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Abstract. Binary Decision Diagrams (BDDs) are compact data struc-
tures used to efficiently store and process boolean functions. BDDs have
many uses, from system design to model checking to efficiently storing
context information for context-sensitive analysis. The use of BDDs in
verification and program analysis has been facilitated by the recent emer-
gence of many open source BDD libraries. The correctness of BDD-based
system design and verification hinges upon the correctness of the BDD
library implementations, and the correct use of these libraries. Surpris-
ingly, for a technology so prevalent in system design and formal verifica-
tion, there has been little research effort on formally verifying the correct-
ness of BDD library implementations or their use. For BDD libraries that
do perform some correctness checks, these are mostly confined to runtime
assertion checking, which slows down BDD operations and might still be
unable to reveal errors until deployment. To address these issues and
take a step toward provably correct, yet efficient, BDD-handling code,
we propose a formal system called Bddl to describe, reason about, and
prove the correctness of BDD operations. Bddl extends lambda calculus
with support for BDD operations (e.g., creation, manipulation), express-
ing BDD structural properties (e.g., canonicity, proper ordering), and
BDD semantics (e.g., sets, relations). Bddl uses a type system based on
refinement types to statically check BDD manipulation. We have proved
our system correct using a small-step semantics and standard notions of
progress and preservation. Bddl is the first attempt to provide a well-
defined syntax and semantics to BDD operations; we show how it could
prevent bugs and semantic errors in the implementation and use of three
mature DD libraries.

Keywords: binary decision diagrams, type checking, BDD library, cor-
rectness by construction
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1 Introduction

Formal methods for hardware and software verification have been facilitated by
reliable and efficient methods for expressing and checking hardware as well as
software behavior. For instance, in digital circuit design, where chips can have bil-
lions of transistors, symbolic model checking was made possible primarily by the
introduction of canonical and efficient data structures such as BDDs, which often
provide a compact representation of very large state spaces. Essentially, BDDs
can be used to symbolically represent boolean functions. This symbolic, rather
than explicit representation of the state space is a main strength of BDDs and
decision diagrams in general.5 In addition to symbolic model checking, BDDs are
extensively used in quantitative risk assessment; for example, QRAS, a commer-
cial system used by NASA to perform Probabilistic Risk Assessment (PSA)[11],
allows systems engineers to quantify risks, identify risk scenarios, as well as rea-
son about how risk is affected by changes to the system or organization—failure
for NASA operations can have unacceptable costs.

Numerous decision diagram library implementations support BDDs [8, 6, 1, 12].
Yet, formal method support for checking BDD correctness is lacking. The aim
of this paper is to provide a formal system that verifies the validity of BDD
construction and manipulation. The core of our approach consists of a calculus
and type system that support BDD terms, BDD operations and BDD semantics.
Our current system performs type safety checks for BDD manipulation, but is
general enough that we envision it can be extended to support other kinds of
decision diagrams. We analyzed three mature DD libraries to drive the design of
Bddl. CUDD [8] is a popular DD library, used in the NuSMV model checker.
MDDL is part of SMART [6], which has been used to verify the NASA runway
safety monitor [20]. JavaBDD [12] is used in bddbddb [22], a Datalog-based
framework for specifying, and efficiently performing, program analysis.

To illustrate how our system statically prevents semantic errors, we present two
examples of BDD library implementation and BDD library usage errors that
cause BDD-based programs to crash or silently produce erroneous outcomes.
These examples are drawn from CUDD and MDDL; in Section 3 we provide the
actual code for these, and other, examples. First, consider the BDD::Compose(g,v)
operation from the CUDD library; BDD::Compose returns the result of splicing
BDD g into the slot currently occupied by variable with index v in the BDD
represented by this. Clients can crash the program by passing in an incor-
rect index v; recent versions of CUDD generate an Unexpected error, while
older versions crash with a Segmentation fault. Second, consider the method

5 Other kinds of decision diagrams operate on integers and reals to encode algebraic,
arithmetic, and relational functions. Decision diagrams have been employed in ar-
eas as diverse as optimization [2], electronic design [24], VLSI CAD [5], Genetics
(gene expression analysis [25], data-mining DNA subsequences) [15], NASA safety
operations [20], and reliability [23].
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RelationalProduct(p,r) from MDDL. The method computes the relational prod-
uct of BDDs p and r, and requires that p have L levels and r have 2 ∗ L levels,
as p encodes a set and r encodes a relation. However, library clients can invoke
RelationalProduct in incorrect ways: first, they can invoke it with two sets or
two relations, in which case the library silently returns an incorrect result; or,
they can invoke it with a set and a relation where r’s number of levels is not
twice p’s number of levels, which leads to a runtime error (assertion failure). We
present a detailed account of these and other errors in Section 3.

In general, BDD libraries do not check the higher-level semantics of library
implementations and client-supplied data, or perform such checks at runtime;
as a result, they silently return an incorrect result, or fail with a runtime error;
another disadvantage of runtime checks is that they slow down the execution. In
this paper, we make progress toward provably correct and efficient BDD-handling
code using Bddl, a calculus we developed. Our approach consists of two main
steps. First, BDD library and client code must be expressed in Bddl, e.g., C,
C++, or Java code translated to Bddl, and library function types expressed as
Bddl types; currently, this approach is manual, though we found the translation
to be straightforward, as evidenced by the translations in Sections 3. Second,
the DDL type inference and checking system statically checks the Bddl code
and reports typing errors. Section 3 shows how, when using Bddl, we would
get a static typing error in the semantic/assertion failure cases we previously
discussed—our system prevents certain ill-typed operations on BDDs that may
cause programs to crash or produce erroneous outcomes.

Our approach consists of Bddl, a calculus with an associated type system and
operational semantics. Bddl’s expressiveness and effectiveness derive from its
ability to model and verify two kinds of BDD semantic properties: structural
and logical. Structural semantic properties, e.g., constraints on node and edge
manipulation, are captured by our terms and typing system—we model BDD
nodes as terms (Section 4), and use a refinement-based type system (Section 5)
to express integrity properties (e.g., the number of levels, set vs. relation en-
coding, quasi- vs. fully-reduced form). Logical semantic properties are captured
by refined function types: the Bddl types assigned to library functions permit
concise expression of logical properties (pre- and post-conditions), because re-
finement predicates on our types allow for conjunctions of arithmetic expressions.
At the same time, our subtyping system allows polymorphism over BDD struc-
tures, which increases expressiveness, especially for generic BDD-manipulating
functions. We employ a small-step operational semantics to prove our system
correct using standard notions of progress and preservation (Section 5.4).

In summary, our work makes two main contributions:

– An exposé of implementation and usage errors in BDD libraries.

– Bddl, a formal system to express and statically verify the safety of BDD
library implementations and BDD library uses.
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Fig. 1. A quasi-reduced (left) vs. a fully-reduced (right) BDD.

2 Background: Binary Decision Diagrams

We now provide a brief overview of BDDs.

2.1 Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a rooted directed acyclic graph encoding
a boolean function of the form f : BL → B, for some L ∈ N+. Each non-terminal
node is labeled with a variable xk ∈ {xL, ..., x1}, and placed at level j (where j =
k for BDDs that have the order x1 < x2 < ... < xL) , while there are two terminal
nodes, 1 and 0 placed at level 0. A non-terminal node has two outgoing edges
labeled “false”, or “0”, and “true”, or “1”, respectively, pointing to a node at a
level h satisfying 0 ≤ h < k. The value of the function encoded by a BDD for a
particular truth value assignment for the L variables is obtained by following the
corresponding path from the root to a terminal node. For example, the BDD on
the left of Figure 1 encodes f(x4, x3, x2, x1) = x4 x3x2x1+(x4+x3)(x2+x1); note
that product denotes logical AND, while sum denotes logical OR. Observe that
f(0, 0, 0, 0) = 0, since the path from the root corresponding to the choices x4 = 0,
x3 = 0, x2 = 0, and x1 = 0 ends at 0 . The BDD on the right encodes the same
function, but x1 is not tested on that path, as it does not affect the value of f
when x4 = 0, x3 = 0, and x2 = 0. These two BDDs correspond to quasi-reduced
(left) and fully-reduced (right) forms, discussed next; essentially, in fully-reduced
BDDs edges can skip levels associated with a variable, whereas in quasi-reduced
BDDs edges never skip levels. While the size of a BDD can be exponential in
the number of variables, many functions can be encoded compactly.

2.2 Canonical Binary Decision Diagrams

Decision diagrams can be reduced to different forms, so that they still denote
the same function in a more compact canonical representation. Most library
implementations support only canonical forms, having the property that no two
nodes encode the same function. This is achieved by first eliminating duplicate
nodes and then either retaining all redundant nodes (quasi-reduced form, no
edge skips levels) or removing them all (fully-reduced form, edges skip levels
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whenever possible), where a node is redundant, shown in light color in Figure 1,
if its outgoing edges point to the same node.

While other, more specialized, reduction forms have been defined, we only con-
sider the quasi-reduced and fully-reduced forms as they are widely used in de-
cision diagrams libraries. To illustrate why we are interested in these reduction
forms, the following section presents some functions from MDDL, the library
used in SMART [6], which take BDDs reduced using a specific form as inputs,
and we show how Bddl prevents illegal use of such operations.

2.3 Encoding Sets and Relations with BDDs

BDDs can encode sets and relations (we limit the discussion to binary relations,
the most widely used in practice). A BDD encodes a set Y ⊆ BL through its
characteristic function fY :

i = (iL, ..., i1) ∈ Y iff fY (iL, ..., i1) = 1

Analogously, a BDD encodes a relation R ⊆ BL × BL through its characteristic
function fR:

(i,i′)=((iL,...,i1),(i
′
L,...,i

′
1))∈R iff fR(iL,i′L,...,i1,i

′
1)=1

If the library implementation allows for the same BDD to encode a set or a
relation, i.e., a BDD with 2L levels may encode a subset of B2L or a relation
over BL, then the user may use the library in the wrong way: a BDD encoding a
set is used as the argument of a function that expects a relation, or vice versa.

For example, given an L-level BDD on (xL, ..., x1) rooted at p encoding a set
Y ⊆ BL and a 2L-level BDD on (xL, x

′
L..., x1, x

′
1) rooted at r encoding a relation

R ⊆ BL × BL, the relational product of p and r returns the root of the L-level
BDD encoding the set {i′ : ∃i ∈ Y, (i, i′) ∈ R}.

In Section 3, we consider an implementation of the relational product in MDDL;
since root nodes are not checked, the user can pass any ill-typed arguments. We
show how Bddl captures these type errors statically.

3 Motivation

The design of Bddl and its type system was driven by examining the source
code and evolution (history of bug fixes) of three mature DD libraries: CUDD,
MDDL, and JavaBDD. We now proceed to showing the actual code and errors
from the examined libraries, the equivalent code in Bddl and the Bddl types
that would prevent these errors at compile time.

We begin with the BDD composition code from CUDD (Figure 2). The left side
shows the actual C++ code from the library. Function Cudd_bddCompose (lines 1
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1 DdNode * Cudd_bddCompose(
2 DdManager * dd, DdNode * f,
3 DdNode * g, int v)
4 {
5 DdNode *proj, *res;
6 /* Sanity check. */
7 if (v < 0 || v >= dd→ size)
8 return(NULL);
9 proj = dd→ vars[v];

10 do {
11 dd→ reordered = 0;
12 res = cuddBddComposeRecur(
13 dd,f,g,proj);
14 } while (dd→ reordered == 1);
15 return(res);
16 }

17 BDD BDD::Compose(BDD g,int v)
18 { ...
19 return BDD(...,
20 Cudd_bddCompose(
21 mgr.node, g.node, v));
22 }
23 int main ()
24 {
25 Cudd mgr(0,2);
26 BDD x = mgr.bddVar();
27 BDD y = mgr.bddVar();
28 BDD h = x * y;
29 BDD j = x + y;
30 BDD k = h.Compose(j,2);
31 /* runtime error or crash */
32 }

1 letrec two : {ν : nat | ν = 2} =
2 (succ (succ 0)) in
3
4 letrec bddCompose : bdd[l, r, c]
5 →
bdd[l′, r, c] → {ν : nat | ν ≤ l− 1} =

6 λ f .
7 λ g .
8 λ v .
9 <body>

10 in
11 letrec h = Bnode(two, ...) in
12 letrec j = Bnode(...) in
13 letrec k =
14 bddCompose h j two // type error

C++ code Bddl code

Fig. 2. Crashing CUDD: the C++ code leads to Segmentation fault in CUDD 2.3.1
and Unexpected error in CUDD 2.4.2.

1 BddNode *RelationalProduct(
2 BddNode *p, BddNode *r)
3 { ...
4 ASSERT(( r→ GetLevel()+1)/2
5 == p→ GetLevel());
6 ...
7 }
8 BddNode* construct_set(int l)
9 {

10 BddNode *bdd =

12 malloc(sizeof(BddNode)); ...
13 return bdd;
14 }
15 int main ()
16 {
17 BddNode *f=construct_set(2);
18 BddNode *g=construct_set(3);
19 BddNode *res =
20 RelationalProduct(f,g);
21 /* no exception is raised */
22 }

1 letrec relationalProduct :
2 bdd[l, r, s] → {ν : bdd[l′, r, e]
3 | l′ = l + l− 1} → bdd[l, r, s] =
4 λ p. λ r. <body>
5 in
6 letrec f : bbd[2, q, s] = Bnode(...)
7 in
8 letrec g : bbd[3, q, s] = Bnode(...)
9 in

10 relationalProduct f g
11 /* type error */

C++ code Bddl code

Fig. 3. The MDDL relational product code silently outputs an incorrect result when
two BDDs encoding a set are passed as arguments.

through 16) takes BDDs f and g as arguments, and returns the result of splicing
g into f at the position indicated by variable with index v. Note the runtime
sanity check on line 7, which verifies that the index of v is positive, but less
than the BDD size (the number of levels L, as there is one variable per level),
i.e., v is within the BDD. The method BDD:Compose (lines 17–22) is the C++
library interface for the clients; it invokes Cudd_bddCompose on this.node, which
represents f, and g.node, which represents g, and returns a BDD containing the
result of the composition. On lines 23–32 we show the actual code of a program
we wrote to crash the library. We first construct a BDD h with two levels (x
at level 0 and y at level 1, lines 26–28), another BDD j (the number of levels
in j is not important in this example), and then invoke h.Compose(j,2), which
should splice-in j at index 2. As index 2 does not exist in the BDD, the check on
line 7 fails. In the current version, CUDD 2.4.2, this error leads to the program
halting with Unexpected error; in a previous version we tested, CUDD 2.3.1,
it leads to the program crashing with Segmentation fault, because the check
on line 7 uses > rather than >=. In either case, the error manifests itself only
during execution, and the CUDD client is left with little information as to what
the cause of the error is. On the right side of Figure 2 we show the Bddl code
that models the BDD composition via function bddCompose; while we have not
discussed the Bddl syntax and typing yet, note that our refinement type system
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1 BddNode* Union_QQ(
2 BddNode *p, BddNode *q) {
3 ASSERT((k = p→ GetLevel())
4 == q→ GetLevel());
5 ...
6 ka = answer→ GetLevel();
7 ASSERT(ka == k);
8 return answer;

9 }
10 int main ()
11 {
12 BddNode *f = new_bdd(1);
13 BddNode *g = new_bdd(2);
14 BddNode *res = union(f,g);
15 /* runtime error */
16 }

1 letrec union : bbd(l, q, c) → bbd[l, q, c]
→{ν : bbd[l′, q, c]) | l′ ≤ l} =

2 λ p . λ r . <body>
3 in letrec f : bbd[1, q, s]
4 = Bnode(1, ...) in
5 letrec g : bbd[2, q, s]
6 = Bnode(2, ...) in
7 union f g // type error

C++ code Bddl code

Fig. 4. The union of two BDDs leads to a runtime error when two BDDs of different
levels are passed as arguments (from MDDL).

1 public class BasicTests extends BDDTestCase {...
2 public void testCrash() {
3 reset(); Assert.assertTrue(hasNext());
4 BDDFactory bdd = nextFactory();
5 BDD a = bdd.one();
6 bdd.reorder(bdd.getReorderMethod());
7 // java.lang.NullPointerException
8 }

1 letrec reorder :
2 {ν : bbd[l, r, c] | l ≥ 1} → {ν : bbd[l, r, c] | l ≥ 1} =
3 λ p : bbd[l, r, c]. <body>
4 in

5 reorder 1 //type error

Java code Bddl code
Fig. 5. JavaBDD: reordering a terminal-only BDD leads to a nullPointerException.

allows us to specify that (a) the argument v should be less than the number of
levels in f (line 5), and (b) that the argument v has value 2, which is the number
of levels in h. Trying to apply bddCompose to arguments h j two (line 14) results
in a static typing error.

As a second example, we focus on the RelationalProduct(p,r) function from
MDDL [6], which computes the relational product of BDDs p and r (Figure 3).
As mentioned in Section 2.3, the argument p must be an L-level BDD encoding a
set, whereas the argument r must be a 2L-level BDD encoding a relation. MDDL
does not differentiate between sets and relations in its actual implementation,
therefore, the same BDD may encode a set and a relation and the correct use of
these two forms is left to the user.6 The left side of Figure 3 contains an excerpt of
the library function RelationalProduct(p,r) (lines 1-7); the ASSERT ensures that
the number of levels in r is equal to 2L (the +1 is due to levels starting at 0) but no
set vs. relation check is performed. The main function shows the C++ client code:
it uses construct_set() to build two BDDs f and g encoding sets (lines 17-18);
next, we pass f and g as inputs to RelationalProduct(p,r), which computes the
result considering the second argument as a relation. Upon completion (line 20),
no error is signaled, and the incorrect result is silently returned to the client.
On the right side of Figure 3 we show the Bddl translation. Note how (a) the
refinement types of l and le on relationalProduct’s signature express the runtime
checks in the C++ code, and (b) the s and e on p and r’s types force them to be
a set and relation, respectively. When a client tries to apply relationalProduct
on f and g (line 10) a typing error is raised at compile-time, because the encoding
of g is s, rather than e, the expected encoding.

As a third example, we present the function Union_QQ(p,q) from MDDL, which
computes the union set of two quasi-reduced BDDs p and q and requires them

6 To eliminate ambiguity and prevent a potential incorrect use of functions that sup-
port both forms of encoding [1], some libraries do not leave this choice to the user.
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to have the same number of levels. A portion of the C++ code of this function
is shown in Figure 4 left (lines 1–9); the ASSERTs are used to check that both
the input BDDs p and q, and the output BDD, answer, have the same number
of levels, k. The client (lines 10–16) tries to compute the union of f and g, two
BDDs with different numbers of levels. The library generates a runtime error
because the ASSERT on line 3 fails. On the right side of Figure 4 we show the
Bddl equivalent of the library and client code; the l on union’s type forces the
input BDDs to have the same number of levels and the output to have at at
most l levels. The application of union to f and g, which have 1 and 2 levels,
respectively, is ill-typed and results in a compile-time error.

As a fourth example, we show how reordering a terminal-only BDD leads to a
nullPointerException in JavaBDD. The left side of Figure 5 shows a simple
method, testCrash, that we wrote as an addition to the JavaBDD test suite.
The method first performs some initialization/sanity checks (lines 3–4), then
creates a BDD, containing just the terminal 1 , and invokes reorder, which
generates a nullPointerException. Reordering a terminal-only BDD should
not be allowed, or at most should be a no-op. On the right side we show the
Bddl code for this scenario; the type of reorder (lines 2–3) stipulates that it
can only be invoked on BDDs with at least one level. The application of reorder
to 1 (line 5) is ill-typed and will be rejected, because 1 is at level 0.

In the companion technical report [14] we provide more examples of how Bddl
can be used to specify interfaces of CUDD, MDDL and JavaBDD libraries.

4 The Bddl Language

We now present Bddl, our core language for BDDs. We designed Bddl to
support abstractions for key BDD operations, functionality, and semantic prop-
erties, based on our examination of several mature decision diagram libraries.
Bddl provides forms to build a BDD (via Bnode (...)), use a BDD t (t.level,
t.index, t.var, t.tchild, t.fchild), and types, possibly with refinements, to
capture semantic properties of BDDs (bdd[l, r, c]).

The syntax is shown in Figure 6. Indexes i are unique id’s associated with each
BDD node: ID0 and ID1 are reserved for terminals while id2, id3, and higher
are used for non-terminals; index uniqueness is a enforced by our typing sys-
tem. Strings g are used to hold variable names; for simplicity, we only allow
x1, x2, x3, . . . as indexes. The level l specifies the level of BDD nodes; it can be
⊥ (unspecified level), or a natural number nv. The reduction r of a BDD can be
⊥ (unspecified), f (fully reduced), or q (quasi reduced). The encoding c of a BDD
can be ⊥ (unspecified), s (set), or e (relation). Predicate variables π are used to
construct the predicates on refinement types—either terms ν, or variables l, r,
or c, which are universally quantified over their respective domains and ⊥.
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i := id2, id3, id4, . . . index
g := x1, x2, x3, . . . string
l := ⊥, nv level
r := ⊥, f, q fully or quasi reduced
c := ⊥, s, e set or relation
π := ν | l | r | c predicate variable
Γ := ID0 :Id, ID1 :Id | Γ, x :τ | Γ, h :τ typing context
µ := ∅ | µ, h 7→ v location binding

t ::= Terms
v value

| x variable
| succ t | pred t successor, predecessor
| iszero t zero test
| t t application
| letrec x : τ = t in t (recursive) let
| if t then t else t if statement
| ref t | !t reference, dereference
| Bnode (t, i, t, t, t) BDD node
| t.level level of a node
| t.index index of a node
| t.var variable of a node
| t.tchild | t.fchild true, false child of a node

nv ::= Numeric values
0 zero constant

| S(nv) successor value

v := Values
true | false boolean value
| nv numeric value
| i | g index, string
| λx : τ.t abstraction value
| h heap location

| 0 | 1 boolean terminal

| Bnode(v, v, v, v, v) boolean node

τ ::= Types

bool | nat booleans, naturals
| string | Id strings, identifiers
| τ → τ function type
| ref τ reference type
| bdd[l, r, c] node types
| {ν : τ | p(π)} refined type

exp ::= Arithmetic expressions

nv | exp+ exp | exp− exp

p(π) ::= Refinement predicates

π = exp constant type
| π ≤ exp | π ≥ exp | π 6= exp restrained type
| p(π) ∧ p(π) conjunction

Fig. 6. Bddl syntax.

The typing context (environment) Γ contains variable names and their associ-
ated types (x : τ), as well as heap locations and their types (h : τ). We augment
Γ with the unique indexes ID0 and ID1 assigned to 0 and 1 , respectively.

The heap µ is a map from references h to values v.
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A Bddl term can be a value v; a variable x; the successor or predecessor of
another term, whose semantics is the successor and predecessor of natural num-
bers, e.g., the term succ S(S(S(0))), successor of 3 in other words, reduces to
S(S(S(S(0)))) and corresponds to numerical value 4, whereas pred S(0) reduces
to 0, meaning the predecessor of 1 is 0; an iszero test for zero; an application;
a letrec binding that allows recursion; an if statement; a reference ref t or
dereference !t. Note the presence of references, but the lack of assignment in
our system: this is by choice, as we want to allow sharing BDD nodes but avoid
mutation to preserve a BDD’s structural integrity. We represent BDDs via 5-
tuples, i.e., terms Bnode(t1,i,t3, t4,t5); a Bnode is a boolean node in a BDD;
t1 is the node level (a natural number), i represents the index of the node (a
unique identifier), t3 holds the variable associated with a node (a string), t4
represents a reference to the true (‘1’) child of the node and t5 is a reference
to its false (‘0’) child. To extract the elements of the 5-tuple, we use t.index,
t.level, t.var, t.tchild, and t.fchild; i.e., (Bnode(t1,i,t3,t4,t5)).level
= t1, (Bnode(t1,i,t3,t4,t5)).index = i, and so on.

The top of Figure 9 in the companion technical report [14] illustrates the use of
the Bddl language to model a BDD with 3 levels. The whole BDD is represented
by t6=Bnode(3,id6,x2,t4,t5) since t4 and t5 are references to the children that
are themselves Bnode terms, i.e., t4 contains information about its children t2
and t1 which in turn contain information about their children. In this case,
we reach the terminal nodes, hence we have the information about the entire
diagram. We also show the Bddl types of these terms, described in the next
section. Recall that we use t.level, t.index, t.var, t.tchild and t.fchild to
extract components of a Bnode. For the previous example, we have t.level(id6)
= 3, t.index(id6) = id6, t.tchild(id6) = id4, and t.fchild(id6) = id5.

Values denote the possible final results of an evaluation. A value in Bddl is
either a boolean constant true or false; a string or an identifier; the number
0 or a non-zero natural number S(nv); an abstraction λx : τ.t; a heap location
h; BDD terminal nodes 0 or 1 , or a non-terminal node Bnode(v1, v2, v3, v4, v5)
where v1, v2, v3, v4, and v5 are values. The typing system, and the syntax of
refinements are defined next.

5 Typing, Semantics, and Soundness

5.1 Types

We use primitive types bool and nat to denote the sets of boolean values and
natural numbers, respectively; strings are used only for representing variable
names (accessible via .var) in BDD nodes. We use Id to represent identifier
types; we define this as a type distinct from string or nat to account for different
DD implementations using different representations (e.g., int, string); the only
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Basic typing

Γ ` true: bool (T-True) Γ ` false: bool (T-False)

Γ ` nv : {ν : nat | ν = nv} (T-Nat)

Γ ` i : Id (T-Id)

Γ ` g : string (T-String)

x : τ ∈ Γ
Γ ` x : τ

(T-Var)
Γ ` t1 : nat

Γ ` iszero t1:bool
(T-IsZero)

Γ ` t1 : nat

Γ ` succ t1: nat
(T-Succ)

Γ ` t1 : nat

Γ ` pred t1:nat
(T-Pred)

Γ ` t1 : τ11 → τ12 Γ ` t2 : τ11

Γ ` t1 t2 : τ12
(T-App)

Γ, x : τ1 ` t2 : τ2

Γ ` λx : τ1.t2 : τ1 → τ2
(T-Abs)

Γ ` t : τ1 τ1 <: τ2

Γ ` t : τ2
(T-Sub)

Γ, x : τ1 ` t1 : τ1 Γ, x : τ1 ` t2 : τ2

Γ ` letrec x : τ1 = t1 in t2 : τ2
(T-Letrec)

Γ ` t1 : bool Γ ` t2 : τ Γ ` t3 : τ

if t1 then t2 else t3 : τ
(T-If)

Γ (h) = τ1

Γ ` h : ref τ1
(T-Loc)

Γ ` t1 : τ1
Γ ` ref t1: ref τ1

(T-Ref)

Γ ` t1 : ref τ1

Γ ` !t1 :τ1
(T-Deref)

BDD typing

Γ ` 0 : bdd[0, r, c] (T-Terminal0)

Γ ` 1 : bdd[0, r, c] (T-Terminal1)

Γ ` id : Id id 6∈ dom(Γ ) Γ ` vvar : string
Γ ` t0 : {ν : nat | ν ≥ 1 ∧ ν = l}

Γ ` t1: ref bdd[l
′
, r, c]

bdd[l
′
, r, c] <:B {ν : bdd[p, r, c] | l = p+ 1}

Γ ` t2: ref bdd[l
′′
, r, c]

bdd[l
′′
, r, c] <:B {ν : bdd[p

′
, r, c] | l = p

′
+ 1}

Γ, id : Id ` Bnode (t0,id,vvar,t1,t2) : bdd[l, r, c]
(T-Bnode)

Γ ` t : {ν : bdd[l, r, c] | l ≥ 0 ∧ l 6= ⊥}
Γ ` t.level: {ν : nat | ν = l}

(T-Level)

Γ ` t : {ν : bdd[l, r, c] | l ≥ 0 ∧ l 6= ⊥}
Γ ` t.index : Id

(T-Index)

Γ ` t : {ν : bdd[l, r, c] | l ≥ 1 ∧ l 6= ⊥}
Γ ` t.var: string

(T-BVar)

Γ ` t : {ν : bdd[l, r, c] | l ≥ 1 ∧ l 6= ⊥}
τ
′
<: ref bdd[l− 1, r, c]

Γ ` t.tchild : τ
′ (T-TrueChild)

Γ ` t : {ν : bdd[l, r, c] | l ≥ 1 ∧ l 6= ⊥}
τ
′
<: ref bdd[l− 1, r, c]

Γ ` t.fchild : τ ′ (T-FalseChild)

Γ ` t : bdd[l, r, c] fully(t)

Γ ` t : bdd[l, f, c]
(T-Fully)

Subtyping

τ <: τ
(S-Refl)

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3
(S-Trans)

τ1 <: τ2 τ2 <: τ1

ref τ1 <: ref τ2
(S-Ref)

τ
′
1 <: τ1 τ2 <: τ

′
2

τ1 → τ2 <: τ
′
1 → τ

′
2

(S-Fun)

{ν : τ | p(ν)} <: τ
(S-Refin)

p(ν1) ⇒ p(ν2)

{ν1 : τ | p(ν1)} <: {ν2 : τ | p(ν2)}
(S-Pred)

Auxiliary judgments

bdd[l, r, c] <:B bdd[l, r, c]
(S-BRefl)

l
′ ≤ l

bdd[l
′
, f, c] <:B bdd[l, f, c]

(S-BFully)

bdd[l1, r1, c1] <:LAT bdd[l2, r2, c2]

bdd[l1, r1, c1] <: bdd[l2, r2, c2]
(S-Lat)

Node redundancy

fully( 1 )
(W-Fully1)

fully( 0 )
(W-Fully0)

fully(t4) fully(t5)
(!t4).index 6= (!t5).index

fully(Bnode(t1, i, t3, t4, t5))
(W-Fully)

Fig. 7. Bddl typing.

values that inhabit this type are the unique id’s associated with BDD nodes
(accessible via .index). Function types have the standard representation, τ → τ ,
as do references, ref τ .

bdd[l, r, c] is the fundamental type in our language. A BDD node has type
bdd[l, r, c], where l refers to the level of the node, r refers to the reduction form
of the decision diagram, and c refers to the encoding of the diagram (a set or
a relation). For example, node t6 = Bnode(3,id6,x2,t4,t5) (Figure 9 [14]) has
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type bdd[3, r, c], i.e., it is a node at level 3 of a BDD with no restriction on the
reduction or the encoding.

To express semantic BDD properties, we use refinement types [9], in the form
proposed by Rondon et al. [19]. A refined type {ν : τ | p(π)} expresses a refine-
ment of the primitive type τ . For example, the refined type {ν : nat | ν ≥ 1}
describes the set of natural numbers that are greater or equal to 1; the type
{ν : nat | ν = n} describes the type of the natural number n; the type of
function Union_QQ from Figure 4 in Section 3 is:

bdd[l, q, s]→ bdd[l, q, s]→ {ν : bdd[l′, q, s] | l′ ≤ l})

meaning it takes two quasi-reduced set-encoding BDDs with arbitrary (but
equal) numbers of levels l, and returns a quasi-reduced set-encoding BDD with
at most the same number of levels l. Note how r and c are quantified over their
domains; for instance, the type of 1 is bdd[0, r, c], meaning that a terminal can
only be at level 0, but can be part of fully- or quasi-reduced BDDs, encoding
sets or relations.

Finally, the language of predicates p(π) used on refinement types allows us to
express equality and inequality refinements, e.g., {ν : nat | ν = 2}, and conjunc-
tions of simple arithmetic expressions, e.g., {ν : nat | ν ≥ 1 ∧ ν = 5}.

5.2 Typing Rules

The Bddl typing rules shown in Figure 7 can be split into two categories: basic
typing and BDD-specific typing. The basic typing rules are the standard rules
for lambda calculus extended with booleans and unary representation of natural
numbers, as presented by Pierce [18], with the following modifications: when
type-checking natural values nv via (T-Nat), we use refinements to represent
their value, i.e., {ν : nat | ν = nv}; we add the rules (T-Id) and (T-String) to
type-check id’s and variable names.

The top right side of Figure 7 shows our BDD typing rules. Rules (T-Terminal0)

and (T-Terminal1) stipulate that the 0 and 1 terminals can be found in any
BDD at level 0.

(T-Bnode) is the fundamental rule in our system. To enforce identifier uniqueness,
we require id 6∈ dom(Γ ). We require that t0 : {ν : nat | ν ≥ 1 ∧ ν = l} i.e., that
the node’s level be at least 1 (to ensure that Bnodes are non-terminals), and the
same level l as in the conclusion of the judgment. To allow sharing, we store
the children t1 and t2 by reference; they have types bdd[l′, r, c] and bdd[l′′, r, c],
respectively. We now explain how BNodes can store both fully and quasi-reduced
BDDs, and do so safely. Consider the <:B subtyping premise for the true child:

bdd[l′, r, c] <:B {ν : bdd[p, r, c] | l = p+ 1}
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If this is a quasi-reduced BDD which allows no level skipping, then we have
l′ = p = l−1. If this is a fully-reduced BDD which allows level skipping, then we
have l′ ≤ p where p = l − 1, and by applying the (S-BFully) subtyping rule, we
can actually have l′ < p; for instance, a Bnode at level 3 can have its children be
at level 1; the premises for the false-child t2 are similar. Note the use of the same
variables r and c in both the children and current node (premises and conclusion
of the rule) which forces the BDD to be consistent: either fully-reduced or quasi-
reduced, and, respectively, either set-encoding or relation-encoding. Note that
the <:B relationship is different from the subtyping relationship, as it only allows
us to establish a relationship between reduction forms.

The rule (T-Level) type-checks extracting a node’s level. The level is a refined nat
type (refinement: l ≥ 0∧ l 6= ⊥) with the same l as in the refinement of the BDD
node; we allow l = 0 because asking for the level of a terminal is permitted; we do
not allow l = ⊥ because ⊥means unspecified level. The rule (T-Index) is similar—
we can ask for the level of any node (including terminals, whose indexes are ID0

and ID1) as long as its level is not ⊥. The rule (T-BVar) is similar, though it only
works on non-terminals (l ≥ 1), as terminals cannot encode variables. The rule
(T-TChild) type-checks the extraction of the true-child; the premises are the same
as for (T-BVar), since we can only extract children of non-terminals; note again
the subtyping in the premises, which allows level skipping for fully-reduced, but
not for quasi-reduced, BDDs; (T-FChild) is similar.

Our system lacks type polymorphism, which we omit for simplicity at the expense
of expressivity. Note however that the variables l, r and c used on type rules allow
specification of quasi-reduced, fully-reduced, or generic BDDs. For example, we
can construct BDDs whose reducing and encoding are unspecified, and allow
functions to operate on them (albeit the range of operations is constrained, as
with any polymorphic function). Consider a simple BDD, BNode(1,id2,x1,ref
0 ,ref 1 ), that contains one non-terminal node with two children, 0 and 1 ;
its type is {ν : bdd[l, r, c] | l = 1}, or, in short, bdd[1, r, c]. This BDD is “generic”,
in that it can be safely attached to both a fully- or quasi-reduced BDD, that
encodes either a set or a relation. Then the BDD can be safely used in a concrete
context, e.g., with reduction f and an encoding s.

To express the absence of redundant nodes in fully-reduced BDDs, we introduce
the rules (W-Fully0), (W-Fully1), (W-Fully), and (T-Fully). The first two rules
express the non-redundancy of terminal nodes—they are unique and do not have
children nodes. A fully-reduced BDD must not contain any redundant nodes, i.e.,
its outgoing edges must not point to the same node. We capture this property by
applying (W-Fully) recursively and by checking at each recursion that the indexes
of the children nodes are different (this prevents a node from being redundant
by prohibiting the true edge and the false edge from pointing to the same node)
and that they are fully-reduced. Finally, (T-Fully) prevents passing a BDD with
the type bdd[l, r, c] when a BDD with type bdd[l, f, c] is expected when the BDD
is not fully-reduced.
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bdd[⊥,⊥,⊥]

bdd[l,⊥,⊥] bdd[⊥, r,⊥] bdd[⊥,⊥, c]

bdd[l,⊥, c] bdd[l, r,⊥] bdd[⊥, r, c]

bdd[l, r, c]

Fig. 8. Subtyping lattice (the <:LAT relation).

5.3 Subtyping

Subtyping is essential in our system, as it allows types that contain more infor-
mation about a BDD node (e.g., fixed number of levels) to be used in contexts
where knowing the number of levels is not required; also, it allows refined types
with strong conditions to be used in contexts where types’ conditions are more
relaxed. The subtyping rules are shown on the bottom of Figure 7. (S-Refl),
(S-Ref), (S-Trans), and (S-Fun) are standard. (S-BFully) allows level skipping for
fully-reduced BDDs and (S-BRefl) allows the B-subtyping relationship to be re-
flexive. Rule (S-Refin) indicates that a refinement of a type τ is a subtype of τ .
Rule (S-Pred) allows us to use a more constrained refinement type, i.e., with a
stronger predicate p(ν1) (e.g., ν ≥ 0 ∧ ν 6= 3) in a context that only requires a
weaker predicate p(ν2) (e.g., ν2 ≥ 1). Note that this rule is only used for ν pred-
icates but not for the other predicates since weakening the l, r and c constraints
in a bdd[l, r, c] has a different semantics. As an example, {ν : bdd[l, r, c] | l = 0}
is not a subtype of {ν : bdd[l, r, c] | l ≥ 0} even though (l = 0)⇒(l ≥ 0) since a
terminal node can only be at level 0.

(S-Lat) stipulates that a BDD with type bdd[l1, r1, c1] can be used in a context
where a bdd[l2, r2, c2] is required, as long as bdd[l1, r1, c1] is on a downward
path from bdd[l2, r2, c2] in the subtyping lattice. Figure 8 shows the lattice of
subtyping relationships in our system; we use ⊥ to represent unspecified values.
Essentially, ⊥ is a union type over the domains of l, r, and c.

In the companion technical report [14] we provide two examples of how type
checking and inference are performed in Bddl.

5.4 Semantics and Soundness

The operational semantics is standard, small-step, defined as reduction on terms
t and memory stores µ, i.e.,

µ; t −→ µ′; t′

The full semantics can be found in the companion technical report [14]. We now
state the progress and preservation lemmas for our system.
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Lemma 1 (Progress). If t is a closed, well-typed term (such that t : τ) then
either t is a value or else, for any store µ such that Γ ` µ, there exists a term
t′ and store µ′ with µ;t−→µ′;t′

Proof. By induction on the typing derivation t : τ .

Lemma 2 (Preservation). If Γ ` t:τ ,Γ ` µ and µ;t −→µ′;t′ then for some
Γ ′, we have Γ ′ ` t′:τ and Γ ′ ` µ′.

Proof. By induction on the typing derivation Γ ` t:τ .

We can now state the soundness theorem: well-typed programs do not go wrong.

Theorem 1 (Soundness). If Γ ` t:τ , and Γ ` µ, then either t is a value, or
there exist Γ ′, µ′, t′, such that µ;t −→µ′;t′ and Γ ′ ` t′ : τ and Γ ′ ` µ′.

6 Related work

The work closest to ours, on which we partially build, is Kawaguchi et al. [13]’s
liquid types (which in turn built upon Rondon et al.’s work [19]). We borrow
their syntax of refinement types expressed as logically quantified predicates over
program variables. In addition, we add formal support for expressing and check-
ing structural constraints on BDDs. They can check a broad-range of properties
on various data structures, such as lists, trees, heaps, maps, and vectors. In con-
trast, we focus on one data structure, BDD, but express and verify a broader
range of structural and logical properties. For example, they can check BDDs
for ordering: mk_not::x:bdd→ {ν:bdd| var x ≤ var ν}.
The same type can be expressed in our formalism as:
mk_not:{ν1 :bdd[l,r,c]}→{ν2 :bdd[l′,r′,c′] | ν1.var≤ν2.var}.
However, this type does not guarantee preservation of structural integrity, such
as number of levels, reduction, or encoding status. We believe that their sys-
tem can capture some of these properties but, as our focus is on BDDs, we
can express the properties more directly and concisely. For instance, the type of
reorder (with the natural order x1≤x2≤· · ·≤xn) is, in our system:
{ν1 : bdd[l, r, c] | l ≥ 1} → {ν2 : bdd[l, r, c] | ν2.var ≤ !(ν2.tchild).var ∧
ν2.var ≤ !(ν2.fchild).var}, which enforces that the levels, reduction, and en-
coding of input BDD and output BDD are the same, hence preserving structural
integrity. Our system is less expressive in general, as we do not allow type-level
polymorphism or nested refinements. We have pursued one data structure, BDD,
and its manipulation in three DD libraries; they have verified the implementa-
tions of a wide-range of data structures from OCaml’s standard library.

Drechsler [7] presented a run-time technique for BDD verification, using a re-
cursive checksum method to verify BDD integrity. Their approach has been
motivated by memory errors, e.g., copy faults and errors due to aliasing; in
their approach, such memory errors are detected at runtime. Our approach is
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intended to capture and verify higher-level properties, and to do so at compile
time; we do not have a memory model, though we can prevent errors such as
use-before-allocation, because we do not allow uninitialized references.

Stanković and Astola [21] take a syntactic approach to checking the structural
integrity of BDDs. A Treetype XML wrapper stores information about a partic-
ular BDD instance (e.g., number of variables, levels, edges) as attribute values,
and these values are used to reason about what operations are permitted for this
particular BDD instance—the BDD’s body and collection of attributes consti-
tute a type which can be type-checked by an XML parser. Their approach can be
readily extended to more elaborate decision diagram flavors, such as EVBDD,
by merely adding attribute fields. In contrast to this syntactic approach, our
method uses a type system and semantics to check BDD-manipulating code, so
BDDs created by Bddl-checked code are correct by construction.

Bernasconi et al. [4] as well as Bernasconi and Ciriani [3] have proposed dy-
namic approaches for detecting and repairing index or pointer errors in Ordered
Binary Decision Diagrams. Their approach differs from ours in the same way
as described for the previous two approaches, i.e., our approach is enforcing a
different set of properties, and does so statically.

Giorgino and Strecker [10] as well as Ortner and Schirmer [16, 17] provide mecha-
nized proofs in Isabelle for Isabelle/HOL-expressed implementations, e.g., prov-
ing certain BDD properties by casting the verification of BDD (normalization)
as a particular case of verifying pointer-manipulating programs. Our goal was
not a mechanized proof, but rather Bddl is a type system for static checking.
For example a CUDD checker, or a checker for any substantial implementa-
tion written in popular imperative languages, could be built by adding a simple
front-end that maps C++ to Bddl. It is unclear how a substantial imperative
implementation such as CUDD can be transformed into Isabelle to be checked.

7 Conclusion

We have presented Bddl, a calculus to verify BDD correctness. Bddl combines
language support to build and safely manipulate BDDs with refinement types
that allow programmers to concisely express structural and logical invariants.
We formalized Bddl using a type system and small-step operational semantics,
and proved it sound. We have presented examples of how frequently-used BDD
library functions can be expressed and statically verified using Bddl. We plan to
extend this work in two directions: (1) automatic verification of library code, and
(2) extend Bddl to reason about, and verify, properties of more general variants
of decision diagrams, such as multi-way, multi-terminal, and edge-valued.
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