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Abstract—1In this paper, we characterize the finite-length per-
formance of separable circulant-based spatially-coupled (SCB-
SC) LDPC codes for transmission over the additive white
Gaussian noise channel. For a general class of finite-length graph-
based codes, it is known that the existence of small absorbing
sets causes a performance degradation in the error floor regime.
We first present the mathematical conditions for the existence of
absorbing sets in binary SCB-SC codes. This analysis enables us
to find the exact number of absorbing sets as a function of the
design parameters. In particular, our results show that the choice
of the cutting vector affects the number of absorbing sets and,
therefore, the error floor performance of the code. For a fixed
column weight, we find provably optimal cutting vectors that
result in the least number of absorbing sets. Furthermore, we
extend our analysis to nonbinary SCB-SC codes, where we show
that the choice of the cutting vector is not as critical as in the
binary case. We provide an algorithm which provably removes
the problematic nonbinary absorbing sets from nonbinary SCB-
SC codes by informed selection of edge labels. Our simulation
results show the superior error floor performance of our designed
binary and nonbinary SCB-SC codes compared with binary
unstructured and nonbinary quasi-cyclic SC codes available in
the open literature.

Index Terms— Spatially-coupled codes, finite block length,
separable circulant-based, array-based codes, absorbing sets,
error floor performance.

I. INTRODUCTION

N RECENT years, spatially-coupled low-density parity-
check (LDPC) codes have drawn a lot of attention due
to their outstanding asymptotic performance. In the asymp-
totic regime, it is known that long binary spatially-coupled
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LDPC (SC-LDPC) codes achieve the maximum-likelihood
decoding threshold under belief propagation decoding, which
is called the threshold saturation phenomenon [1]-[8], [31].
This phenomenon was shown in [1] for binary erasure channels
and regular code ensemble and was also reported for other
channels [2]-[5] and code ensembles [6]-[8]. Asymptotic
minimum codeword and trapping set distances of spatially-
coupled codes have been studied as well, see [9]. It was shown
that the asymptotic minimum distance of spatially-coupled
codes grows linearly with the coupling length of these codes.
As a result of these favorable properties, the analysis and
design of SC-LDPC codes has been actively explored, see,
e.g., [71, [9]-[12]. More recently, it was shown that non-binary
SC-LDPC codes also achieve maximum-likelihood decoding
threshold and have superior performance compared to their
binary counterparts [13]-[15]. Further, in [16] a survey about
the theory and practice of SC-LDPC codes was presented.

While the majority of recent results has been devoted to
establishing the asymptotic performance of spatially-coupled
codes, much less has been done for the finite-length analysis
and design of these codes, with the exception of the fol-
lowing representative results. The finite-length performance
and various constructions of spatially-coupled codes were
reported in [17]-[20]. Also, various protograph-based methods
for deriving families of spatially-coupled codes with good
performance were presented in [17] and [47], and a class
of spatially-coupled codes based on regular repeat-accumulate
codes was discussed in [18] and [34]. In [19], the finite-length
performance analysis for codes constructed based on a chain
of spatially-coupled codes was presented. More recently, the
authors in [20] provided an analytical framework for predicting
the error probability of finite-length spatially-coupled ensem-
bles based on a proposed scaling law. Several works, including
[48] and [49], considered a subclass of spatially-coupled codes
which are constructed based on quasi-cyclic LDPC codes.
In [48], the authors showed that the minimum distance of
quasi-cyclic LDPC convolutional codes can be improved by
a careful choice of the circulants in the Tanner graph of
the code. The construction of a class of quasi-cyclic LDPC
convolutional codes and its finite-length performance was
investigated in [49]. Finally, the finite-length analysis and
the design of non-binary spatially-coupled codes was recently
studied in [14] and [21].
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It is known that under message passing decoding, certain
non-codewords result in failures in the iterative decoding
of graph-based codes. Absorbing sets (ASs) were introduced
in [22] as particular combinatorial substructures of the Tanner
graph which are responsible for the performance degradation
of (block) LDPC codes in the error floor region. An analysis of
ASs and the design of separable circulant-based (SCB) LDPC
codes and their subclass, array-based (AB) LDPC codes [35],
with a reduced number of ASs was presented in [22] and [23].

SCB-LDPC codes include a wide variety of regular LDPC
codes including array-based LDPC codes as well as many
common quasi-cyclic codes [23], [45], [46]. These quasi-
cyclic LDPC codes have drawn a lot of interest in both
academia and industry due to their high-throughput parallel-
layered decoding and excellent performance. In particular,
the structure of quasi-cyclic LDPC codes allows multiple
processors to perform the decoding in parallel on different
parts of the Tanner graph, which results in higher decoding
throughput and lower decoding latency [40]-[42]. The quasi-
cyclic structure guarantees a certain minimum distance, a
minimum girth, and a minimum AS size. Therefore, quasi-
cyclic codes typically provide superior performance compared
to unstructured LDPC codes [22], [43], [44], [46].

A combination of SC-LDPC and SCB-LDPC structures
results in a new family of codes, separable circulant-based
spatially-coupled (SCB-SC) codes, which inherit the excel-
lent benefits of SC and SCB codes highlighted above.
In addition, SCB-SC codes are suitable for windowed encod-
ing and decoding in a streaming fashion which significantly
reduces the latency compared to encoding and decoding of
SCB-LDPC block codes. For the case of array-based spatially-
coupled (AB-SC) codes, a subclass of SCB-SC codes, the
authors demonstrated in [24] that the number of smallest ASs
grows linearly with the coupling length. Furthermore, in [24]
it was shown that the average number of ASs in AB-SC codes
is significantly less than the average number of ASs in their
underlying AB-LDPC codes. This observation suggests that
AB-SC codes potentially have better error floor performance
compared to AB-LDPC codes.

In this work, inspired in part by [24], we generalize the
characterization of ASs to binary and non-binary SCB-SC
codes for transmission over the additive white Gaussian
noise (AWGN) channel. Our contribution in this paper is
multifold:

1) We introduce an analytical approach to find the exact
number of ASs in SCB-SC codes: the original counting
problem is mapped to a problem of finding the number
of integer points within an area in 2D space.

We find the optimal cutting vector for SCB-SC codes
with arbitrary circulant size; optimality is defined in
terms of dominant detrimental ASs. Here, dominant
ASs are those ASs that occur most frequently at the
output of the decoder and ‘dominate’ the error floor
behavior of the code. Analytical and experimental results
reveal that the choice of the cutting vector significantly
affects the error floor performance of binary SCB-SC
codes. Further, the proposed cutting vector optimization
approach offers a computational advantage compared
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to the approach presented in [24], in which for each
optimization step the dominant ASs are counted via a
hard search on the resulting Tanner graph [25]. In this
work we solely consider column-weight 3 since these
codes are typically preferred in applications due to lower
latency [26], a higher hardware decoder throughput
[27, Table 13.1], and smaller required chip area [28]
compared to higher column weight codes.! Note that
the check node degree must increase accordingly with
the column weight, leading to a much higher complexity
demand.

3) We calculate the average number of ASs in non-
binary SCB-SC codes constructed by uninformed
(random) assignment of edge labels on top of a binary
SCB-SC code. This result reveals that the average
number of ASs in non-binary SCB-SC codes is
significantly lower than the average number of ASs
in binary SCB-SC codes. This explains the superior
error floor performance of non-binary SCB-SC codes
compared to their binary counterparts.

Compared to our preliminary work in [29], this paper
extends the discussion on the exact enumeration of ASs to
the more general family of SCB-SC codes. Furthermore, by
providing the necessary conditions for the existence of non-
binary ASs in non-binary SCB-SC codes over G F(3) and
GF((2™), m > 1, we also present an analytical approach to
provably reduce the number of problematic non-binary ASs in
our designed codes.

The rest of this paper is organized as follows. In Section II
we briefly review the definition of ASs and the construction
of SCB-SC and AB-SC codes. Furthermore, we provide an
example which illustrates our motivation for studying ASs of
spatially-coupled codes. In Section III we analytically derive
the exact enumeration of binary ASs for column-weight-3
SCB-SC codes. Based on these results, in Section IV we find
the optimal cutting vector to minimize the number of problem-
atic ASs in binary SCB-SC codes. In Section V we calculate
the average number of small ASs for the ensemble of non-
binary SCB-SC codes with column-weight 3. Additionally, we
present an algorithm to design non-binary SCB-SC codes with
improved error floor performance achieved by provable elimi-
nation of dominant ASs. Section VI presents our experimental
results which show the superior performance of our designed
binary and non-binary SCB-SC codes. Section VII delivers the
conclusions.

II. PRELIMINARIES AND DEFINITIONS

In this section, we introduce the construction of SCB-SC
codes (and AB-SC codes as a subclass) using the edge
spreading procedure [23], [24]. We present the error floor
performance comparisons for SCB-LDPC and SCB-SC codes.
These results serve to illustrate our motivation for analysis of
the SCB-SC codes viz. their AS properties. We also briefly
revisit the well-known definitions of binary and non-binary
ASs [22], [30].

I'Note that the enumeration method in this paper can also be applied to
higher column-weight codes. In that case, the analysis is more involved and
tedious since there are significantly more cases to be considered for the
enumeration of ASs when the column-weight is larger.
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Fig. 1.
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A. Separable Circulant-Based and Array-Based
Spatially-Coupled LDPC Codes

In this subsection, we first describe the construction of
SCB-LDPC codes which are used as underlying codes in the
construction of SCB-SC codes. Let p be a prime number
indicating the circulant size and the row weight and y be the
column weight. For given one-to-one functions f(-) and g(-),
the y p x p? parity-check matrix of the underlying SCB-LDPC
code is formed as follows [23]:

H(y, p)
o F030) SO 5 f0)2(2) o F©g(p=1)
o FgO) S fe) 5 f(1)e2) o F(Dg(p=1)

g/ =180) 5O =Deg() 5 f7=Deg@) ... 5 (—Delp—1

ey

where ¢ is a p x p circulant matrix formed by cyclically
shifting all rows of the identity matrix one element to the
left. The matrix H(y, p) can be viewed as a 2D array of
submatrices where each row (column) of matrices denotes a
row (column) group i,0 <i <y —1(j,0=<j < p—1.
For our discussions, we describe each column of H(y, p) by
a pair (J, k) where j is the index of the column group, and %,
0 <k < p—1, is the index of the column within the column
group.

In the following, we construct SCB-SC codes by using
an unwrapping procedure defined by a cutting vector & =
[0, -+ ,&y—1] comprising y step parameters with 0 < & <
&1 < <&-1 < p Weassume that;,i € {0,1,---,y—1}
are distinct. In the general case, these parameters are not
necessarily distinct. The cutting vector is used in the construc-
tion of SCB-SC codes to form the two matrices Hy and H;
as follows. The matrix Hy of size yp x p?> is formed
by assigning each circulant matrix in row group i and
column group j, j < &, of H(y,p) to the equiva-
lent position in Hp. All other remaining elements of Hy
are then set to 0. Furthermore, the matrix H; is defined
as Hy = H(y, p) — Ho.

Let L be a positive integer called coupling length which
determines the number of copies of the Hy and H; subma-
trices, resp., in the parity-check matrix of an SCB-SC code.
Given the coupling length L, the parity-check matrix of an
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(b)

(a) Example of an AB-LDPC code with p = 11 and y = 3, (b) Example of an AB-SC code with p = 11, y = 3, L = 2, and cutting vector
. 7). Moreover, 1| =ry, ry =1y, 15 =13, 1} =r4+r1, r§ =ry, rg = r3, and

SCB-SC code is defined as

Hy O o --- 0 0

H Hy 0 --- 0 0

0O H Hy --- 0 0
Hy.p. L= . . . . .. O

0 0 0 .-+ H; Hy

0 0 0 -+ 0 H]

and has dimension (L + 1)y p x Lp?. Thus, the total length
of the code is Lp? bits. The graphical representation of a
spatially-coupled code can be viewed as coupling together a
series of L identical and disjoint Tanner graphs into a single

coupled chain [24] with a design code rate of Ry, = 1 —
(LH)LV#. For the considered construction, the constraint

lengthpv, which is the maximal width of the non-zero area
in each row of H(y, p, L, &), is equal to p>. Note that in
the above construction the syndrome former memory m is
assumed to be 1. In the general case, where m > 1, we have
H(y,p)=Ho+ Hi+ -+ Hpy.

Array-based LDPC codes [35] are the simplest SCB codes
with functions f(i) =i and g(j) = j. We will refer to the
class of spatially-coupled codes with underlying array-based
matrices as AB-SC codes. Figure 1 shows an example of
an AB-SC construction where y = 3, p = 11, L = 2, and
& =[3, 6, 9]. For the sake of our later discussion, we define the

region R,,n € {1,---,y +1}in H(y, p) as the set of column
groups with indices between &,_» and &, (cmp. Figure 1(a)).
We assume {1 = 0 and ¢, = p. The number of col-

umn groups within the region R,,n € {l,---,y + 1} is
denoted by r,. The definition of regions can be expanded to
SCB-SC codes, where each region is similarly defined as the
set of column groups between two consecutive edges of the
cutting vector (cmp. Figure 1(b)). Note that the notion of row
(column) groups in SCB-LDPC codes can be expanded to
SCB-SC codes, where each row (column) in the parity-check
matrix of SCB-SC codes belongs to a row (column) group
with index 0 <i <y —1 (0 < j < p — 1), that is equal to
the row (column) group of the corresponding row (column) in
the underlaying SCB-LDPC code.

Note that the underlying SCB-LDPC codes include several
families of codes in the open literature [35], [45], [46]. For
properly chosen f and g, the girth of an SCB code is
guaranteed to be at least 6.
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TABLE I
SUMMARY OF PARAMETERS AND NOTATION

p circulant size (and row weight) which is a prime number
v column weight
[ index of row group
j index of column group
Ry, rate = 1 — %LH
k index of the column within the column group
3 cutting vector with length v
L coupling length
v constraint length = p?
Rn column region n
n number of column groups within region Ry,
q Galois field size
a number of variable nodes in an absorbing set
b number of unsatisfied check nodes in an absorbing set
w; edge label (weight) of edge ¢
N block length of SCB-LDPC codes
I3 ’(" ,b) optimal cutting vector for (a,b) AS
f(?) and g(j) | arbitrary functions used in construction of SCB-LDPC codes

The following remark describes the construction of
non-binary SCB-SC codes.

Remark 1: For a given matrix H(y, p) of a binary SCB-
LDPC code, the parity-check matrix Hy(y, p) of a non-binary
SCB-LDPC code over GF(q) can be constructed by replacing
the elements with value ‘1" of H(y , p) with non-zero elements®
of GF(q). The parity-check matrix Hy(y, p, L, &) of a non-
binary SCB-SC code is then constructed by the same edge
spreading procedure as above.

B. Binary and Non-Binary Absorbing Sets

Consider a subgraph of a Tanner graph over G F(g) induced
by a variable nodes (VNs), given by the node set 7.

Definition 1 [30]: The set V is an (a, b) AS over GF(q)
if there exists an input (v1,v2,- - ,05) € GF(q)*\{0} for
the VNs in V such that there exist exactly b unsatisfied check
nodes (CNs) connected to the VNs in V. Furthermore, for each
VN in V, the number of connected satisfied check nodes is
larger than the number of connected unsatisfied check nodes.

Note that if ¢ = 2 (binary code), the above definition can
be simplified as follows.

Definition 2 [22]: The set V is an (a, b) binary AS if there
are b odd degree CNs connected to VNs in V, and each VN
is connected to more even degree CNs than odd degree CNs.

We also recall the definition of elementary ASs, a subclass
of ASs that is particularly useful in characterizing the error
floor performance.

Definition 3 [30]: An elementary AS is an AS with each
of its neighboring satisfied check nodes having two edges
connected to the AS, and each of its neighboring unsatisfied
check nodes having exactly one edge connected to the AS.

In this paper, we consider non-binary SCB-SC codes defined
over finite field sizes that are powers of 2 since such values
offer convenient mapping of symbols to bits. We also study

2Note that in this definition, no constraint is imposed on the selection of the
non-binary elements; these edge labels can be chosen completely at random.
In Section V it is shown that an informed selection of the non-binary labels
can result in an improved performance of the code.

SCB-SC codes defined over G F(3) since such codes can
benefit from the additional degree of freedom offered by non-
binary edge labels, while still having only moderate belief
propagation decoding complexity compared to codes defined
over higher field sizes. In the study of such non-binary
SCB-SC codes, the following result will be useful.

Lemma 1 (see also [30]): A subset of VNs vV is an elemen-

tary AS over GF(q) if and only if:

1) (Topological condition). For the induced subgraph cor-
responding to V and its neighboring CNs, unlabeling of
all edges (converting all edge labels to one) results in
a binary elementary AS.

2) (Weight condition). For every cycle of length 2d, the
labels of the edges w;, i € {1,...,2d}, satisfy:

T, wak—1 =TT{_, wx mod g,

if ¢ is a positive power of 2,

HZ:] wy—1 = (=1)? Hf:l wyr  mod g,
if ¢ is an odd prime number.

3)

For the convenience of the reader, the parameters employed
in the construction of SCB-SC codes and the characterization
of ASs are summarized in Table I.

C. Performance Comparison for SCB-LDPC and
SCB-SC Codes: A Summary

In the following, we study the error floor performance
of SCB-SC codes. For a prescribed channel SNR? the error
profile spectrum of a code represents the listing of all error
types* observed at the output of the decoder and their number
of occurrences over the course of a representative number of
simulation runs. We unveil the properties of the error profile

3Note that throughout the paper, SNR is defined as 10log(y Ej;/Np, where
No . . . .
Ejp and —* are energy per bit and noise power spectral density, respectively.
4Different error types include AS errors in which the decoder converges to
an AS, non-AS errors in which the decoder converges to a non-AS object, and
non-converging errors in which the decoder does not converge to a specific
object before reaching the maximum number of iterations.
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Fig. 2. Performance comparison for AB-LDPC and AB-SC codes with
various random cutting vectors.

spectrum of SCB-SC codes and exploit these properties to
optimize the code design. In particular, we will show that:

a) SCB-SC codes have better performance in the low
error-rate (error floor) region compared to SCB-LDPC codes.
Moreover, the error profile spectra are different for SCB-
LDPC and SCB-SC codes. This observation motivates us
to characterize ASs in SCB-SC codes and present an exact
enumeration of small ASs in these codes. Based on these
results, we show that, due to partitioning of the underlying
parity check matrix into Hy and H; components, some ASs
are broken and thus do not exist in the Tanner graph of the
resulting SCB-SC code. The reduction in the number of small
problematic ASs in moving from block to SC designs in part
explains the superior error floor performance of SCB-SC codes
compared to SCB-LDPC codes.

b) The choice of the cutting vector significantly affects the
performance of binary SCB-SC codes in the low error-rate
region. Through our analysis we find the exact number of small
ASs as a function of the cutting vector. This analysis enables
us to optimize the choice of the cutting vector to design
SCB-SC codes with the minimum number of problematic ASs.
Before we lay out the theoretical framework for this analysis,
we motivate the work with the following example.

Example 1: Figure 2 shows simulation results for an
AB-LDPC code (an SCB-SC code with f(i) = i and
g(j) = j) with block length 4489 bits, circulant size
67, column-weight 3, rate ~ 0.3, and an AWGN chan-
nel, decoded using sliding window decoding.> We also
present the performance curves for comparable AB-SC
codes with the same constraint length v = 4489, L =
50, and column weight 3. Four distinct cutting vectors,
& = [10, 18,56] for code 1, & = [22,28,55] for code 2,
& = [8,31,40] for code 3, & = [15,31,47] for code 4, are
chosen at random for the construction of each AB-SC code
shown in Figure 2. Table II includes the error profiles, i.e.,
the number of specific ASs, for the curves in Figure 2 at
SNR = 6.1 dB. Note that the total number of simulation runs
at SNR = 6.1 dB for the AB-LDPC code is ~ 2.4 x 10° and for
the AB-SC codes is ~ 1.2 x 10. Figure 2 shows that AB-SC

SNote that throughout this paper, the window size of sliding window decoder
is 4 - v, with v being the constraint length. Also, a maximum number of
50 iterations is used.
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codes have a performance improvement of around one order of
magnitude compared to AB-LDPC codes. We also observe that
different cutting vectors result in a change in the error floor
performance of AB-SC codes. This observation suggests that
the number of problematic ASs in the Tanner graph of AB-SC
codes changes with the choice of the cutting vector. Table 11
also shows that the distribution of AS errors is significantly
different for AB-LDPC and AB-SC codes. Our forthcoming
analysis will mathematically justify the above observations.

Remark 2: Note that throughout this paper, the simulation
results of SCB-SC codes are obtained using sliding window
decoding [36], [39]. We follow the approach in the literature
(e.g., [15], [38], and [16]) to compare the performance of
spatially-coupled codes with constraint length v with the
performance of block LDPC codes with block length N = v.
In this case (N = v), the normalized decoding hardware
processor complexity and latency for both spatially-coupled
and block codes are equal.

III. EXACT ENUMERATION OF BINARY ABSORBING SETS
IN SEPARABLE CIRCULANT-BASED SPATIALLY-COUPLED
CODES WITH COLUMN WEIGHT THREE

In this section, we first focus our analysis on AB-SC
codes which are a sub-class of SCB-SC codes. We show
that the structure of AB-SC codes imposes additional con-
straints (relative to the block code case) on two variable
nodes sharing a check node in an AS. We introduce an
approach to calculate the exact number of ASs for binary
AB-SC codes and show that the enumeration problem can
be expressed as the problem of counting integer pairs within
a two-dimensional geometric region specified by the set of
column groups R, n € {1,...,yL + 1} (see Fig. 1(b)).
We show that the same introduced approach is applicable to
the more general case of SCB-SC codes. In particular, the
analysis in this section indicates that the number of dominant
ASs is reduced for SCB-SC codes compared to SCB-LDPC
codes. Although our procedure is in principle applicable to any
column weight, for the ease of discussion we limit our analysis
to column-weight-3 codes, in which (3, 3) and (4, 2) are the
dominant ASs.

We first revisit the bit, check, and pattern consistency
conditions for AB-LDPC codes from [22].

Lemma 2:

1) Bit consistency: The neighboring CNs of a VN must

have distinct row-group indices i1 # is.

2) Check consistency: The neighboring VNs of a CN must

have distinct column-group indices ji # jo.

3) Pattern consistency: If two VNs corresponding to

columns (ji, k1) and (ja, k2) share a CN ¢y in row group
i1, then k1 +i1j1 = ko +i1j2 mod p.

Remark 3: In a spatially-coupled structure, each CN is only
connected to VNs within a window of at most y consec-
utive regions,® where y is the column weight of the code.
As an example, each CN in the parity-check matrix shown
in Figure 1(b) is connected to the VNs in a window of at most

ONote that the width of the window is shorter for the first and last y — 1
columns in H(y, p, L, &).
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TABLE 1I
ERROR PROFILE (THE NUMBER OF SPECIFIC ASs) FOR THE CODES SHOWN IN FIGURE 2 AT SNR = 6.1 dB

Error Type 3,3) ] 4,2 ] 4,49 | B,1) | (5,3) | (5,5) | other

AB-LDPC 55 23 3 2 3 8 17
AB-SC, code 1 71 6 8 0 4 3 21
AB-SC, code 2 42 4 7 0 2 3 15
AB-SC, code 3 29 4 3 0 1 2 16
AB-SC, code 4 23 2 2 0 1 1 13

(uk) (2k2) (k)
) W @

i1:0

i3:2 14:1

Fig. 3. Structure of a (3,3) AS over GF(g). Note that in the binary case,
w] through wg are equal to ‘1.

y = 3 regions. In addition to the pattern consistency condi-
tion, this coupling-induced property imposes extra constraints
on the valid choices for column groups of two VNs sharing
a CN.

The following example clarifies Remark 3.

Example 2: Consider the H (3, 11, 2, [3, 6, 9]) parity-check
matrix in Figure 1(b). If two VNs share a CN in the second
row group (i = 1), then the regions which the two VNs belong
to must be within the set {R), R,}. Assuming that v| belongs
to Ry with width ri = 3 and that v belongs to R} with width
ro = 3, the following condition must be satisfied:

kit+ji=k+ )2
0<j=<rn-1,

mod p,
rn=<jp<ri+rn-—1

The following lemma presents the size of dominant ASs in
SCB-SC codes with column weight 3.

Lemma 3 [24]: The smallest possible ASs in the Tanner
graph of H(3, p, L, &) are (3,3) and (4,2) ASs.

Since small ASs typically contribute the most to the error
floor of LDPC codes, we focus our analysis on (3,3) and
(4, 2) ASs, as illustrated in Table II. In [24], the authors show
that the number of dominant ASs in column-weight-3 AB-SC
codes grows linearly with the coupling length L. Through our
analysis, we provide the exact number of (3, 3) and (4, 2) ASs
in the Tanner graph of H (3, p, L, &) as a function of circulant
size p, coupling length L, and the cutting vector &.

1) Analysis of (3, 3) ASs: We consider the (3,3) AS
structure shown in Figure 3. Without loss of generality, we
assume that variable nodes v; and v, share a check node in
row group i1 = 0, v2 and v3 share a check node in row group
io» = 1, and v and v3 share a check node in row group i3 = 2.
Thus, the pattern consistency constraints lead to:

ki +21i=k3+2j3, ki=ky, ko+jpp=ks+j3 @)

where ji, j2, j3, k1, k2, and k3 are in {0, 1,---, p — 1} and
all equations are modulo p. The above equations results in the

following equation, involving only the indices of the column
groups:
Jj2=2j1—j3 mod p. 3)
It was shown in [22] that by fixing the values of ji, j3, and
k1 in the above equations, the values of all other variables
can be uniquely determined. In the case of AB-LDPC codes,
Jj1 and j3 can take any pair of distinct values from 0 to p — 1.
Index k; also can take any integer value from O to p — 1. Thus,
there exist p>(p — 1) ASs of size (3,3) in column-weight-3
AB-LDPC codes. Through our analysis below, we show that
not all pairs of (ji, j3) are valid in the case of AB-SC
codes; this constraint results in a fewer number of (3, 3) ASs.
This reduction in the number of (3,3) AS in AB-SC codes
compared to AB-LDPC codes in part explains our initial obser-
vation in Example 1, where AB-SC codes showed a superior
error floor performance compared to AB-LDPC codes.
Lemma 4: The three VNs in a (3, 3) ASs span at most three
consecutive regions in column-weight-3 AB-SC codes.

Proof: Based on Remark 3 and the fact that each pair
of VNs in a (3,3) AS are connected through a satisfied CN
(Figure 3), the three VNs span at most three consecutive
regions. [ ]

Lemma 4 enables us to categorize all (3,3) ASs in

H(3, p, L, &) into four exhaustive mutually-exclusive cases’:

Case 1: All three VNs are in the same region.

Case 2: Two VNs are in the same region, the third VN is
in the next region.

Case 3: Two VNs are in the same region, the third VN is
in the previous region.

Case 4: The three VNs each belong to a different region
and the three regions are consecutive.

a) Number of ASs in Case 1: In this case, we put a
window over each region (R] to Rg 1+1) and count the number
of (3, 3) ASs within that window.

Lemma 5: The total number of (3,3) ASs in Case 1,
denoted by F\(p, L,r1,r2,r3,r4), Is:

FI(P,L,VI,”Z,’?»M): F]Rl(parl)+L'F]Rl(p,r2)
(L —1)-F"(p,ri+ra) +L-F(p,r3) + FX (p,ra),
(6)

where FlR” (p, ry) is the number of (3,3) ASs within region
R, of width ry, for a given circulant size p.

1t is trivial to show that due to the check consistency property of AB-LDPC
codes [22], it is not possible to have two VNs in the same region R, and the
third VN in region R,_7 or R, 2.
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(a) Example of Case 1. All VNs in region R{. (b) Example of Case 2. VNs 1 and 2 are in region R{ and VN 3 is in region Ré. (c) Example of

Case 3. VN 3 is in region R} and VNs I and 2 are in region R}. (d) Example of Case 4. VN 3 is in region R}, VN 2 is in region Rj and VN I is in

H /
region R3.

Proof: The total number of (3, 3) ASs in Case 1 is equal to
the summation of the counted ASs within regions R| through

, .
R3L+1, 1.e.,
3L+1

R/
Fi(p,L,ri,ra,r3,r4) = > F"(p,r}). (7
n=1

Here and elsewhere, r;, denotes the number of column groups
in R;,. One can show that

FR(pom) = Ff"(p.m), nell,--- 3L+1}. (8

By substituting each term in (7) with the LHS of (8), and by
the fact that for any k e N, 1 <k <3L 41,

{k:(k mod3)=2}—r{=r,
réL+1=r4, {k:(k mod3)=3}—r,=r3,
{k:(k mod3)=1,k#1,k#3L+1} > r,=r1+rs,

/
rlzrl’

(6) can be obtained. [ |
As an example, we consider that all the VNs are in
region R|. The problem of finding valid column groups
j1 and j3 can be graphically interpreted as the problem of
counting the integer pairs (ji, j3) within the areas Si, S
and S3 in Figure 4(a). Note that based on the values of
p and rq, areas S» and S3 can be either the empty set &
or a triangle. The number of (integer) points existing in S,
S», and S3, denoted by Ns, (r1), Ns,(p,r1), and Ns,(p,r1),
respectively, are found to be (for more details see [32]):

(r — 1)

if rq is odd,
Nsi ) =1 1,67 2)

if rq is even,

and
CropP=lf o >
— >p+2,
Ns,(p,r1) = Nss(p,r1) = 4 :
(P 71) (P.11) {0 if 2r; < p+2.
Therefore, the total number of ASs within region R; is

Ff (p,r1) = p- (Ns,(r1) + Ns,(p, 1) + Nsy(p, 1)) . (9)

Note that the multiplication by p in (9) is due to p choices
for ki. As an example, if p = 11 and r; = 8, the number of

(3,3) ASs with all their three variable nodes in region 1 is
equal to 11 x (24 + 6 + 6) = 396.

b) Number of ASs in Case 2: Here, we put a win-
dow over each two consecutive regions ({R}, R} through
Ry, Ry 1)),

Lemma 6: The total number of (3,3) ASs in Case 2 is
obtained as follows:

Fy(p, L,r1,r2,r3,14) = Ff' (p,r1,72)
+ L-Fsz(p, ra,r3) + (L — 1)-F2R3 (p,r3,r1 +r4)

+ (L= 1)-Ff (p,ri +ra,m2) + ER(p,r3, 1), (10)

where FZR” (p, rn, rn+1) denotes the number of (3, 3) ASs with
two VNs in R, of width r, and one VN in R, of width 4.
A complete discussion of the calculation for each term on
the RHS in (10) as well as for the related terms F3R 1213 and
FR|/2/3
4
in [32].
As an example, the valid areas for the pair (ji, j3) when
VNs 1 and 2 are in R; and VN 3 is in R, are shown in
Figure 4(b). Note that based on the values of p, ri, and r, the
areas S1 and S5 can be empty set &, a triangle, or a trapezoid.
¢) Number of ASs in Case 3: Similar to Case 2, we put
a window over each two consecutive regions. Here, we count
the number of (3, 3) ASs which have two VNs in the second
region and one VN in the first region.
Lemma 7: The total number of (3,3) ASs in Case 3 is
obtained as follows:

below in Lemma 7 and 8, respectively, can be found

F35(p,L,r1,r2,73,14) = F3R' (p,r1,12)
+L-F2(p,ra,r3) 4+ (L — 1)-F (p, r3, 11 +14)

+ (L= V)-Ff' (p,ri +ra,m2) + FX (p,r3,ra),  (11)

where F3R” (p, rn,rn+1) is the number of (3,3) ASs with one
VN in R, of width r, and two VNs in R,11 of width r,41.
As an example for Case 3, the areas for the pair (ji, j3),
when VN 3 is in Ry and VNs 2 and 3 are in R», are displayed
in Figure 4(c). Again, based on the values of p, ri, and rp,
areas Sg¢ and S7 can be O, triangles, or trapezoids.
d) Number of ASs in Case 4: Here, we put a window
over each three consecutive regions ({R], R}, R;} through
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(RS, _,» R, RéL+1})' For each window, we count the number
of (3,3) ASs which have one VN in each region.
Lemma 8: The total number of (3,3) ASs in Case 4 is

obtained as follows:

Fy(p, L,r1,72,73,74)
= (L — l)oF4R2(p, 12,73, 71 +74) + F4R1(p,r1,r2,r3)
+ F(poray s, ra) + (L= D)-FO (pr3, 11 +7a,72)
+(L = 1) F (pri + 14,12, 73), (12)

where F4R” (P, s n+1, rny2) is the number of (3, 3) ASs with
one VN in R, of width r,, one VN in R, 11 of width rp+1, and
one VN in R,42 of width rp4».

As an example, Figure 4(d) highlights the valid areas for
the pair (ji, j3) when VN 3isin Ry, VN 2 is in Ry, and VN 1
is in R3. Again based on the values of p, ry, rp, and r3, the
areas Sg and So can be @, triangles, or trapezoids.

For a given circulant size p, a coupling length L and a
cutting vector &, the following equation provides the exact
number of (3, 3) ASs, which is denoted by A3.3)(3, p, L, &):

4
A3, p, L, &)= Z Fuy(p, L,r1,12,73,74),
n=1
where r1 =&, =8¢, =8—-8,and ry = p— &3,
and the functions F,(p,L,r(,r2,r3,r4),n € {1,2,3,4}, is
calculated as in (6), (10), (11), and (12).

Remark 4: The AS enumeration method presented in this
section can be applied to any (a,b) AS. However, for larger
ASs, the problem is more involved as the problem of finding
the valid points for the column group indices is over higher
dimensional spaces. For larger ASs, column group indices are
not always a function of only two column groups indices.
Therefore, the areas for the valid column groups must be
described over higher dimensional spaces.

In the more general case of SCB-SC, the structure of
the underlying SCB code imposes similar constraints on the
indices of neighboring check and variable nodes [23]:

13)

o Bit consistency: The neighboring check nodes of a VN
must have distinct row group labels i1 # i>.

o Check consistency: The neighboring VNs of a check
node must have distinct column group labels j; # j».

o Pattern consistency: If two VNs corresponding to
columns (i, k1) and (j», k2) share a check node in row
group i, then:

ki + f(@)g(j) =k + f(i)g(j2) mod p.

Note that the only difference between the general SCB-
SC codes and AB-SC codes is that the pattern consistency
constraints lead to different equations on the indices of the
variable nodes which share a check node. Therefore, a similar
approach is applicable for the enumeration of ASs in SCB-SC
codes. In the case of (3, 3) ASs shown in Figure 3, the pattern
consistency constraints imply that

ki + f(0)g(j1) = ka + f(0)g(j2) mod p,
ky+ f(1D)g(j2) = ks + f(1)g(j3) mod p,

ki+ f(2)g(1) = ks + f(2)g(jz) mod p.  (14)
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Note that in order to have a linearly independent set of
equations, we assume that f and g are one-to-one functions.
The above set of equations, along with the check consistency
constraints (j1 # j2, j1 # Jj3, and ja # j3), results in a two-
dimensional area for valid choices of the pair (i, j3). Note
that in the case of SCB-SC codes, the valid two-dimensional
areas for the column group indices (ji, j3) depend on the
choice of the functions f(i) and g(j) and vary for different
choices of these functions. The following example illustrates
the enumeration of ASs for SCB-SC codes.

Example 3: In this example, we consider two SCB-SC codes
with different functions f(i) and g(j) and provide the AS
enumeration for these two codes. For code 1, we assume that
f(i)=i% and g(j) = 2j and for code 2 that f(i) = i® and
g(j)=1J.

o For case 1, by substituting f(0) =0, f(1)=1, f2Q) =4

and g(j) = 2j in the three equations in (14), the pattern
consistency constraint results in

ki =k, mod p
ko +2jp=kz+2j3 mod p
ki +8j1=k3+8j3 mod p
= 2=41-3)3

mod p. (15)

o In the case of code 2, substituting f(0) =0, f(1) =1,
f() =8 and g(j) = j in (14) results in the following
equation over column group indices ji, j» and j3.

ki =ky mod p
ko 4+ jo =k3 + jz mod p
ki +8j1 =k3z+8j3 mod p
= 2=81-Tj3

mod p. (16)

Note that the resulting equations in (15) and (16) are not
equivalent to the equation in (5). Therefore the AS counts are
different for the AB-SC code, the SCB-SC code I and the SCB-
SC code 2, which ultimately result in different optimal cutting
vectors for these three codes. Table 1V in Section VI provides
the enumeration results for the AB-SC codes, the SCB-SC
code 1 and the SCB-SC code 2, resp., with coupling length
L = 50 and circulant sizes p = 29, 67.

2) Analysis of (4, 2) ASs: In this section, we summarize
the approach to find the exact number of (4,2) ASs in
AB-SC codes with column-weight 3. Details can be found
in [32]. Analogous results can be similarly obtained for
SCB-SC codes. These results further explain the differences
in both the error profile spectrum and the performance of
SCB-LDPC and SCB-SC codes observed in Example 1.

It was shown in [22] that (in the block case) each (4,2)
AS is formed by exactly two distinct (3,3) ASs. We first
review how to count the number of (4,2) ASs in AB-LDPC
codes [22].

Lemma 9: ( [22]) The total number of (4,2) ASs in the
Tanner graph corresponding to H (3, p) is equal to w
In the case of AB-LDPC codes, as shown in Figure 5, it can
be proved that for each pair of unsatisfied check nodes in a
(3, 3) AS, there always exists a new variable node to satisfy
the two check nodes. Therefore, each (3, 3) AS in AB-LDPC
codes always leads to three (4,2) ASs. In contrast, in the



AMIRI et al.: OPTIMIZED DESIGN OF FINITE-LENGTH SCB-SC CODES

Guk) (zk2) (3ks) (aks)
G W O

Fig. 5.

The three possible cases for (4,2) ASs.

case of AB-SC codes, due to the structure of these codes,
one may not always be able to find three new variable nodes
connected to each pair of unsatisfied check nodes in a (3, 3)
AS to complete three (4,2) AS configurations.

By categorizing (4,2) ASs into three labeling cases in
Figure 5, one can show that, based on pattern consistency
conditions, each labeling imposes a different equation on the
choice of column group indices:

Case (a): j1 = ja,
Case (b): 2j3 — j1 = Jja,

Case (¢): 3j1 —2j3 = Ja, a7)

where all equations are modulo p.
In the previous subsection, the problem of counting (3, 3)
ASs was mapped into a problem of counting the number
of valid points for the pair (ji, j3) in a two dimensional
space. Here, we apply a similar approach to count the number
of (4,2) ASs. Equations in (17) further limit the areas for
valid choices of (ji, j3) pairs in the two dimensional space.
The following example clarifies the procedure for counting the
number of (4,2) ASs in AB-SC codes based on the previously
counted (3, 3) ASs (details are omitted for brevity).
Example 4: Consider (3,3) ASs with vy, vy, and v3 all in
region Ry. The valid area for the choice of the pair (j1, j3) in
this case is shown in Figure 4(a) and the count of these ASs
is expressed as FlR1 (p,r1) in (9). Based on (17), we find the
areas for the valid choices of pairs (i, j3) in the three (4,2)
AS cases discussed above, shown in Figure 6.
o Case (a): The addition of variable node v4 does not
impose any new constraints of the choice of the pair
(J1, j3) (Figure 6(a)).

o Case (b): The addition of v4 imposes that 0 < 2j3— j; <
r1 — 1 mod p, as illustrated in Figure 6(b).

o Case (c): The addition of v4 imposes that 0 < 3j1—2j3
r1 +ry — 1 mod p, which is illustrated in Figure 6(c).

In the above example, we have only considered (3,3)
ASs with all their variable nodes in region R; and we
have computed the number of the resulting (4,2) ASs.
To enumerate all (4,2) ASs, we need to consider each term in
Lemmas 5, 6, 7, and 8 one by one. A detailed discus-
sion on valid choices for pairs (ji, j3) for each term in
Lemmas 5, 6, 7, and 8 can be found in [32].

Remark 5: Note that each (3,3) AS in SCB-LDPC codes
results in three (4,2) ASs whereas each (3,3) AS in
SCB-SC codes does not necessarily result in three (4,2) ASs.
The reason is that in the SCB-SC case, the valid areas for
the pairs (ji, j3) in the cases (a), (b), and (c) above are
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TABLE III

OPTIMAL CUTTING VECTORS FOR AB-SC CODES,
VARIOUS CIRCULANT SIZES, AND L = 50

D Optimal cutting vector
67 16, 34, 52
97 22,48,74
107 24,53, 81
113 26, 56, 86
211 49,105,161
307 72,153,235

always subareas of the valid area for (3,3) ASs. This is
demonstrated in Example 4 and explains our observation in
Example 1 where, compared to SCB-LDPC codes, a smaller
percentage of errors in the error profile of AB-SC codes is due
to (4,2) ASs.

IV. OPTIMAL CUTTING VECTOR FOR AB-SC CODES
WITH COLUMN WEIGHT THREE

Based on our analysis in Section III, we provide the optimal
choice of the cutting vector for specific choices of parameters
describing AB-SC codes; analogous results are readily avail-
able for SCB-SC codes.

Definition 4 ([24]): For any given prime circulant size p
and any given coupling length L, an optimal cutting vector
corresponding to (a, b) ASs is defined as

gzka,b)(paL) = arg;ninA(a,b)(ya p’L’g)a (18)
where A p)(y, p, L, §) is the exact number of (a, b) ASs in
an SCB-SC code with a given circulant size p, a coupling
length L, and a cutting vector &.

Remark 6: The problem of finding the optimal cutting
vector is essentially mapped to finding an integer vector which
minimizes the function in (18). Compared to [24], where the
optimal cutting vector for p < 23 is found by an exhaustive
computer search, our approach is computationally less
complex and offers the optimal cutting vector for large choices
of p. As an example, the list of optimal cutting vectors for
AB-SC codes with L = 50 and p = 67,97, 107, 113, 211, 307
is provided in Table III

Note that although the enumeration approach presented in
this paper is not limited to high-rate codes, it simplifies the
optimization of the cutting vector to a large extent if the row
weight is large. As an example, for a rate ~ % code with
row weight 7 and column weight is 3, there are only (Z) =35
vector combinations for the cutting vector. However, for a rate
~ 0.95 code with row weight 67 and column weight 3, the
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Fig. 6. Areas corresponding to valid choices for j; and j3 in Example 4.

number of vector combinations for the cutting vector is (637) =
47905. As a result, the introduced approach is most beneficial
for high-rate codes as it significantly reduces the dimension
of the search space for finding the best cutting vector.

Although the choice of the cutting vector significantly
affects the performance of binary SCB-SC codes, we show
in Section V that the choice of the cutting vector is not a
critical parameter in optimizing non-binary SCB-SC codes.
In this case, the non-binary edge labels provide enough
degree of freedom to remove problematic ASs from non-binary
SCB-SC codes.

V. ABSORBING SET ANALYSIS
FOR COLUMN-WEIGHT-THREE
NON-BINARY SCB-SC CODES

It was recently shown that non-binary spatially-coupled
codes have superior iterative threshold and finite-length perfor-
mance compared to non-binary block LDPC codes [13]-[15].
Motivated by these findings, in this section we provide a
study of non-binary ASs for non-binary SCB-SC codes.
In particular, we first present the average number of (3, 3)
non-binary ASs (NB-ASs) in non-binary SCB-SC codes. We
also provide an approach to design non-binary SCB-SC codes
with a reduced number of problematic NB-ASs.

The following lemma provides the average number of (3, 3)
NB-ASs in non-binary SCB-SC codes with column-weight 3.

Lemma 10: Consider an SCB-SC code over G F(q), where
q is a power of a prime number, with circulant size p,
coupling length L, cutting vector &, and random assignment of
edge labels. The number of (3,3) NB-ASs, averaged over all
possible edge label assignments, denoted by 233,3)(3, p,L,§&),
is

4

— 1
Aq3,3 (3’p’L’E)= Fn(P,L,rl,rZar%M)a
0 (@-1D

n=1

19)

where rp =&, =38 —¢, 3 =§0—&, andrs = p — &,
and the functions F,(p, L,ry,r2,r3,rs),n = {1,2,3,4}, are
calculated based on (6), (10), (11), and (12).

Proof: Consider the structure of a (3,3) AS in Figure 3
with non-binary edge labels wi, ws, ..., ws. There exist

(g — 1)° unique choices for a set of six edge labels. Based
on the weight condition of NB-ASs in (3), the edge labels in
a NB-AS satisfy wjw3zws = wawswe mod g. By choosing
w; through ws independently from G F(g)\{0}, the edge
label w¢ can be uniquely determined. Thus, there exist
(g — 1)° choices for edge labels which result in ASs over
GF(q). As a result, the average number of (3,3) non-

. Py _1)5
binary ASs is A(3 33, p, L,§) = (=35 A6.5(, p, L, §) =

T et Faps Lo risra, s, ra). u

The above lemma illustrates that on average, a ratio of ﬁ
of all binary (3, 3) ASs in the unlabeled Tanner graph of a non-
binary SCB-SC code result in problematic non-binary ASs.
As an example, consider ¢ = 3. Then, on average, 50% of
the binary ASs in the unlabeled Tanner graph do not result in
problematic substructures in the Tanner graph after a random
assignment of edge labels over G F(3). This observation in part
explains the better performance of non-binary SCB-SC codes
in error floor region compared to their binary counterparts.

In our previous work [30] we showed that non-binary edge
labels provide a new degree of freedom in the design of non-
binary block LDPC codes. By a systematic manipulation of the
edge labels, our code design algorithm significantly decreases
the number of problematic elementary NB-ASs in the Tanner
graph of non-binary block LDPC codes. A similar approach
can be exploited in the case of non-binary SCB-SC codes
to design codes with superior error floor performance. For a
given non-binary SCB-SC code, our proposed approach first
identifies a list of problematic elementary ASs for the given
code. Then, it alters the label of at least one edge in each
problematic elementary NB-AS in the Tanner graph such that
the weight condition of elementary NB-AS is violated for each
targeted AS. This code design algorithm can be summarized
as follows.

1) Based on the parameters of the code (column weight
and girth), we choose a set of problematic elementary
ASs which we want to eliminate.

2) For each targeted elementary AS we find all binary
elementary ASs of the same size in the unlabeled
Tanner graph. These unlabeled elementary ASs are the
subgraphs which satisfy the topological conditions of
elementary NB-AS.
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TABLE IV
(3,3) AS COUNT, SCB-SC CODES, L = 50, ¢ = 2, CODE 1 WITH f (i) = i2 AND g(j) = 2j AND CODE 2 WITH f(i) = i> AND g(j) = j

p Optimal cutting vector Count for optimal Random cutting vector Count for Random
AB-SC 29 52*3’3)(29, 50) = [6, 14, 21] 521913 £(3,3)(29,50) = [4,7,13] 635651
67 5’(‘3 3)(67, 50) = [15, 33, 51] 6723852 €(3,3)(67,50) = [10, 18, 56] 7261527
SCB-SC Code 1 29 !;‘Zi,) 3)(29, 50) = [5, 14, 25] 494421 £(3,3)(29,50) = [4,7,13] 657198
67 52‘3 3)(67, 50) = [12,33,57] 6394949 £(3,3) (67,50) = [10, 18, 56] 7249467
SCB-SC Code 2 29 §z3}3)(29, 50) = [5, 14, 23] 493609 £(3,3)(29,50) = [4,7,13] 652906
67 £f3’3)(67, 50) = [13, 34, 55] 6408081 £(3,3) (67,50) = [10, 18, 56] 7219652

3) For each candidate subgraph found in Step 2, we check
if the weights conditions of elementary NB-ASs are sat-
isfied or not. Note that the weight condition is different
for field sizes of powers of two and for G F(3) (as shown
in Lemma 1).

4) If the weight condition is also satisfied for a candi-
date subgraph, it is a problematic elementary NB-AS.
By changing at least one edge label in the subgraph, we
attempt to violate the edge label condition of ASs for at
least one cycle in that subgraph.

5) We continue this process until all targeted elementary
ASs are removed or no more elementary AS can be
removed from the Tanner graph of the code.

Our results in Section VI show that our optimized NB-SCB-SC
codes outperform unoptimized SCB-SC codes by more than
one order of magnitude for the AWGN channel.

Remark 7: In contrast to binary SCB-SC codes (see
Section III), the choice of the cutting vector in optimized non-
binary SCB-SC codes is not as critical: For a given underlying
SCB-LDPC code, different choices of the cutting vector result
in (‘;) different binary SCB-SC codes. For the given underlying
binary SCB-LDPC code, a given cutting vector, and field
size q, there are (q — 1))’1’2 different non-binary SCB-SC codes
(obtained by different edge label selections). Since generally
(g —1)""> ()’}’) this roughly verifies the significantly larger
degrees of freedom offered by the choice of the edge labels
compared to the ones offered by the choice of the cutting
vector.

V1. EXPERIMENTAL RESULTS

In this section, we present the simulation results for our
designed binary and non-binary AB-SC codes.® Note that a
sliding window decoder based on the soft-xor algorithm is
implemented to capture these simulation results.

Figure 7 displays the performance of high-rate column-
weight-3 AB-SC codes (Figure 7(a)) and SCB-SC codes dis-
cussed in Example 3 (Figure 7(b)), constructed using different
cutting vectors. The performance curves shown in this figure
are for column-weight-3 codes with constraint length v = 841,
p = 29, L = 50, and design rate R; = 0.89, constructed
using cutting vectors §>(k3’3)(29, 50) (optimal for (3,3) ASs)

8Due to limited computation resources, the simulation results for AB-SC
codes presented in this paper are limited to constraint lengths up to
4489 variables nodes. Note that the AS enumeration method and the per-
formance improvement approach presented in this paper are not limited to
any specific constraint length and can be applied to longer codes as well.
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Fig. 7. Performance comparison for binary SC codes constructed by various
cutting vectors: (a) Column-weight-3 AB-SC codes and (b) for column-
weight-3 SCB-SC codes, code 1 with f(i) = i2, g(j) = 2j and code 2
with f (i) =%, g()) = J.

and a randomly selected cutting vector & = [4, 7, 13]. It can
be observed that the optimal cutting vector for (3,3) ASs
£’(k3,3)(29, 50) improves the performance of the AB-SC and
SCB-SC codes in Figure 7 by about one order of magnitude
in the error floor region, compared to codes with the random
cutting vector.

Table IV compares the number of (3, 3) binary ASs for the
codes shown in Figure 7. Table IV also includes the number
of (3,3) ASs in AB-SC, SCB-SC code 1 and SCB-SC code 2
when cutting vectors & = [4,7,13] for p = 29 and & =
[10, 18,56] for p = 67 are selected at random. It can be
observed that the optimal cutting vectors reduce the number
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Fig. 8. Performance results for AB-SC codes with p =7, y =3, L =500,
and cutting vectors [1,2, 6] and [2, 4, 6].
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Fig. 9. Performance comparison for optimized binary AB-SC and regular
binary SC codes [1].

of (3, 3) ASs by more than 12% compared to number of ASs
for the randomly selected cutting vectors. This in part explains
the superior error floor performance of the codes with optimal
cutting vectors.

Figure 8 presents simulation results for binary AB-SC codes
with circulant size p 7, column weight y = 3, rate
R ~ 0.57, coupling length L = 500, and cutting vectors
f(*3,3) = [2,4,6] (optimal) and ¢ = [, 2, 6] (random). The
code with an optimal cutting vector shows a performance
improvement of approximately one order of magnitude com-
pared to the code with a random cutting vector. This result
illustrates that our optimization technique is also effective for
the design of low-rate AB-SC codes.

Figure 9 provides performance results for randomly-
generated regular SC codes [1] with an underlying 90 x 840
regular code, column weight 3, rate &~ 0.89, and coupling
length L = 50. This figure also includes the performance
results for AB-SC codes with an optimal cutting vector of
[6, 14, 21], constraint length v = 841, p =29, L = 50, and
design rate R = 0.89. These results show that our optimized
AB-SC code have significantly (two orders of magnitude) bet-
ter error floor performance compared to unoptimized regular
SC codes.
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Fig. 10. (a) Performance comparison for optimized and unoptimized
non-binary AB-SC codes over G F(3) and GF(4) with p = 43, column-
weight 3, design rate R = 0.929, and cutting vectors & = [10, 22, 34] and
&, = 15,29, 33], where & is optimized and &, selected randomly, respec-
tively. The binary AB-SC code has constraint length v = 3721 and design rate
R = 0.95, and is constructed using an optimal cutting vector for (3, 3) ASs.
(b) Performance comparison for optimized non-binary AB-SC and non-binary
quasi-cyclic SC codes in [21].

For the binary SCB-SC codes, our code design is limited
to the choice of the cutting vector, once the underlying block
code is specified. In the non-binary case, the choice of the edge
labels offers significantly more degrees of freedom that can
be exploited in an optimized code design. In fact, our results
show that the cutting vector choice is not a critical parameter in
the design of non-binary SCB-SC codes since we can remove
all non-binary ASs of interest only by manipulating the edge
labels.

Figure 10(a) shows the simulation results for non-
binary AB-SC codes over GF(4) with constraint length
v = 3698 bits. To construct the non-binary codes, we first form
binary AB-SC parity-check matrices with p = 43 and column-
weight 3 using the optimal cutting vector (§; = [10, 22, 34])
and a randomly chosen cutting vector (§, = [5, 29, 33]). Then,
the unoptimized non-binary AB-SC codes are constructed by
randomly assigning non-binary edge labels on top of the
unlabeled AB-SC Tanner graphs. The optimized codes are
constructed by manipulating the edge labels (based on the
algorithm addressed in Section V) such that (3, 3), (4,2),
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and (4, 4) non-binary ASs are completely removed from the
Tanner graphs of the original codes. Figure 10 shows that our
optimized codes have a performance improvement of more
than one order of magnitude compared to the original codes.
Furthermore, we observe that the performance of the optimized
code with a randomly chosen cutting vector is very close
to the optimized code with the optimal cutting vector. This
observation suggests that the choice of the cutting vector
does not significantly affect the performance of our designed
non-binary AB-SC codes. The non-binary edge labels offer
enough degrees of freedom in codes design such that all
problematic small NB-AS can be removed from the designed
codes, regardless of the choice of the cutting vector. In the
same figure, it is shown that the unoptimized AB-SC code over
GF(3) and GF(4) has better frame error rate (FER) perfor-
mances compared to the binary AB-SC code. An interesting
observation is the improved FER performance of the optimized
AB-SC code over G F (3) compared to the unoptimized AB-SC
code over G F (4), which in combination with its lower decoder
complexity, can make the optimized AB-SC code over G F(3)
a very attractive candidate for practical implementation. The
performance of a binary AB-SC code with v = 3721 and
p = 61 constructed using an optimal cutting vector for (3, 3)
AS ’;”("3’3)(61, 50) = [14,29, 46] is also plotted in Figure 10.
It can be observed that although the constraint length of the
binary AB-SC code and non-binary AB-SC codes are similar,
the non-binary codes have superior performance.

Figure 10(b) includes performance comparison for non-
binary quasi-cyclic spatially-coupled (NB-QC-SC) code
in [21] and optimized non-binary AB-SC codes over G F(4)
introduced in this paper. The NB-QC-SC code is constructed
based on the “Replicate-and-Mask™ approach in [21] with
coupling length L = 50, column weight 3, constraint length
3658 bits, and circulant size p = 31 (i.e., the submatrix-
constrained base matrix B is over G F(2°)). Note that the mask
matrix provided in [36, eq. (6)] is used to construct the NB-
QC-SC code as it guarantees a minimum girth of 6 (based
on [21, Th. 2]). The NB-AB-SC code is constructed with
comparable constraint length v = 3698 bits, circulant size 43,
and column weight 3. These results show that our designed
non-binary codes have superior error floor performance (~ one
order of magnitude) compared to state-of-the-art NB-QC-SC
codes.

VII. CONCLUSION

In this paper, we presented a novel approach to enumerate
problematic ASs in SCB-SC codes for transmission over the
AWGN channel. In particular, we focused on binary column-
weight 3 with a syndrome former memory of one and posed
the AS enumeration problem as a problem of counting the
number of valid integer points within a two-dimensional area.
Using this approach, the exact number of smallest ASs was
presented as a function of the code parameters: circulant
size, coupling length, and the cutting vector. The resulting
closed-form expression was then employed to find the optimal
cutting vector, which significantly reduces the number of
ASs for any choice of the circulant size in binary SCB-
SC codes. For non-binary AB-SC codes we showed that,
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based on an analytical expression for the average number
of (3,3) non-binary ASs, on average only a ratio of ﬁ of
binary ASs in the unlabeled Tanner graph result in problematic

non-binary ASs. This result verifies the superior error floor
performance of non-binary SC codes compared to their binary
counterparts. Finally, we proposed an optimization algorithm
which is able to improve the error-floor performance in the
non-binary case even further via an iterative manipulation of
edge labels in the Tanner graph of the code. We note that the
enumeration and characterization of ASs for SCB-SC codes
with a syndrome former memory of m > 1 will be the subject
of future studies. Another interesting future direction includes
an error floor analysis and the characterization of ASs for other
structured and unstructured spatially-coupled codes.
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