., to
initialize the contents of newly created global variables, or to make
system calls that normally occur in the new version of main when
the program is started from scratch.

Controlling update timing. To specify the time at which a dy-
namic patch is applied, Ginseng requires the programmer to insert
explicit calls to the function DSU update at those program points
at which a dynamic patch π may take effect. Thus, these calls in-
dicate definite update points Σ, though Ginseng in effect forces the
programmer to define Σ at deployment time, before the next patch
to P is known. We further discuss this requirement in Section 4.3.

When the program calls DSU update and a patch is available,
some safety checks are performed before the patch is applied.
Prior to deployment, a static updatability analysis (Stoyle et al.
2007) of the program determines, for each DSU update call, a set
∆ of variables and type names that may not be changed by a
future π if applied at that point, to ensure type-safety. Then the
DSU update call is compiled to pass a representation of ∆ to the
run-time system, which will enforce ∆ ∩ changes(π) = ∅ before
applying the update.3 This check essentially takes the place of
the “activeness check” described in Section 2.2, but admits some
updates to active code.

Code extraction. Ginseng’s compilation strategy ensures that an
updated function will be used the next time it is called. This cre-
ates a problem for functions that run indefinitely, as described in
Section 2.3. To cope with this, Ginseng provides a code extraction
mechanism that excises a programmer-indicated code block into
its own function. The boundaries of extracted functions in the old
version effectively designate points at which an update could take
place within a function, and the boundaries of the same extracted

2 Available at http://www.cs.umd.edu/projects/PL/dsu/.
3 The implementation uses set ids as arguments, rather than sets, to keep
this operation fast regardless of set size.

functions indicate the corresponding code to execute (i.e., to where
to map the PC) in the new version.

4.2 STUMP extensions
We made several extensions to Ginseng to support induced update
points and relaxed synchronization, and also extended parts of its
run-time system and compiler to ensure thread-safety. As with defi-
nite update points in Ginseng, update scopes (Σ̂) and candidate up-
date points/scopes (ξ/ξ̂) are specified when a program is deployed,
before a particular patch π is known.

Definite update points and update scopes. To designate the se-
quence s1; ...; sn as an update scope (`1, `n) ∈ Σ̂, the program-
mer explicitly labels the sequence as UPDATE SCOPE:{s1; ...; sn}.
Thus, update scopes are specified at deployment time, rather than
patch time, replacing analogous calls to DSU update in standard
Ginseng. The compiler uses such scopes when computing contex-
tual effects, and then inserts calls to DSU update at the beginning
and end of the scope. As usual, these calls are passed the set ∆
generated by the standard updatability analysis.

Induced update points and barrier synchronization. The pro-
grammer specifies candidate induced update points ξ by includ-
ing explicit calls to function DSU induced update in the deployed
program. A contextual effects analysis infers α and ω, and the up-
datability analysis infers ∆, for these program points; the compiler
modifies the calls to pass a representation of these sets. Once a dy-
namic patch π is available and thread i calls DSU induced update
the run-time system will check whether (changes(π) ∩ αi =
∅∨changes(π)∩ωi = ∅)∧ (changes(π)∩∆i = ∅). (We discuss
changes below.) If this check succeeds, the current update point
is compatible with the update and the thread is blocked. Calls to
DSU update will block so long as changes(π) ∩∆i = ∅. Once all
threads have blocked, the update may proceed.

We define changes(π) = changes(π) ∪ writes(ST), where
writes(ST) is the set of locations (determined by points-to analy-
sis) that could be read or written by executing state transformer ST.
This effect must be included in the safety check to ensure version
consistency. For example, if not accounted for, the code prior to
an induced update point could read global variable g, function ST
could write to it, and then subsequently executed code in the update
scope could read g again, thus seeing the new value, violating ver-
sion consistency. A similar problem could occur with the execution
of ST if code in the update scope prior to and following ST’s exe-
cution could write to a variable read by ST, unmasking the illusion
that ST is only executed at the start or end of an update scope.

While we properly account for such changes to the heap, we
do not account for interactions with the environment outside the
process. For example, if ST writes to the file system and code in
an update scope could read from the same file location before and
after an induced update point, then an update at that point could
violate version consistency. While we could imagine tracking I/O
effects to avoid this situation, in practice we have never needed to
write a state transformer that changes the external environment in
a manner visible to existing code.

Check-ins and relaxed synchronization. When using relaxed
synchronization, we designate check-in scopes (`(, `)) by label-
ing a code block as CHECKIN:{s1; ...; sn}. The compiler inserts
a call to the function DSU checkin at the beginning of a check-
in block, and the computed check-in effect representations (and
a similarly adjusted-for-checkin ∆ set) are passed as arguments.
In particular, if the normal effect of s1; ...; sn is ε, and con-
textual/updatability effects for s1 and sn are (α1, ω1,∆1) and
(αn, ωn,∆n), respectively, the call inserted by the compiler will
be DSU checkin(α1 ∪ ε, ωn ∪ ε,∆1).

1 thread restr restriction []; // per−thread check−ins
2 rwlock restriction mutex ;
3
4 volatile bool update requested=0; // patch available
5 set changes; // elements changed by the patch
6 set changes; // changes ∪ writes(ST)

7 mutex update mutex; // synchronizes patch application
8
9 void DSU checkin(α, ω, ∆)

10 {
11 read lock (restriction mutex);
12 restriction [thread self ()] = {α, ω, ∆};
13 unlock(restriction mutex);
14
15 if (update requested) {
16 if (trylock (update mutex) == OK) {
17 write lock (restriction mutex);
18 if (! conflicts (restriction ,changes, changes)) {
19 apply update ();
20 update requested = 0;
21 } // else constraint unsatisfied ; defer
22 unlock(restriction mutex);
23 unlock(update mutex);
24 }
25 } }

Figure 4. Check-in based relaxed synchronization protocol.

Generally speaking we should insert a call to check out at the
end of a check-in scope, but we avoid doing this in our experiments
by making check-in blocks back-to-back and non-nested, so that
the code range covered by one is immediately followed by another.
Otherwise we would need a stack of triples per thread, where the
topmost element represents the thread’s current restriction, a check-
in pushes the given triple on the stack, and a check-out pops it off;
the stack is initialized to (>,>,>). With relaxed synchronization,
inserted DSU update calls no longer have run-time effect—rather
than modify them to include check-in effects we simply ignore
them and in practice place a CHECKIN annotation on the first block
within the update scope.

The pseudocode for DSU checkin is shown in Figure 4. The
restriction array (line 1) is indexed by a (normalized) thread

identifier, and contains the arguments passed to the most recent
DSU checkin call, i.e., a triple of set IDs for the prior and future
check-in effects α and ω, and the capability ∆. When no update
is in progress, threads may change restriction in parallel because
restriction mutex is acquired in reader mode. This is safe because

each thread will only write to its own portion of the array.
When a patch π becomes available, the flag update requested

is set to 1, and the sets changes(π) and changes(π) are popu-
lated. The next thread that checks in and acquires the update mutex
will attempt to apply the update (lines 15–16). This updating
thread will then acquire the restriction mutex in writer mode
(line 17), and thus other threads will block at their next check-
in points (line 11). Next, the updating thread checks whether the
update contents conflict with the current per-thread restrictions; the
call to conflicts checks that for each thread i, (changes(π) ∩
αi = ∅ ∨ changes(π) ∩ ωi = ∅) ∧ (changes(π) ∩ ∆i =
∅), where restriction [i] = {αi, ωi,∆i}. If this check suc-
ceeds, apply update proceeds with the update, redirecting func-
tion pointers, installing type transformers, and calling ST, as
described above. Either way, the updating thread releases the
restriction mutex to unblock any checked-in threads, and releases

the update mutex to enable future updates (or retries).

Supporting concurrency. Ginseng’s type wrapping changes the
representation of updatable named types, so we must be careful not
to introduce races. Since con functions can potentially call the type
transformer to update a value to the current version, a race-free
read–read access can become a racing write–write access. To avoid
this problem, we changed con functions to use per-type locks to en-
sure atomic type transformation, and used double-checked locking
to speed up the version check. However, introducing locks creates
the potential for deadlock; e.g., a type transformer could call a func-
tion that tries to acquire an application lock while another thread
holding that lock invokes the same type transformer. The problem
can be avoided by writing type transformers that never call func-
tions (including other type transformers) that could acquire locks;
adhering to this restriction was easy for all our test applications.

4.3 Discussion
Ginseng requires the programmer to choose update points Σ at de-
ployment time, and STUMP likewise requires a deployment-time
choice of update scopes Σ̂ and check-in scopes ξ̂.4 In our experi-
ence, the choice of Σ (for single-threaded applications (Neamtiu
et al. 2006)) or Σ̂ (for multi-threaded applications) is relatively
clear and applies for all versions. As such, the deployment-time re-
striction imposes no practical limitation. On the other hand, delay-
ing the choice of ξ̂ until the patch π is known could reduce update-
related delays. In particular, we could maximize the extent and
number of check-in scopes in ξ̂ by computing contextual effects
for every statement in the program, and designating update scopes
for each sequence of statements that are safe with respect to π. The
problem is that an update-time choice of ξ̂ is difficult to imple-
ment efficiently. Compiling the program to insert check-in/check-
out stubs, where some subset of them is enabled when the patch
is known, would add significant bloat. Shepherding each thread’s
execution, e.g., using ptrace, also seems fairly heavyweight.

On the other hand, deploying with just definite update scopes
and a few check-in blocks opens the possibility of deploying more
check-ins later, if needed. The programmer could compute the max-
imal set ξ̂ of check-in scopes relative to the given patch, adjust the
original program source to use this set, and then update the de-
ployed program with the new check-ins. Since the only difference
in the two programs is the presence of check-ins, which have no
impact on the normal semantics of the program, we could apply
this patch piecemeal (e.g., one function at a time) to reduce possi-
ble conflicts. Once the check-in patch is deployed, the actual patch
π can be applied with maximum effectiveness. A similar trick can
be played to accommodate further code extractions, if necessary.

5. Experience
We used STUMP to dynamically update three open-source multi-
threaded programs: the Icecast streaming media server, Mem-
cached, a high-performance, distributed-memory object caching
system, and the Space Tyrant multi-player gaming server. We chose
these programs because they are long-running, maintain soft state
that could be usefully preserved across patches, employ a variety
of multi-threaded programming patterns, and spawn a non-trivial
number of threads. In the remainder of this section, we briefly
present each program and its threading model, then we describe
the evolution of these programs during the period we considered,
and finally discuss changes we made to prepare the programs for
compilation with STUMP.

4 We do not specifically consider induced update points ξ in this discussion;
they are analogous to check-in scopes.

5.1 Application overview
Icecast is a streaming media server—a popular solution for build-
ing Internet radio stations. Updating Icecast on the fly would en-
able media content providers to keep their streams live 24/7, yet
be protected with the latest security fixes, or supporting the newest
features. Icecast employs an event-based server model with a fixed
number of threads, each performing separate duties: accepting a
connection, handling incoming connections, reading from a media
source, keeping statistics, etc.

Memcached is a high-performance, distributed-memory object
caching system used on high-traffic sites such as YouTube, Face-
book, and Wikipedia to store and deliver pre-rendered Web content,
avoiding slow per-client database accesses and on-demand render-
ing. Updating Memcached on the fly would help maintain high
web server throughput; taking Memcached down to install the next
version would discard the in-memory cache and cause degraded
operation while the restarted program’s cache refills. Memcached
uses a homogeneous threading model, where all application threads
(a user-configurable number) perform the same fixed task.

Space Tyrant is a multi-threaded gaming server. It uses a mixed
threading model: three fixed threads (for managing the game
state, accepting new connections and performing backups) and
two threads for each client, one dealing with user input, one deal-
ing with output from the server to the client. On-the-fly updates
to Space Tyrant would enable continuous game server operation,
without having to disconnect clients for each update.

Evolution history. Table 1 summarizes the release information
and shows some of the ways the programs changed over time. The
first two groups of columns describe the first and last release we
considered for each program. The last three groups of columns
contain the cumulative number of changes that occurred to the
software over that span. “Type changes” refers to structs, unions
and typedefs. We can see that programs have changed significantly
during the period we considered. For example, Icecast added nearly
4,000 lines of code; there were 25 changes to types, 10 changes to
function prototypes, and 292 changes to function bodies.

5.2 Source code changes
When building updatable applications with STUMP, the program-
mer may need to intervene at two phases: when preparing the
source code for compilation with STUMP, and when creating dy-
namic patches. We present details on the strategy we followed, and
programmer effort (annotations or lines of code) for each of these
phases, in turn, for our three test programs.

Stage extraction. As mentioned in Section 4.1, Ginseng supports
code extraction as a solution for updating long-running code. In
single-threaded Ginseng programs, long-running loop bodies are
often extracted into separate functions where a DSU update call is
placed just after the extracted call. This approach ensures the next
loop iteration will be to the new version, and reduces the ∆ re-
strictions (types that are not allowed to change) at the update point,
since the extracted function is inactive there. However, just extract-
ing the loop body turns out to be insufficient in some cases for our
multi-threaded programs, because many threads may be running
the same loop, and blocking synchronization may prevent them
from all exiting the loop at once. For example, producer/consumer-
style threads may result in one thread blocked in the first part of a
loop while the second thread does work in the second part (Makris
and Ryu 2007). To address this problem, we must further extract
logical “stages” of some loops into separate functions that can be
updated separately.

Program Updates First release Last release Function Type Global var.
Ver. Date Size Ver. Date Size changes changes changes

(LOC) (LOC) Proto Body Init Type
Icecast 4 2.2.0 12/2004 25,349 2.3.1 11/2005 29,079 10 292 25 0 1
Memcached 3 1.2.2 05/2007 5,743 1.2.5 03/2008 6,345 14 118 6 1 5
Space Tyrant 6 0.307 10/2006 18,738 0.351 10/2007 20,223 0 107 11 2 3

Table 1. Application update information (all versions).

Program Update scopes Check-ins Extractions
loop stage

Icecast 11 17 11 17
Memcached 1 1 0 0
Space Tyrant 5 16 7 16

Table 2. Source code annotations.

Multi-threading annotations. Table 2 presents the number of an-
notations we added to our test programs to prepare them for compi-
lation with STUMP. Identifying long-running loops, update scopes,
and stages was relatively straightforward, as we explain below. The
second column shows the number of update scopes. The multi-
threaded servers we have considered perform a few high-level op-
erations whose boundaries suggest natural definite update points.
Examples of such operations are processing one event, accepting
and dispatching a client connection, etc. We enclosed each thread
loop body for Icecast and Space Tyrant into an update scope. In the
case of Memcached, the update scope delimits the processing of
one event. The third column shows the number of blocks marked
as check-ins; we placed check-in annotations around stages. To use
the same source code for both barrier and relaxed approaches, we
directed STUMP to compile the beginning of check-in blocks to
DSU induced update for the barrier approach, and to DSU checkin
for the relaxed approach (see Section 4.2).

The last two columns show the number of times we used loop
or stage extraction. Identifying long-running loops was easy, as
each long-running thread essentially executes a loop. We identified
11 loops in Icecast and 7 in Space Tyrant; these numbers are
higher than the number of update scopes because some loops are
nested. Loop extraction was not necessary for Memcached because
looping occurs in an separate event-handling library. Finally, the
last column shows the number of stages designated for extraction.
These often coincide with the check-in blocks, but for Memcached
no stage extraction was necessary.

Other changes to source code. In addition to designating update
scopes, check-ins and stages, we had to make several small changes
to application source code to cope with Ginseng’s conservative
safety analysis (Neamtiu et al. 2006). These changes amounted
to 42 lines for Icecast, 23 lines for Memcached and 19 for Space
Tyrant (details can be found in our technical report (Neamtiu and
Hicks 2009)).

Adjusting auto-generated patches. Ginseng automatically gen-
erates candidate type transformer functions for type definitions that
have changed. We inspected (and completed, where necessary) the
generated type transformers, and wrote state transformers when
needed; across all patches, we had to write 80 lines of code for
Icecast, 12 for Memcached and 81 lines for Space Tyrant.

6. Experiments
We performed two sets of experiments. First, we measured how
quickly an update can take effect in STUMP as compared to various
alternatives (Section 6.1). Second, we measured the overhead that

STUMP’s update support imposes on application performance com-
pared to stock versions of the programs, and the original Ginseng
without our added support (Section 6.2).

We conducted our experiments using a client-server setup,
where the updatable applications ran on a quad-core Xeon 2.66GHz
server with 4GB of RAM running Red Hat Enterprise Linux AS
release 4, kernel version 2.6.9. The clients ran on a two-way SMP
Xeon 2.8GHz machine with 3.6GB of RAM running Red Hat En-
terprise Linux WS release 3, kernel version 2.4.21. The client and
server systems were connected by a 100Mbps network. All C code
(generated by STUMP or otherwise), was compiled with gcc 3.4.6
at optimization level -O2.

6.1 Update timeliness
To measure the effectiveness of induced update points and relaxed
synchronization in STUMP, we measure update timeliness, for all
13 patches that we developed, using gradual refinements (called
update protocols) to our approach for reaching safe update points.
We start with a straightforward extension to Ginseng, and show
that this performs poorly in practice. We then add induced update
points, and find that they improve update timeliness, though some-
times we fail to reach safe update points. Finally, we add relaxed
synchronization and show that it is very effective at reaching safe
update points, fast. We first describe the experimental setup, then
proceed to describing the protocols and the results.

We ran experiments for each update and measured the time it
took the system from the moment the update was signaled to the
moment it could safely be applied; results (in milliseconds) are pre-
sented for each protocol in Table 3. The first column shows the pro-
gram, while the second column shows the update sequence number.
5 The subsequent columns show the results for each protocol.

For each protocol, we tested two configurations, 4 and 16 con-
current clients. The number of server-side threads varied, depend-
ing on the application and number of clients. Icecast has a fixed
number of threads; in our configuration this number was 6 in Ice-
cast 2.2.0, and 7 in later versions. Memcached has a thread pool
with a configurable number of handler threads, independent of the
number of clients. We present results for two configurations, one
with four server threads (Memc-4), and one with 16 server threads
(Memc-16). Space Tyrant uses two threads per connected client,
plus three fixed threads that perform housekeeping, so the number
of Space Tyrant server-side threads were 11 (8 client handlers + 3
fixed) for the 4-client configuration and 35 (32 client handlers + 3
fixed) for the 16-client configuration.

We are interested in measuring update timeliness while the
server is under load (since thread activity is likely to obstruct up-
dates from taking effect), and most importantly whether an update
may take place at all. The methodology for each program was to
start the server, connect 4 (or 16) clients that are constantly asking

5 For Icecast, we considered versions 2.2.0, 2.3.0rc1, 2.3.0rc2, 2.3.0.rc3,
and 2.3.1; hence entry 0 corresponds to the update 2.2.0 → 2.3.0rc1. For
Memcached, we considered versions 1.2.2, 1.2.3, 1.2.4, and 1.2.5. For
Space Tyrant, we considered versions 0.307, 0.316, 0.319, 0.331, 0.335,
0.347, and 0.351.

Protocol
P-OPNOIND P-BARRIERNOIND P-OPWAIT P-BARRIER P-RELAXED P-POSTRELAXED

Clients→ 4 16 4 16 4 16 4 16 4 16 4 16
Update id ↓

0 X X X X X X 1,062 945 1,750 1,068 17,037 10,243
Icecast 1 X X X X X X 976 942 2.1 2.1 805 1,233

2 X X X X X X 478 937 0.7 0.7 603 1,000
3 X X X X X X 484 941 2.3 2.3 691 1,303
0 X 144,901 851 710 150 21 0.9 1 0.6 0.7 1.1 1.2

Memc-4 1 27,493 134,958 847 706 373 29 1.7 1.8 1.2 1.2 1.5 1.5
2 148,003 129,580 853 725 275 28 1 1 0.8 0.8 1.3 1.4
0 X X X 760 X 1,163 X 1.7 1 1.1 X 2.3

Memc-16 1 X X X 729 X 1,255 X 4.5 2.8 2.8 X 3.6
2 X X X 727 X 3,465 X 2 1.4 1.4 X 2.9
0 X X 5,184 5,093 X X 3,505 3,439 3.4 5.2 3,513 3,492
1 X X 5,193 5,147 X X 3,506 3,456 4.7 9.4 3,524 3,511

Space 2 X X 5,186 5,082 X X 3,526 3,514 1 3.4 3,545 3,477
Tyrant 3 X X 5,151 5,054 X X 3,524 3,445 3.9 4.2 3,621 3,461

4 X X 5,110 5,101 X X 3,508 3,459 1.4 1.5 3,553 3,469
5 X X 5,146 5,111 X X 3,504 3,426 4.4 3.7 3,504 3,482

Table 3. Time to reach a safe update point using various update protocols (in milliseconds).

for data, and send an update request while the server is perform-
ing work. We then measured the time from the moment an update
was requested to the moment it could be safely applied, or timed
out after 15 minutes. We performed each experiment 11 times; we
report the median time to reach a safe update point for terminating
runs. An Xentry means that for that specific configuration, none of
the 11 runs could reach such a point within 15 minutes. We also
measured update loading times, i.e., time to load a dynamic patch
after reaching a safe point. Loading times are proportional to patch
size, and in all cases were less than 3 ms; we omit details due to
space constraints. We now present our protocols and findings.

P-OPNOIND models a straightforward extension to Ginseng,
and does not use induced update points (DSU induced update calls
are treated as no-ops) or relaxed synchronization. It naı̈vely tries
to coax all threads to quiesce by yielding (via sched yield) when
a definite update point is reached. If the last thread discovers that
all threads are at definite update points, and that all these points are
compatible with the update, the update is applied. The results are
in columns 3 and 4 of Table 3. We can see that this protocol fails to
reach a safe update point for almost all scenarios, and when it does,
it can take several minutes to apply an update.

P-BARRIERNOIND attempts to improve P-OPNOIND. When a
thread reaches a definite update point, and the effects at that point
do not conflict with the update, it blocks. When the last thread
discovers that all threads are blocked, the update is applied. We
can see that this strategy (columns 5 and 6) is more successful
than P-OPNOIND, but we still cannot reach a safe update point
for the Icecast updates and some Memcached updates. We discuss
the reasons below.

P-OPWAIT follows the optimistic approach of P-OPNOIND,
but calls sched yield at induced update points as well. We can see
(columns 7 and 8) that the extra points help—P-OPWAIT reaches
safe update points more quickly than P-OPNOIND, and in more
cases. Likewise, P-BARRIER is the same as P-BARRIERNOIND but
synchronizes at induced update points, and again (columns 9 and
10) the result is improved performance in both update successes
and update times.

P-RELAXED employs STUMP’s support for check-ins and
relaxed synchronization. As shown in columns 11 and 12, P-
RELAXED is the only protocol able to reach a safe point for all

updates, and it does so quickly, sometimes orders of magnitude
faster than the other protocols. The only update for which P-
RELAXED is not the fastest is #0 for Icecast (shown in the first row).
P-RELAXED takes 1.75 seconds with 4 clients and 1.06 seconds
with 16 clients to reach a safe update point, compared to 1.06 and
0.94 seconds, respectively, for P-BARRIER. The added slowdown
is due to the more conservative safety check for P-RELAXED. As
explained in Section 4.2, in the relaxed approach, a check-in scope
s1; ...; sn with normal effect ε calls DSU checkin(α1 ∪ ε, ω1,∆1)
(recall ω1 = ωn ∪ ε). This effectively prevents anything in ε from
being updated while s1; ...; sn is being executed. By contrast, a
DSU induced update call just prior to s1 would pass in α1, ω1,∆1,
reducing the chance of a conflict with the prior effect. The Icecast
update #0 contains a particularly large number of changes, and the
safety check fails for many check-in scopes where it succeeds for
induced update points at the same positions.

On the other hand, the barrier-based protocols P-BARRIER and
P-BARRIERNOIND must wait for all threads to reach an (induced
or definite) update point before applying the update, which results
in some updates failing to take place. For P-RELAXED, the update
is applied as soon as it becomes available if allowed by the current
restriction. In all the failing cases for Icecast and Memcached one
or more threads are suspended due to a blocking call (on I/O or a
condition variable) before reaching an update point, and will not
proceed before new clients connect. For example, in the Memc-16
scenario, we have 16 server threads, and activity from only 4 clients
prevents each of the 16 threads from being scheduled within the 15
minute time-out window.

While the barrier protocols could reach safe points eventually
under different workloads (e.g., without a fixed set of clients), a
more robust solution might be to treat blocking calls as a kind of
induced update point, wrapping them with code to register α, ω,∆
with the run-time system just prior to the actual call, and adding
code to synchronize the thread upon returning from the call if
an update has since become available. An update may be applied
once currently active threads reach safe points as long as regis-
tered threads are safe. While this solution should work for these
programs, we feel barrier synchronization is still generally undesir-
able for two reasons: (1) the server’s performance will be degraded
because the existing client threads will block at update points and

Completion time (sec)
4 clients 16 clients

Compilation Stock Ginseng STUMP Stock Ginseng STUMP

Icecast 11.09 11.08 (-0.09%) 11.09 (0.00%) 40.50 40.58 (0.20%) 40.84 (0.84%)
Remote Memcached 31.64 31.30 (-1.07%) 31.58 (-0.19%) 86.32 87.08 (0.88%) 87.66 (1.55%)

SpaceT 44.54 44.48 (-0.13%) 44.49 (-0.11%) 44.62 44.51 (-0.25%) 44.60 (-0.04%)
Icecast 1.64 1.66 (1.22%) 1.75 (6.71%) 2.65 2.63 (-0.75%) 2.70 (1.89%)

Local Memcached 7.58 7.89 (4.09%) 7.92 (4.49%) 31.37 32.13 (2.42%) 32.55 (3.76%)
SpaceT 34.60 34.62 (0.06%) 34.61 (0.03%) 44.52 44.65 (0.29%) 44.62 (0.22%)

Table 4. Benchmark completion times (elapsed times, in seconds, and in % relative to the stock server).

not perform any work until the patch is eventually applied, and (2)
there is still the possibility of deadlock (despite not observing it in
our example applications), and this possibility must be addressed.

The final protocol shown in Table 3 is P-POSTRELAXED, which
is like P-RELAXED except that check-ins are treated as no-ops un-
til an update has been requested—once all threads have checked
in their restrictions at least once, the update protocol is the same
as P-RELAXED. This protocol potentially reduces overhead dur-
ing normal operation at the cost of slower patch application times.
The performance here (columns 13 and 14) is roughly similar to
P-BARRIER. The failure cases are for the same reason: when the
patch becomes available, some threads are blocked, and will only
check in once awakened. The successful cases have similar times,
though Icecast update #0 is slower due to the more conservative
safety check, as described above. Wrapping blocking calls as de-
scribed above should also help P-POSTRELAXED. However, our
performance experiments in Section 6.2 show that, in practice, the
cost of always doing check-ins is modest, so P-RELAXED provides
a good balance between overhead and timeliness.

6.2 Performance overhead
We evaluated the impact of dynamic update support on applica-
tion performance by running application-specific benchmarks, and
measuring memory footprint.

For each application, we measured the performance of its most
recent version under three configurations. The stock configuration
forms our base for benchmarking, and consists of the applica-
tion compiled normally, without support for updating and with-
out involving STUMP. The Ginseng configuration is the applica-
tion compiled with a normal Ginseng, which generates type trans-
former code assuming single-threading, and treats check-ins as no-
ops. The STUMP configuration is the application compiled with
STUMP, which assumes multi-threading and implements check-ins
calls as registering check-in effects as described earlier. Comparing
the Ginseng and STUMP configurations shows the additional over-
head STUMP imposes on applications, i.e., double-checked lock-
ing when calling concretization functions, and effect registration at
check-ins.

For each application and configuration, we ran a specific bench-
mark and measured the completion time and memory footprint (at
the completion of the benchmark). We ran each benchmark in two
setups. The first setup, remote, shows the results of running the
clients and server on separate machines, a scenario that models how
the updatable servers would be used in practice. The second setup,
local, shows the results of running the clients and server on the
same machine (we used the quad-core machine mentioned above).
The local configuration factors out network latency and bandwidth
issues (while reducing parallelism of the server). Similar to the up-
date protocol experiments in Section 6.1, we report figures for 4
and 16 clients, respectively.

Application performance. For Icecast, we measured the time it
took the streaming server to serve eight mp3 files to a wget client.
Each file has size 1, 2, 3, . . . 8 MB. To eliminate jitter due to disk
I/O, we directed wget to send both its output and the downloaded
file to /dev/null. For Memcached, we ran a “slap” test that ships
with the server. The test program spawns 4 or 16 clients in parallel
(the same number of clients as the number of server threads), each
client inserting key/value pairs into Memcached’s hash table. We
measured the time it took the test program to complete insertion
of 50,000 key/value pairs. For Space Tyrant, we created a scenario
file that directs a client to perform 500 random moves across the
universe, and spawned concurrent clients running this scenario. We
measured the time it took the server to process all the clients.

In Table 4 we report the median benchmark completion time
across 11 runs. In the remote, more realistic, setup, for Icecast and
Space Tyrant, the completion time is similar to the stock server.
Memcached is however slower in the 16-thread configuration, with
the multi-threaded updatable version 1.6% slower. In the local
setup, impact of update support on completion time is higher than
in the remote setting; this is because, as expected, update support
(e.g., check-ins, function and type indirection) slows down the ap-
plication and the slow-down cannot be masked by network latency.
However, even in this scenario the slowdown is small, less than
7% in all cases. Finally, by comparing the Ginseng and STUMP
columns we can quantify the additional cost of supporting multi-
threading on top of a DSU compiler. For example, by looking at
the second-to-last row, we can see that for Memcached, the cost of
multi-threading is an extra 0.4% (4.09% vs. 4.49%) in the 4-client
configuration, and 1.34% (2.42% vs. 3.76%) in the 16-client con-
figuration, respectively.

Memory footprint. Detailed figures on memory overhead can be
found in our technical report (Neamtiu and Hicks 2009). In sum-
mary, we found the memory footprint increase for the updatable
configurations to be negligible for Icecast and Memcached: less
than 1% and 4%, respectively. For Space Tyrant, the increase was
up to 46%, due to Ginseng’s type wrapping scheme. In the technical
report we explain how to reduce this overhead to 13% by perform-
ing a small refactoring.

7. Related work
Several existing systems can dynamically update multi-threaded
programs, but to our knowledge our work is the first to identify the
safety/timeliness trade-off explicitly, and to consider solutions for
it in any depth. Existing systems do provide restrictions on update
timing, both manual and automatic, but fully automatic approaches
are insufficient to solve the problem while little or no guidance is
given in how to use manual mechanisms effectively.

Many systems require that updates not be performed on cur-
rently running functions, with some relying on this “activeness
check” as the sole means for ensuring safety; examples include the
K42 operating system (Soules et al. 2003; Baumann et al. 2007),

OPUS (Altekar et al. 2005), and Ksplice (Arnold and Kaashoek
2009). Relying on the activeness check alone negatively affects
safety and timeliness. As shown in Sections 2.2 and 2.3, activeness
does not preclude some invalid update times, and may indefinitely
delay an update if it changes functions that contain infinite loops.
Some systems (Arnold and Kaashoek 2009; Altekar et al. 2005)
attempt to avoid safety problems by limiting the form of updates
to code only, and not state. However, even this restriction is not
sufficient to avoid all problems. Notice that if our example update
in Figure 1 only consisted in moving the call to log from process
to clean then it could still exhibit the problematic execution while
changing only code.

Several systems—including LUCOS (Chen et al. 2006), PO-
LUS (Chen et al. 2007), and UpStare (Makris and Bazzi 2009)—
provide fine-grained control over when to apply a patch so that it
can be applied quickly. LUCOS and POLUS permit updates to ac-
tive code where active functions continue to execute at the old ver-
sion; by default, subsequent calls target the most recent version, but
the programmer can override a particular call to be fixed at one ver-
sion. UpStare uses stack reconstruction to allow an actively running
function to transition to a corresponding point in the new version
of the same function when an update is applied. This technique has
the same effect as Ginseng’s code extraction, but is more flexible,
as transition points can be specified at patch time, not deployment
time. (The need for this support was motivated by earlier experi-
ence writing small updates to long-running functions in the Linux
kernel (Makris and Ryu 2007).) While these mechanisms are use-
ful, they do not mitigate the problem of reasoning about the effects
of a patch in the large state space of a multi-threaded program.
By contrast, our approach reduces the programmer’s burden of rea-
soning about safety to a few definite update points, while induced
update points and relaxed synchronization ensure timeliness. We
imagine our techniques could be applied to these existing systems.

Our previous work (Neamtiu et al. 2008) introduced the idea of
version-consistency and the use of contextual effects to enforce it.
In that work we considered single-threaded programs whereas for
the present work we have a full implementation for multi-threading,
STUMP, which we have evaluated on several realistic programs.
STUMP incorporates the new ideas of check-in effects and relaxed
synchronization. In our prior work, we proposed enforcing version-
consistency within programmer-specified update transactions. We
initially expected this idea to transfer directly to multi-threaded
programs, with programmers using update transactions frequently
and at a fine granularity just as they might use modern software
transactions (a.k.a. atomic blocks) (Harris et al. 2005). However,
we found it much easier to reason about dynamic updates occurring
at a small number of definite update points/scopes at the top-level,
as advocated by the present work, rather anywhere within a web of
nested transactions.

8. Conclusion
In this paper, we presented an approach for updating multi-threaded
programs while they run, and show how we have implemented this
approach in STUMP. Updating multi-threaded programs is more
difficult than updating single-threaded programs because myriad
thread interactions complicate reasoning how an update will inter-
act with the many states of the system, while timing restrictions
on an update’s application that would reduce this burden may un-
duly delay the update from taking effect. We address this tension
using the novel concepts of induced update points and relaxed syn-
chronization, which can be used to ensure updates are performed
promptly while easing the programmer burden of reasoning about
patch application correctness. We evaluated our approach on three
realistic multi-threaded servers. We found that programmer effort
for building updatable versions of these applications was modest,

and experiments show that update support does not significantly
impact application performance.

Acknowledgments This research was supported in part by NSF grants
CCF-0541036 and CNS-0346989, and the partnership between UMIACS
and the Laboratory for Telecommunication Sciences. We thank Ray (Otis)
Eargin for providing us earlier versions of Space Tyrant. We also thank
Gavin Bierman, Gianfranco Ciardo, Jeff Foster, Eric Hardisty, Chris Hay-
den, Scott Owens, Polyvios Pratikakis, Peter Sewell, Nikhil Swamy, and the
anonymous referees for their helpful comments on drafts of this paper.

References
Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. Opus:

online patches and updates for security. In USENIX Security, 2005.
Jeff Arnold and Frans Kaashoek. Ksplice: Automatic rebootless kernel

updates. In EuroSys, 2009.
Andrew Baumann, Jonathan Appavoo, Robert W. Wisniewski, Dilma Da

Silva, et al. Reboots are for hardware: challenges and solutions to
updating an operating system on the fly. In USENIX ATC, 2007.

Haibo Chen, Rong Chen, et al. Live updating operating systems using
virtualization. In VEE, 2006.

Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. PO-
LUS: A powerful live updating system. In ICSE, 2007.

Deepak Gupta, Pankaj Jalote, and Gautam Barua. A formal framework for
on-line software version change. IEEE TSE, 22(2), 1996.

Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Maurice Herlihy.
Composable memory transactions. In PPOPP, 2005.

Michael Hicks and Scott Nettles. Dynamic software updating. ACM Trans.
Program. Lang. Syst., 27(6), 2005.

K42. The K42 Project. http://www.research.ibm.com/K42/.
Insup Lee. DYMOS: A Dynamic Modification System. PhD thesis, Dept. of

Computer Science, University of Wisconsin, Madison, April 1983.
Kristis Makris and Rida Bazzi. Multi-threaded dynamic software updates

using stack reconstruction. In USENIX ATC, 2009.
Kristis Makris and Kyung Dong Ryu. Dynamic and adaptive updates of

non-quiescent subsystems in commodity operating system kernels. In
EuroSys, 2007.

Iulian Neamtiu. Practical Dynamic Software Updating. PhD thesis, Uni-
versity of Maryland, College Park, August 2008.

Iulian Neamtiu and Michael Hicks. Safe and timely updates to multi-
threaded programs. Technical report, UC Riverside, June 2009.

Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding Source
Code Evolution Using Abstract Syntax Tree Matching. In MSR, 2005.

Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical
dynamic software updating for C. In PLDI, 2006.

Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis.
Contextual effects for version-consistent dynamic software updating and
safe concurrent programming. In POPL, January 2008.

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Context-sensitive
correlation analysis for detecting races. In PLDI, 2006.

Stelios Sidiroglou, Sotiris Ioannidis, and Angelos D. Keromytis. Band-aid
patching. In HotDep, 2007.

C. Soules, J. Appavoo, K. Hui, et al. System support for online reconfigu-
ration. In USENIX ATC, 2003.

Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian
Neamtiu. Mutatis Mutandis: Safe and flexible dynamic software up-
dating. TOPLAS, 29(4), August 2007.

Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic
software updates for Java: A VM-centric approach. In PLDI, June 2009.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect
inference. JFP, 2, 1992.

Chris Walton. Abstract Machines for Dynamic Computation. PhD thesis,
University of Edinburgh, 2001. ECS-LFCS-01-425.

