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Abstract— The uplink of a cloud radio access network archi-
tecture is studied in which decoding at the cloud takes place
via network function virtualization on commercial off-the-shelf
servers. In order to mitigate the impact of straggling decoders
in this platform, a novel coding strategy is proposed, whereby
the cloud re-encodes the received frames via a linear code before
distributing them to the decoding processors. Transmission of a
single frame is considered first, and upper bounds on the resulting
frame unavailability probability as a function of the decoding
latency are derived by assuming a binary symmetric channel for
uplink communications. Then, the analysis is extended to account
for random frame arrival times. In this case, the tradeoff between
an average decoding latency and the frame error rate is studied
for two different queuing policies, whereby the servers carry
out per-frame decoding or continuous decoding, respectively.
Numerical examples demonstrate that the bounds are useful tools
for code design and that coding is instrumental in obtaining a
desirable compromise between decoding latency and reliability.

Index Terms— Coded computation, network function virtual-
ization, cloud radio access network, large deviation, queueing.

I. INTRODUCTION

ROMOTED by the European Telecommunications Stan-

dards Institute (ETSI), network function virtualiza-
tion (NFV) has become a cornerstone of the envisaged
architecture for 5G systems [2]. NFV leverages virtualization
technologies in order to implement network functionalities
on commercial off-the-shelf (COTS) programmable hardware,
such as general purpose servers, potentially reducing both
capital and operating costs. An important challenge in the
deployment of NFV is ensuring carrier grade performance
while relying on COTS components. Such components may be
subject to temporary unavailability due to malfunctioning, and
are generally characterized by randomness in their execution
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runtimes. The typical solution to these problems involves
replicating the virtual machines that execute given network
functions on multiple processors, e.g., cores or servers [3]—[6].

Among the key applications of NFV is the implementation
of centralized radio access functionalities in a cloud radio
access network (C-RAN) [7], [8]. As shown in Fig. 1, each
remote radio head (RRH) of a C-RAN architecture is con-
nected to a cloud processor by means of a fronthaul (FH)
link. Baseband functionalities are carried out on a distributed
computing platform in the cloud, which can be conveniently
programmed and reconfigured using NFV. The most expensive
baseband function in terms of latency to be carried out at the
cloud is uplink channel decoding [7], [9], [10].

The implementation of channel decoding in the cloud by
means of NFV is faced not only with the challenge of
providing reliable operation despite the unreliability of COTS
servers, but also with the latency constraints imposed by
retransmission protocols. In particular, keeping decoding
latency at a minimum is a major challenge in the implementa-
tion of C-RAN owing to timing constraints from the link-layer
retransmission protocols [11]-[13]. In fact, positive or neg-
ative feedback signals need to be sent to the users within
a strict deadline in order to ensure the proper operation of
the protocol. In [14] and [15], it is argued that exploiting
parallelism across multiple cores in the cloud can reduce
the decoding latency by enabling decoding as soon as one
can has computed its task. However, parallel processing does
not address the unreliability of COTS hardware. A different
solution is needed in order to address both unreliability and
delays associated with cloud decoding.

The problem of straggling processors, that is, of processors
lagging behind in the execution of a certain orchestrated
function, has been well studied in the context of distributed
computing [16]-[21]. Recently, it has been pointed out that,
for the important case of linear functions, it is possible to
improve over repetition strategies in terms of the trade-off
between performance and latency by carrying out linear
precoding of the data prior to processing, e.g., [22]-[30].
The key idea is that, by employing suitable linear (erasure)
block codes operating over fractions of size 1/K of the
original data, a function may be completed as soon as any
K or more processors, depending on the minimum distance
of the code, have completed their operations. Coding has also
been found to be useful addressing the straggler problem in the
context of coded distributed storage and computing systems,
see, e.g., [31]-[35].
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NFV model for uplink channel decoding. The input information frame u is divided into packets, which are encoded with a linear code C, with

generator matrix G,,. The packets are received by the RRH through a BSC and forwarded to the cloud. Server O in the cloud re-encodes the received packet
with a linear code C. in order to enhance the robustness against potentially straggling Servers 1,..., N.

In this paper, we explore the use of coded computing to
enable reliable and timely channel decoding in a C-RAN archi-
tecture based on distributed unreliable processors. Specifically,
we formally and systematically address the analysis of coded
NFV for C-RAN uplink decoding. The only prior work on
coded computing for NFV is [36], which provides numerical
results concerning a toy example with three processors in
which a processor in the cloud is either on or off. Unlike [36],
in this work, we derive analytical performance bounds for a
general scenario with any number of servers, random com-
puting runtimes, and random packet arrivals. Specific novel
contributions are as follows.

e« We first consider the transmission of an isolated frame,
and develop analytical upper bounds on the frame
unavailability probability (FUP) as a function of the
allowed decoding delay. The FUP measures the prob-
ability that a frame is correctly decoded within a tol-
erated delay constraint. The FUP bounds leverage large
deviation results for correlated variables [37] and depend
on the properties of both the uplink linear channel code
adopted at the user and the NFV linear code applied at
the cloud;

o As a byproduct of the analysis we introduce the depen-
dency graph of a linear code and its chromatic number
as novel relevant parameters of a linear code beside
minimum distance, blocklength, and rate;

o We extend the analysis to account for random frame
arrival times, and investigate the trade-off between aver-
age decoding latency and frame error rate (FER) for two
different queuing policies, whereby the servers carry out
either per-frame or continuous decoding;

o We provide extensive numerical results that demonstrate
the usefulness of the derived analytical bounds in both
predicting the system performance and enabling the
design of NFV codes.

The rest of the paper is organized as follows. In Section II,
we present the system model focusing, as in [36], on a
binary symmetric channel (BSC) for uplink communications.
Section III presents the two proposed upper bounds on the FUP
as a function of latency. In Section IV we study the proposed

system with random frame arrival times, and Section V
provides numerical results.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the uplink of a C-RAN
system in which a user communicates with the cloud via a
remote radio head (RRH). The user is connected to the RRH
via a BSC with cross error probability §, while the RRH-to-
cloud link, typically referred to as fronthaul, is assumed to
be noiseless. Note that the BSC is a simple model for the
uplink channel, while the noiseless fronthaul accounts for a
typical deployment with higher capacity fiber optic cables.
As we briefly discuss in Section VI, the analysis can be
generalized to other additive noise channel, such as Gaussian
channels. The cloud contains a master server, or Server 0, and
N slave servers, i.e., Servers 1,..., N. The slave servers are
characterized by random computing delays as in related works
on coded computation [22], [23], [27]. Note that we use here
the term “server” to refer to a decoding processor, although,
in a practical implementation, this may correspond to a core
of the cloud computing platform [14], [15].

In the first part of this paper, we consider transmission of
a single information frame u, while Section IV focuses on
random frame arrival times and queuing effect delays. The
user encodes an information frame u consisting of L bits.
Before encoding, the information frame is divided into K
blocks up, uy, ..., ux € {0,1}%/K of equal size, each of them
containing L/K bits. As shown in Fig. 1, in order to combat
noise on the BSC, the L/K blocks are encoded by an (n, k)
binary linear code C, of rate » = k/n defined by generator
matrix G, € F3** where n = L/(rK) and k = L/K.
Let x; € {0,1}™ with j € {1,..., K} be the K transmitted
packets of length n. At the output of the BSC, the length-n
received vector for the jth packet at the RRH is given as

ey

where z; is a vector of i.i.d. Bern(d) random variables (rvs).
The K received packets (y;,¥s,...,¥x) by the RRH are
transmitted to the cloud via the fronthaul link, and the cloud

v, =X; &z,
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Fig. 2. Coded NFV at the cloud: Server 0 re-encodes the received packets
in Y by a linear NFV code C. with generator G.. Each encoded packet y; is
then conveyed to Server ¢ for decoding.

performs decoding. Specifically, as detailed next, we assume
that each Server 1, ..., N performs decoding of a single packet
of length n bits while Server 0 acts as coordinator.
Assuming N > K, we adopt the idea of NFV coding
proposed in [36]. Accordingly, as seen in Fig. 2, the K
packets are first linearly encoded by Server O into N > K
coded blocks of the same length n bits, each forwarded to
a different server for decoding. This form of encoding is
meant to mitigate the effect of straggling servers in a manner
similar to [22], [23], and [27]. Using an (N, K) binary linear

NFV code C. with K x N generator matrix G, € ]Fév <K
the encoded packets are obtained as
Y = YG,, (2)

where Y = [y;,...,¥g] is the n x K matrix obtained by
including the received signal y; as the jth column and Y =
[¥1;---,¥y] is the n X N matrix whose ith column y, is the
input to Server 4, where ¢ € {1,..., N}. From (1), this vector
can be written as

K K K
yi = Z Yj9eji = Z Xjge,ji T+ szgc,ji; 3)
=1 =1 =1

where g. j; is the (7,7)th entry of matrix Ge.

The signal part Zjil X;gec,ji in (3) is a linear combination
of d; codewords for the rate-r binary code with generator
matrix G, and hence it is a codeword of the same code. The
parameter d;, ¢ € {1,..., N}, denotes the Hamming weight of
the ith column of matrix G., where 0 < d; < K. Each server
1 receives as input y,; from which it can decode the codeword
Zfil X;gc ji- This decoding operation is affected by the noise
vector E]‘:1 z;gj; in (3), which has i.i.d. Bern(y;) elements.
Here, y; is obtained as the first row and second column’s entry
of the matrix Q%, with Q being the transition matrix of the
BSC with cross over probability 4, i.e.,

165 5
Q_{a 1—5}

As an example, d; = 2, implies a bit flipping probability of
~vi = 25(1 — ¢). Note that a larger value of d; yields a larger
bit probability ;. We define as P,, (7;) the decoding error
probability of the (n, k) linear user code at Server i, which
can be upper bounded by using [38, Th. 33].

Server 4 requires a random time T; = T ;+7T5 ; to complete
decoding, which is modeled as the sum of a component 717 ;
that is independent of the workload and a component 715 ;

“)
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that instead grows with the size n of the packet processed at
each server, respectively. The first component accounts, e.g.,
for processor unavailability periods, while the second models
the execution runtime from the start of the computation.
The first variable T4 ; is assumed to have an exponential
probability density function (pdf) f1(t) with mean 1/, while
the variable 75 ; has a shifted exponential distribution with
cumulative distribution function (cdf) [39]

K L
Fg(t) =1 — eXp (—r L/J/Q (t— am>>,

for t > aL/(rK) and Fy(t) = 0 otherwise. The parameter a
represents the minimum processing time per input bit, while
1/ps is the average additional time needed to process one
bit. As argued in [22] and [39], the shifted exponential
model provides a good fit for the distribution of computation
times over cloud computing environments such as Amazon
EC2 clusters. The cdf of the time 7; can hence be written
as the integral F'(t) = fot f1(7)Fa(t — 7)d7. We also assume
that the runtime rvs {7;}Y, are mutually independent. Due
to (5), the probability that a given set of [ out of IV servers
has finished decoding by time ¢ is given as

<le> FO)'(1 - F()N L,

Let dpin be the minimum distance of the NFV code C..
Due to (3), Server O in the cloud is able to decode the message
u or equivalently the K packets u; for j € {1,..., K}, as soon
as N — dpin + 1 servers have decoded successfully. Let u;
be the output of the ith server in the cloud upon decoding.
We assume that an error detection mechanism, such as a cyclic
redundancy check (CRC), is in place so that Server 0 outputs

5)

ai(t) = ©)

. {ﬁi, for correct decoding,
u; =

(), otherwise.

The output u(¢) of the decoder at Server 0 at time ¢ is then a

function of the vectors u,(t) for i € {1,..., N}, where
u;, if7; <t
ﬁl(t) _ u;, 1ty =0
(), otherwise.

Finally, the frame unavailability probability (FUP) at time ¢ is
defined as the probability

P, (t) = Pr[a(t) # u]. ™

The event {u(t) # u} occurs when either not enough servers
have completed decoding or many servers have completed but
failed decoding by time ¢. We also define the FER as

P. = lim P,(t). ®)
t—o0

The FER measures the probability that, when all servers have
completed decoding, a sufficiently large number, namely larger
than N — dp,in, has decoded successfully.

III. BOUNDS ON THE FRAME UNAVAILABILITY
PROBABILITY

In this section we derive analytical bounds on the FUP
P,(t) in (7) as a function of the decoding latency t¢.
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A. Preliminaries

Each server ¢ with ¢ € {1,..., N} decodes successfully its
assigned packet y, if: (i) the server completes decoding by
time ¢; (ii) the decoder at the server is able to correct the
errors caused by the BSC. Furthermore as discussed, an error
at Server 0 occurs at time ¢ if the number of servers that have
successfully decoded by time ¢ is smaller than N — dpi, + 1.

To evaluate the FUP, we hence define the indicator variables
Ci(t) = 1{T; < t} and D; which are equal to 1 if the
events (/) and (i) described above occur, respectively, and zero
otherwise. Based on these definitions, the FUP is equal to

N
P,(t) = Pr Z Ci(t)D; < N — duin 9)
i=1
The indicator variables C;(t) are independent Bernoulli rvs
across the servers ¢ € {1,..., N}, due to the independence
assumption on the rvs T;. However, the indicator variable D;
are dependent Bernoulli rvs. The dependence of the variables
D; is caused by the fact that the noise terms Zfi 12jGcji
in (3) generally have common terms. In particular, if two
columns ¢ and j of the generator matrix G. have at least
a 1 in the same row, then the decoding indicators D; and D;

are correlated. This complicates the evaluation of bounds on
the FUP (9).

B. Dependency Graph and Chromatic Number
of a Linear Code

To capture the correlation among the indicator variables D;,
we introduce here the notion of the dependency graph and
its chromatic number for a linear code. These appear to be
novel properties of a linear code, and we will argue below
that they determine the performance of the NFV code C. for
the application at hand.

Definition 1: Let G € IFfXN’ be a generator matrix of a
linear code. The dependency graph G(G) = (V,E) comprises
a set V of N' vertices and a set E CV x V of edges, where
edge (i,7) € & is included if both the ith and jth columns of
G have at least a 1 in the same row.

Example 1: For an (8,4) NFV code C. with the following
generator matrix

10000110
00011001

=10 100001 1| (10)
10101000

the resulting dependency graph G(G.) is shown in Fig. 3.
The chromatic number X' (G) of the graph G(G) will play
an important role in the analysis. We recall that the chromatic
number is the smallest number of colors needed to color the
vertices of G(G), such that no two adjacent vertices share
the same color (see the example in Fig. 3). Generally, finding
the chromatic number of a graph is NP-hard [40]. However,

a simple upper bound on X'(G) is given as [41]
X(G) <A(G) +1, (12)

where A(G) is the maximum degree of a graph G(G).
A consequence of (12) is the following.
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Fig. 3. Dependency graph associated with the (8, 4) NFV code C. in
Example 1.

Lemma 1: Let G be a K' x N' matrix, where o, and o are
the maximum Hamming weights of the rows and columns in G,
respectively. Then the chromatic number of the corresponding
dependency graph G(G) is upper bounded as

X(G) < min{N, a.(a, — 1)+ 1}. (13)

Proof: According to Definition 1 we have the upper bound
A(G) < ac(a,—1) and hence (13) follows directly from (12).
O

C. Large Deviation Upper Bound

In this subsection, we derive an upper bound on the FUP.
The bound is based on the large deviation result in [37] for
the tail probabilities of rvs X = Zf\il X, where the rvs
X, are generally dependent. We refer to this bound as the
large deviation bound (LDB). The correlation of rvs {X;} is
described in [37] by a dependency graph. This is defined as
any graph G(X) with X, as vertices, such that, if a vertex
i€ {1,..., M}\{i} is not connected to any vertex in a subset
J C{1,...,M}, then X; is independent of {X;};c 7.

Lemma 2 ([37]): Let X = Zf\il X,;, where X; ~
Bern(p;) and p; € (0,1) are generally dependent. For any
b > 0, such that the inequality X; — E(X;) > —b holds for
all i € {1,..., M} with probability one, and for any 7 > 0
we have

Pr[X <E(X) - 7] <exp <—% 80<45b—;)>;
(15)

where S 2 Zf\il Var(X;) and ¢(x) = (1+2z)In(l +z) — .
The same bound (15) holds for Pr(X > E(X) + 1), where
X; — E(X;) < b with probability one.
The following theorem uses Lemma 2 to derive a bound on
the FUP.

Theorem 1: Let P} = ming {P, ()} Y. For all

> F71 < N — dmin )
- N Y
N =221 Pug(i)

the FUP is upper bounded by in (11), shown at the top

of the next page, where b(t) = F(t) (1—Pg’7i,§)

A N
S(t) = 2imi F() (1= Prp(7:) (1 = F(E)(L = Prk(:)))-
The upper bound (11), as shown at the top of the next page,
on the FUP captures the dependency of the FUP on both

(16)

and
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S()
P.(t) < — , 11
N 4bg (1 — N + dpin — P2
1 S.A A ( min "7k)
Put)<1——x > alt) > 1—exp [ —— © (14)
(1) i=n i AC{1,...,N}: b3 X (Ga) 554
[A|=l
the channel and the NFV code. In particular, the bound is Theorem 2: For any subset A C {1,..., N}, define
an increasing function of the error probabilities Py, 1(v:), min(4) A . A A
which depend on both codes. It also depends on the NFV Pow = min{Py(yi)}iea and Pi, = ZP"vk(%)’
i€ A

code through parameters dyin and X (G.).

Proof: Let X;(t) £ Ci(t)D; and X(t) = YN, X;(t).
where X;(t) are dependent Bernoulli rvs with probability
E[X,(t)] = Pr{X;(t) = 1] = F(t) (1 - Poi(y)). It can be
seen that a valid dependency graph G(X) for the variables
{X;} is the dependency graph G(G.) defined above. This is
due to the fact that, as discussed in Section III-C, the rvs X;
and X; are dependent if and only if the ¢th and jth column of
G, have at least a 1 in a common row. We can hence apply
Lemma 2 for every time ¢ by selecting 7 = E(X) — N + dmin,
and b(t) as defined above. Note that this choice of b(t) meets
the constraint for b in Lemma 2. For 1/ = 0, (16) can be
simplified as follows:

N
t>n <a N (dmin — %1:1 P”’k(%)». (17)
" N =32t Prk(n)

O
Remark 1: Whent — oo, we have the limit lim;_, o, F(t) =
1, which implies that eventually all servers complete decoding.
Letting d™>* = max{d;}¥., and v = (S (1,2), the first
row and second column’s entry of the matrix Qd " the bound
(11) reduces to
lim P, ()

t—o00

—NP,, 1(7) 4(dmin /N —Ppn (7))
fex"((l—Pn,uw)X(Gc)“"( ) )) o

This expression demonstrates the dependence of the FUP
bound (11) on the number of servers N, the decoding error
probability P,, (v) for each server, the chromatic number
X(G.), and minimum distance dwyin of the NFV code. In
particular, it can be seen that the FUP upper bound (18)
is a decreasing function of dwin, While it increases with the
chromatic number, P, 1(v) and with d™*.

D. Union Bound

As indicated in Theorem 1, the large deviation based bound
in (14), as shown at the top of this page, is only valid for large
enough ¢, as can be observed from (17). Furthermore, it may
generally not be tight, since it neglects the independence of the
indicator variables C;. In this subsection, a generally tighter
but more complex union bound (UB) is derived that is valid
for all times t.

and let G 4 be the K x |A|, submatrix of G., with column
indices in the subset A. Then, the FUP is upper bounded
by (14), shown at the top of the page, where S, =
S iea Pur(3i) (1= Pri(y:)) and ba 21— PR,

Proof: Let I; = 1 — D; be the indicator variable which
equals 1 if Server 7 fails decoding. Accordingly, we have I; ~
Bern(Py, x(7;)). For each subset A C {1,...,N}, let [4 =
> _ic Li- The complement of the FUP P(t) = 1 —P,(t) can
hence be written as

19)

AC{1,...,N}:
[Al=l

j servers from A decode successfully

l
Z Pr and
j=N—dmin+1 [ — j servers from A fail to decode
(20)
1 N
== > a(t) Y. (1=Prlla>l=N+dnul).
(1) I=N—diptl AC{1,...,N}:
|Al=t

(21)

We can now apply Lemma 2 to the probability in (21)
by noting that G(G 4) is a valid dependency graph for the
variables {I;}, i € A. In particular, we apply Lemma 2 by
setting 74 = | — N + dpin — E(La), ba > I; — E[;], and
Sa = cq Var (I;), leading to

Pr(ls >1— N + duin)

Sa

4bA (l - N + dmin - Pﬁk)
- P
VAX(Ga)

554

< exp

(22)
By substituting (22) into (21), the proof is completed. ]

IV. RANDOM ARRIVALS AND QUEUING

In this section we extend our analysis from one to multiple
frames transmitted by the users. To this end, we study the
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In the model studied in Section IV, frames arrive at the receiver according to a Poisson process with parameter A. Server O in the cloud encodes the

received frames using an NFV code and forwards the encoded packets to servers 1, ..., N for decoding.

system illustrated in Fig. 4 with random frame arrival times
and queueing at the servers. We specifically focus on the
analysis of the trade-off between average latency and FER.

A. System Model

As illustrated in Fig. 4, we assume that the arrival times of
the received frames are random and distributed according to
a Poisson process with a rate of A frames per second. Upon
arrival, Server O applies an NFV code to any received frame
y" for r = 1,2,..., as described in Section II and sends
each resulting coded packet y; to Server i, for i = 1,..., N.
At Server i, each packet y; enters a first-come-first-serve
queue. After arriving at the head of the queue, each packet y;
requires a random time 7; to be decoded by Server ¢. Here,
we assume that 7; is distributed according to an exponential
distribution in (5) with an average processing time of 1/us
per bit. Furthermore, the average time to process a frame of
n bits is denoted as 1/p.

Also, the random variables 7T} are i.i.d. across servers.

If the NFV code has minimum distance d,,;,, as soon as
N — dpin + 1 servers decode successfully their respective
packets derived from frame y”, the information frame u” can
be decoded at Server 0. We denote as T' the average overall
latency for decoding frame u”, which includes both queuing
and processing.

Using (8), (9) and the fact that all servers complete decoding
almost surely as t — oo, that is C;(t) — 1 as t — oo, the FER
is equal to

P, =Pr (23)

N
le > dmin‘| )

i=1

where I; is the indicator variable that equals 1 if decoding at
Server i fails. This probability can be upper bounded by the
following corollary of Theorem 1.

Corollary 1: The FER defined in (23) is upper bounded by

S 4b(dmin—Z¢]\;1Pn,k(%))
22X (Ge)” 55 ’

P. <exp 24)

A A min
where S = Zi\il Pok(vi) (1 =Py k(i) and b=1— PN
Proof:  The result follows from Theorem 1 by selecting
N
T = dmin - Zi:l Pn,k(’)/z) O
We now discuss the computation of the average delay 7" for
different queueing management policies.

B. Per-Frame Decoding

We first study the system under a queue management policy
whereby only one frame y” is decoded at any time. Therefore,
all servers wait until at least N — din, + 1 servers have
completed decoding of their respective packets y; before
moving to the next frame r+ 1, if this is currently available in
the queues. Furthermore, as soon as Server 0 decodes a frame,
the corresponding packets still being present in the servers’
queues are evicted.

As a result, the overall system can be described an
M/G/1 queue with arrival time A and service time distributed
according to the (N — duyin + 1)th order statistic of the
exponential distribution [42]. The latter has the pdf [43] (25),
shown at the bottom of the page, where Fp(t) and fr(t) are
the cdf and pdf of rv T;, respectively. This queueing system
was also studied in the context of distributed storage systems.

Using the Pollaczek-Khinchin formula [44], the average
delay of an M/G/1 queue can be obtained as (26), shown
at the bottom of the page, where Hy and Hpy2 are gen-
eralized harmonic numbers, defined by Hy = Zi\;l % and
Hpe = Zi\il %2 [42]. Note that the queue is stable, and hence
the average delay (26) is finite, if the inequality n\(Hy —
Hg,..—1) < (N —dmin + 1) holds. We refer to the described

N! Cd. o
fTN—dmin+1:N(t) = (N—d ) )'(d . _l)'fT(t)FT(t)N dI!llH(l_FT(t))dmln 1) (25)
Hy —Hg . _ A2[(Hy — Hg, . 1)?+ (Hy2 — Hg .
T = n(Hyx doin—1) n*[(Hn dpin—1)" + (Hy2 (dmin—1)2)] 26)

(N - dmin + 1)M 2(N -

dmin + 1)202[1 — Anp= (N — dpyin + 1)~ (Hy — Ha,,,,—1)]’
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Fig. 5. Decoding latency versus FUP for L = 504, N = 8,1/p1 = 0, u2 = 10,a = 1,6 = 0.01,7 = 0.5) : (a) LDB, UB and Exact FUP for the parallel,
single-server, and repetition coding; (b) LDB, UB and Monte Carlo simulation (“MC Sim.”) results for split repetition code, SPC code, and the NFV code C.

defined in (10).

queue management scheme as per-frame decoding (pfd). This
set-up is equivalent to the fork-join system studied in [42].

C. Continuous Decoding

As an alternative queue management policy, as soon as
any Server i decodes its packet y;, it starts decoding the
next packet i;“ in its queue, if this is currently available.
Furthermore, as above, as soon as Server 0 decodes a frame
y”, all corresponding packets y; still in the servers’ queues are
evicted. We refer this queue management policy as continuous
decoding (cd).

The average delay (26) of per-frame decoding is an upper
bound for the average delay of continuous decoding, i.e., we
have T.q < Tpsq [42]. This is because, with per-frame decod-
ing, all N servers are blocked until N — dy, + 1 servers
decode their designed packets. We evaluate the performance
of continuous decoding using Monte Carlo methods in the next
section.

V. SIMULATION RESULTS

In this section we provide numerical results to provide
additional insights into the performance trade-off for the
system shown in Fig. 1. We first consider individual frame
transmission as studied in Section II and Section III, and then
we study random arrivals as investigated in Section IV.

A. Single Frame Transmission

We first consider single frame transmission. The main goals
are to validate the usefulness of the two bounds presented
in Theorems 1 and 2 as design tools and to assess the

importance of coding in obtaining desirable trade-offs between
decoding latency and FUP. We employ a frame length of
L = 504 and N = 8 servers. The user code C, is selected
to be a randomly designed (3,6) regular (Gallager-type)
LDPC code with r = 0.5, which is decoded via belief
propagation.

We compare the performance of the following solutions:
(i) Standard single-server decoding, whereby we assume, as a
benchmark, the use of a single server, that is N = 1, that
decodes the entire frame (K = 1); (i) Repetition coding,
whereby the entire frame (/X = 1) is replicated at all servers;
(iii) Parallel processing, whereby the frame is divided into
K = N disjoint parts processed by different servers; (iv) Split
repetition coding, whereby the frame is split into two parts,
which are each replicated at N/2 servers. The code has hence
K =2, dmin = N/2, X(G.) = N/2, which can be thought
of as an intermediate choice between repetition coding and
the parallel scheme; (v) Single parity check code (SPC), with
N = K+1, whereby, in addition to the servers used by parallel
decoding, an additional server decodes the binary sum of all
other K received packets; and (vi) an NFV code C. with the
generator matrix G, defined in (10), which is characterized
by K = 4. Note that, with both single-server decoding and
repetition coding, we have a blocklength of n = 1008 for the
channel code. Single-server decoding is trivially characterized
by X(G.) = dmin = 1, while repetition coding is such
that the equalities X(G.) = dmin = 8 hold. Furthermore,
the parallel approach is characterized by n = 126, dpyi, = 1
and X(G.) = 1; the split repetition code is characterized
by n = 504, dmin = 4 and X (G.) = 4; the SPC code has
n = 144, dyyin, = 2 and X(G.) = 2; and the NFV code C,. has
n = 252, dyin = 3 and X' (G,) = 3. The exact FUP for a given
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parallel, single-server, and repetition coding; (b) LDB, UB and Monte Carlo simulation (“MC Sim.”) results for split repetition code, SPC code, and the NFV

code C. defined in (10).

function P,, 1 (-) can easily be computed for cases (i)-(iii). In
particular, for single server decoding, the FUP equals

Pyu(t) =1—a(t)(1 = Pr/r 1(5)); 27)
for the repetition code, the FUP is
N
Pu(t) =1=) ait)(1 = Prrr(9)); (28)
i=1
and for the parallel approach, we have
Pu(t) =1—an(t)(1 = Pr/enyon@)™. (29

In contrast, the exact FUPs for the SPC and code C. are
difficult to compute, due to the discussed correlation among
the decoding outcomes at the servers.

Fig. 5a shows decoding latency versus FUP for the LDB
in Theorem 1, the UB in Theorem 2, and the exact error
27), (28), (29), for the first three schemes (i)-(iii), and
Fig. 5b shows the LDB in Theorem 1, the UB in Theorem 2,
as well as Monte Carlo simulation results for schemes (iv), (v),
and (vi). Here, we assume that the latency contribution that,
is independent of the workload, is negligible, i.e., 1/u; = 0.
We also set a = 1 and p2 = 10. As a first observation, Fig. 5
confirms that the UB bound is tighter than the LDB.

Leveraging multiple servers in parallel for decoding is
seen to yield significant gains in terms of the trade-off
between latency and FUP as argued also in [14] by using
experimental results. In particular, the parallel scheme is
observed to be preferred for lower latencies. This is due to
the shorter blocklength n, which entails a smaller average
decoding latency. However, the error floor of the parallel
scheme is large due to the higher error probability for short
blocklengths. In this case, other forms of NFV coding are

et
"% ‘00‘

300 400
Decoding Latency t

200 500 600 700

Fig. 7. Decoding latency versus exact FUP for parallel and repetition coding
for different number of servers N € {3,6,12} and (L = 240,1/p1 =
0,2 =10, = 1,6 = 0.03,r = 0.5).

beneficial. To elaborate, repetition coding requires a larger
latency in order to obtain acceptable FUP performance owing
to the larger blocklength n, but it achieves a significantly
lower error floor. For intermediate latencies, the SPC code,
and at larger latencies also both the NFV code C., and the
split repetition code provide a lower FUP. This demonstrates
the effectiveness of NFV encoding in obtaining a desirable
trade-off between latency and FUP.
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and (b) heavily loaded, respectively (L = 112, N = 8, = 0.03).

In order to validate the conclusion obtained using the
bounds, Fig. 5 also shows the exact FUP for the schemes
(i)-(iii), as well as Monte Carlo simulation results for schemes
(iv)-(vi), respectively. While the absolute numerical values of
the bounds in Fig. 5a and 5b are not uniformly tight with
respect to the actual performance, the relative performance of
the coding schemes are well matched by the analytical bounds.
This provides evidence of the usefulness of the derived bounds
as a tool for code design in NFV systems.

Fig. 6 is obtained in the same way as Fig. 5, except for
the parameters (1 = 0.02, po = 20, and a = 0.1. Unlike
Fig. 5, here latency may be dominated by effects that are
independent of the blocklength n since we have 1/u7 > 0.
The key difference with respect to Fig. 5 is that, for this choice
of parameters, repetition coding tends to outperform both the
parallel case, and the NFV code C., apart from very small
latencies. This is because repetition coding has the maximum
resilience to the unavailability of the servers, while not being
excessively penalized by the larger blocklength n. This is not
the case, however, for very small latency levels, where the
NFV code C. provides the smallest FUP given its shorter
blocklength as compared to repetition coding and its larger
dmin, With respect to the parallel scheme.

Fig. 7 shows the exact FUP for the extreme cases of
parallel and repetition coding for different number of servers
N € {3,6,12}. The figure confirms that, for both schemes,
the latency decreases for a larger number of servers N.
However, by increasing N, the error floor of the parallel
scheme grows due to the higher channel error probability for
shorter block lengths.

B. Random Frame Transmission

We now consider the queueing system described in
Section IV, and present numerical results that provide insights
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into the performance of both per-frame and continuous
decoding in terms of FER versus average latency (23). As
above, the decoding error probability is upper bounded by
using [38, Th. 33]. Both FER and average latency are a func-
tion of the user code rate r. We hence vary r € {1/2,...,1/5}
to parametrize a trade-off curve between FER and latency.
We assume a frame length of L = 112 bits with N = 8
servers, and adopt the same user code C. as in the previous
subsection. The average delay T} is computed from (26), and
T.q 1s obtained via Monte Carlo simulations.

Figs. 8a and 8b compare the performance of repetition
coding, the NFV code C. with the generator matrix (10), and
the parallel approach as defined above. Fig. 8a considers a
lightly loaded system with A = 0.1 frames per second and
1 = 500 frames per second, while Fig. 8b shows a highly
loaded system with both A = 1 frames per second and ;. = 50
frames per second.

First, by comparing the two figures we observe that
per-frame decoding and continuous decoding have a similar
performance when the system is lightly loaded (see Fig. 8a),
while continuous decoding yields a smaller average latency
than per-frame decoding when the system is heavily loaded
(see Fig. 8b). This is because, in the former case, it is likely
that a frame is decoded successfully before the next one
arrives. This is in contrast to heavily loaded systems in which
the average latency becomes dominated by queuing delays.
We also note that, for repetition coding, the performance of
per-frame decoding and continuous decoding coincides in both
lightly or heavily loaded systems, since decoding is complete
as soon as one server decodes successfully.

Also, by comparing the performance of different codes,
we recover some of the main insights obtained from the study
of the isolated frame transmission. In particular, the parallel
approach outperforms all other schemes for low average delays
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due to its shorter block length n. In contrast, repetition
coding outperforms all other schemes in FER for large average
delay because of its large block length n and consequently
low probability of decoding error (not shown). Furthermore,
we observe that split repetition coding is to be preferred for
small values of FER.

Finally, Fig. 9 demonstrates the behavior of the average
latency as the arrival rate A increases and the system becomes
more heavily loaded. We observe that, for a lightly loaded
system, the latencies of per frame and continuous decoding
are similar, while continuous decoding is preferable for a large
number of A. This is because per-frame decoding requires
all servers to wait until at least N — d,;, + 1 servers have
completed decoding of their respective packets before moving
on to the next frame.

VI. CONCLUSIONS

In this paper, we analyzed the performance of a novel coded
NFV approach for the uplink of a C-RAN system in which
decoding takes place at a multi-server cloud processor. The
approach is based on the linear combination of the received
packets prior to their distribution to the servers or cores,
and on the exploitation of the algebraic properties of linear
channel codes. The method can be thought of as an application
of the emerging principle of coded computing to NFV. In
addition, we obtain novel upper bounds on the FUP as a
function of the decoding latency based on evaluating tail
probabilities for Bernoulli dependent rvs. By extending the
analysis from isolated frame transmission to random frame
arrival times, the trade-off between average decoding latency
and FER for two different policies are derived. Analysis
and simulation results demonstrate the benefits that linear
coding of received packets, or NFV coding, can yield in
terms of trade-off between decoding latency and reliability. In

particular, a prescribed decoding latency or reliability can be
obtained by selecting an NFV code with a specific minimum
distance and chromatic number, where the two extremes are
parallel NFV-based processing and repetition coding. The
former scheme obtains the smallest latency but the lowest
reliability, whereas the latter scheme yields the largest latency,
but the highest reliability. All other linear NFV codes operate
between these two extreme cases.

Among interesting open problems, we mention the design of
optimal NFV codes and the extension of the principle of NFV
coding to other channels. Note that the approach proposed here
applies directly to other additive noise channels in which the
user code is an additive group. A key example is the additive
Gaussian channel with lattice codes at the user, which will be
studied in future work.
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