
Distributed and Private Coded Matrix Computation
with Flexible Communication Load

Malihe Aliasgari∗, Osvaldo Simeone †, and Jörg Kliewer∗
∗Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, U.S.A.

†King’s College London, Department of Informatics, London, U.K.

Abstract—Tensor operations, such as matrix multiplication, are
central to large-scale machine learning applications. These oper-
ations can be carried out on a distributed computing platform
with a master server at the user side and multiple workers
in the cloud operating in parallel. For distributed platforms,
it has been recently shown that coding over the input data
matrices can reduce the computational delay, yielding a trade-
off between recovery threshold and communication load. In this
work, we impose an additional security constraint on the data
matrices and assume that workers can collude to eavesdrop on the
content of these data matrices. Specifically, we introduce a novel
class of secure codes, referred to as secure generalized PolyDot
codes, that generalizes previously published non-secure versions
of these codes for matrix multiplication. These codes extend the
state-of-the-art by allowing a flexible trade-off between recovery
threshold and communication load for a fixed maximum number
of colluding workers.

Index Terms—Coded distributed computation, distributed
learning, secret sharing, information theoretic security.

I. INTRODUCTION

At the core of many signal processing and machine learning
applications are tensor operations such as matrix multiplica-
tions [1]. In the presence of practically sized data sets, such op-
erations are typically carried out using distributed computing
platforms with a master server and multiple workers that can
operate in parallel over distinct parts of the data set. The master
server plays the role of the parameter server, distributing data
to the workers and periodically reconciling their internal state.
Typically, workers are commercial off-the-shelf servers that
are characterized by possible temporary failures and delays.
While current distributed computing platforms conventionally
handle straggling servers by means of replication of computing
tasks, recent work has shown that encoding the input data
can help reduce the computation latency, which depends on
the number of tolerated stragglers by orders of magnitude,
e.g., [2]. More generally, coding is able to control the trade-
off between computational delay and communication load
between workers and master server [3]–[6]. Furthermore,
stochastic coding can help keeping both input and output
data secure from eavesdropping and colluding workers (see,
e.g., [7]–[10]). This paper contributes to this line of work by
investigating the trade-off between computational delay and
communication load as a function of the privacy level.

As illustrated in Fig. 1, we focus on the basic problem of
computing the matrix multiplication C = AB in a distributed

This work was supported in part by the European Research Council (ERC)
under the European Union Horizon 2020 research and innovative programme
(grant agreement No 725731) and by U.S. NSF grants CNS-1526547, CCF-
1525629.

computing system of P workers that can process each only
a fraction 1/m and 1/n of matrices A and B, respectively.
Three performance criteria are of interest: (i) the recovery
threshold PR, that is, the number of workers that need to
complete their task before the master server can recover
the product C; (ii) the communication load CL between
workers and master server; and (iii) the maximum number
PC of colluding servers that ensures perfect secrecy for both
data matrices A and B. In order to put our contribution in
perspective, we briefly review next prior related work.

Consider first solutions that provide no security guarantees,
i.e., PC = 0. As a direct extension of [3], a first approach is to
use product codes that apply separate MDS codes to encode
the two matrices [11]. The recovery threshold of this scheme
is improved by [4] which introduces so called polynomial
codes. This construction is proved to be optimal under the
assumption that minimal communication is allowed between
workers and master server. In [12] so called MatDot codes
are introduced, resulting in a lower recovery threshold at the
expense of a larger communication load. The construction
in [13] bridges the gap between polynomial and MatDot
codes and presents so called PolyDot codes, yielding a trade-
off between recovery threshold and communication load. An
extension of this scheme in [14], [15], termed Generalized
PolyDot (GPD) codes improves on the recovery threshold of
PolyDot codes.

Much less work has been done in the literature if security
constraints are factored in, i.e., if PC 6= 0. In [7] Lagrange
coding is presented which achieves the minimum recovery
threshold for multilinear functions by generalizing MatDot
codes. In [8]–[10] a reduction of the communication load is
addressed by extending polynomial codes. While these works
focus on either minimizing recovery threshold or commu-
nication load, the trade-off between these two fundamental
quantities has not been addressed in the open literature to the
best of our knowledge. In this paper, we intend to fill this void
and present a novel class of secure computation codes, referred
to as secure GPD (SGPD) codes, that generalize GPD codes
at all communication load levels, yielding a new achievable
trade-off between recovery threshold and communication load
as a function of the desired privacy level.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a distributed computing
system with a master server and P workers. The master
server is interested in computing securely the matrix product
C = AB of two data matrices A and B with dimensions

1092978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

Fig. 1: The master server encodes the input matrices A and B and random
matrices R and R′, resp., to define the computational tasks of the workers.
The workers may fail or straggle, and they are honest but curious, with
colluding subsets of workers of size of at most PC . The master server must
be able to decode the product AB from the output of a subset of PR workers,
which defines the recovery threshold.

T × S and S × D, respectively. The matrices have entries
from a sufficient large finite field F, with |F| > P . Both
matrices A and B contain confidential data. The P workers
receive information on matrices A and B from the master;
they process this information and respond to the master, which
finally recovers the product AB with minimal computational
effort. Each worker can receive and process only TS/m and
SD/n symbols, resp., for some integers m and n. We assume
that the workers are honest but curious, and impose the secrecy
constraint that, even if up to PC < P workers collude, the
workers cannot obtain any information about both matrices A
and B based on the data received from the master server.

To keep the data secure and to leverage possible computa-
tional redundancy at the workers (namely, if P/m > 1 and/or
P/n > 1), the master server sends encoded versions of the
input matrices to the workers. Due to communication and
storage constraints the encoded matrices Ap = fp(A,R) with
fp : FTS/m × FTS/m → FTS/m and Bp = gp(B,R′) with
gp : FSD/n×FSD/n → FSD/n, to be sent to each p-th worker,
p = 1, . . . , P , have TS/m and SD/n entries, resp., for some
encoding functions fp(·) and gp(·). The security constraint
imposes the condition

I(AP ,BP ;A,B) = 0, (1)

where AP = {Ap}p∈P and BP = {Bp}p∈P for all subsets
of P ⊂ [1, P] of PC workers, where the random matrices R
and R′ serve as random keys in order to meet the security
constraint (1).

Each worker p computes the product Cp = ApBp of the
encoded sub-matrices Ap and Bp. The master server collects
a subset of PR ≤ P outputs from the workers as defined by
the subset CPR

= {Cp}p∈PR
with |PR| = PR. It then applies

a decoding function h (CPR
), h : FTD/td × · · · × FTD/td︸ ︷︷ ︸

PR times

→

FTD, where correct decoding translates into the condition

H(AB|CPR
) = 0. (2)

For given storage parameters m and n, the performance of
a coding and decoding scheme is measured by the triple
(PC , PR, CL), where PC is the maximum number of colluding
workers; PR is the recovery threshold, i.e., the minimum
number of workers whose outputs are used by the master to
recover the product AB, and CL is the communication load
defined as CL =

∑
p∈PR

|Cp|. Here, |Cp| is the dimension

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Fig. 2: Construction of the time sequences a and b used to define a GPD
code. The zero dashed line in b indicates all-zero block sequences. Each solid
arrows in a and b shows a distinct row of A and a column of B, respectively.

of the product matrix Cp computed by worker p. Note that
(2) requires the inequality min{PR/m,PR/n} ≥ 1 or PR ≥
PR,min

∆
= max{m,n}, which is hence a lower bound for the

minimum recovery threshold. Furthermore, the communication
load is lower bounded by CL ≥ CL,min

∆
= TD, which is the

size of the product C = AB.

A. Generalized PolyDot Code without Security Constraint

In this subsection, we review GPD codes proposed [12]
and subsequently improved in [14], [15]. This construction
achieves the best currently known trade-off between recovery
threshold PR and communication load CL for PC = 0.
The equivalent entangled polynomial codes of [15] have the
same properties in terms of (PR, PC). The GPD codes for
PC = 0 also achieve the optimal recovery threshold among
all linear coding strategies in the cases of t = 1 or d = 1,
they also minimize the recovery threshold for the minimum
communication load CL,min [4], [15].

The GPD code splits the data matrices A and B both
horizontally and vertically as

A =

 A1,1 . . . A1,s

...
. . .

...
At,1 . . . At,s

 , B =

 B1,1 . . . B1,d

...
. . .

...
Bs,1 . . . Bs,d

 .

(3)
The parameters s, t, and d can be set arbitrarily under the
constraints m = ts and n = sd. Note that polynomial
codes use s = 1, while MatDot codes have t = d = 1
[13]. All the sub-matrices Aij and Bkl have dimensions
T/t × S/s and S/s × D/d, respectively. The GPD code
computes each block (i, j) of the product C = AB, namely
Ci,j =

∑s
k=1 Ai,kBk,j , for i = 1, . . . , t and j = 1, . . . , d,

in a distributed fashion. This is done by means of polynomial
encoding and polynomial interpolation. As we review next, the
computation of block Ci,j can be interpreted as the evaluation
of the middle sample of the convolution ci,j = ai ∗ bj

between the block sequences ai = [Ai,1, . . . ,Ai,s] and
bj = [Bs,j , . . . ,B1,j]. In fact, the s-th sample of the block
sequence ci,j equals Ci,j , i.e., [ci,j]s = Ci,j . The computation
is carried out distributively in the frequency domain by using
z-transforms with different workers being assigned distinct
samples in the frequency domain.

To elaborate, define the block sequence a obtained by
concatenating the block sequences ai as a = {a1,a2, . . . ,at}.
Pictorially, a sequence a is obtained from the matrix A by

1093

reading the blocks in the left-to-right top-to-bottom order,
as seen in Fig. 2. We also introduce the longer time block
sequence b as b = {b1,0,b2,0, . . . ,bd} with 0 being a block
sequence of s(t∗−1) all-zero block matrices with dimensions
S/s×D/d. The sequence b can be obtained from matrix B by
following the bottom-to-top left-to-right order shown in Fig. 2
and by adding the all-zero block sequences between any two
columns of B.

In the frequency domain, the z-transforms of sequences a
and b are obtained as

Fa(z) =

ts−1∑
r=0

[a]r+1z
r =

t∑
i=1

s∑
j=1

Ai,jz
s(i−1)+j−1, (4)

Fb(z) =

s−1+ts(d−1)∑
r=0

[b]r+1z
r =

s∑
k=1

d∑
l=1

Bk,lz
s−k+ts(l−1),

(5)

respectively. The master server evaluates the polynomials
Fa(z) and Fb(z) in P non-zero distinct points z1, . . . zP ∈
F and sends the corresponding linearly encoded matrices
Ap = Fa(zp) and Bp = Fb(zp) to worker p. The encoding
functions are hence given by the polynomial evaluations (4)
and (5), for z1, . . . , zp. Worker p computes the multiplication
Fa(zp)Fb(zp) and sends it to the master server. The master
server computes the inverse z-transform for the received
products {ApBp}p∈PR

= {Fa(zp)Fb(zp)}p∈PR
, obtaining

the linear convolution a ∗ b. From a ∗ b, we can see that
the master server is able to compute all the desired blocks
Ci,j by reading the middle samples of the convolutions
ci,j = ai ∗ bj from samples of the sequence c = a ∗ b
in the order [c]s−1 = C1,1, [c]2s−1 = C2,1, . . . , [c]ts−1 =
Ct,1, [c]s−1+t∗s = C1,2, . . . , [c]ts−1+t∗s = Ct,2, . . ., and
so on. Note that, in particular, the zero block subsequences
added to sequence b ensure that no interference from the
other convolutions ci′,j′ affect the middle (s-th) sample of
a convolution ci,j with i′ 6= i and j′ 6= j. To carry out the
inverse transform, the master server needs to collect as many
values Fa(zp)Fb(zp) as there are samples of the sequence
a ∗ b, yielding the recovery threshold

PR = tsd + s− 1. (6)

Equivalently, in terms of the underlying polynomial interpreta-
tion, the master server needs to collect a number of evaluations
of the polynomial Fa(z)Fb(z), being equal to the degree of
Fa(z)Fb(z) plus one. This computation is of complexity order
O(TDPR log2(PR)) [13]. Furthermore, the communication
load is given as

CL = PR
TD

td
, (7)

where TD/(td) is the size of each matrix Fa(z)Fb(z).

III. SECURE POLYDOT CODES

In this section, we propose a novel extension of the GPD
code that is able to ensure the secrecy constraint for any
PC < P . We also derive the corresponding achievable set
of triples (PC , PR, CL). As we will see, the projection of this
set onto the plane defined by the condition PC = 0 includes

the set of pairs (PR, CL) in (6) and (7) obtained by the GPD
code [14]. The proposed SGPD code augments matrices A
and B by adding PC random block matrices to A and B, in a
manner similar to prior works (see, e.g., [7], [9], [10]), yielding
augmented matrices A∗ and B∗. However, as we will see, a
direct application of the GPD construction to these matrices
is suboptimal.

Therefore, we propose a novel way to construct sequences
a∗ and b∗ from matrices A∗ and B∗ that enables the definition
of a more efficient code by means of the z-transform approach
discussed in the previous section. Based on the discussion in
the previous section, this goal can be realized by decreasing
the length of sequence c∗ = a∗ ∗ b∗, which can in turn be
ensured by reducing the length of the sequence b∗ for a given
length of sequence a∗. We accomplish this objective by (i)
adaptively appending rows or columns with random elements
to matrix A and correspondingly columns or rows to B, which
can reduce the recovery threshold; and (ii) modifying the zero
padding procedure (see Fig. 2) for the construction of sequence
b∗. In order to account for (i), we separately consider the two
cases s < t and s ≥ t.

A. Secure Generalized PolyDot Code: The s < t Case

When s < t, we augment input matrices A and B by adding

∆PC

∆
=

⌈
PC

s

⌉
, (8)

random row and column blocks to matrices A and B, respec-
tively. Accordingly, the t∗ × s augmented block matrix A∗

with t∗ = t + ∆PC
, is obtained as

A∗ =

[
A
R

]
=



A1,1 . . . A1,s

...
. . .

...
At,1 . . . At,s

R1,1 . . . R1,s

...
. . .

...
R∆PC,1

. . . R∆PC,s


, (9)

while the s × d∗ augmented matrix B∗ = [B R′] with d∗ =
d + ∆PC

is obtained as

B∗ =

 B1,1 . . . B1,d R′s,1 . . . R′s,∆PC

...
. . .

...
...

. . .
...

Bs,1 . . . Bs,d R′1,1 . . . R′1,∆PC

 . (10)

In (9) and (10), if s divides PC , all block matrices Rij ∈
FT

t ×
S
s and R′ij ∈ FS

s×
D
d are generated with i.i.d. uniform

random elements in F. Otherwise, if ∆PC
− PC/s > 0, the

last s∆PC
− PC matrices in (9) with right-to-left ordering in

the last row of Rij and in (10) with top-to-bottom ordering
in the last column of R′ij , resp., are all-zero block matrices.

In the SGPD construction the block sequence a∗ is de-
fined in the same way as in the conventional GPD, yield-
ing a∗ = {a1, . . . ,at, r1, . . . , r∆PC

}, where ri is the i-
th row of the block matrix R, i = 1, . . . ,∆PC

. We also
define the time block sequence b∗ = {b, r′} as b∗ =
{b1,0,b2,0, . . . ,bd,0, r

′
1, r
′
2, . . . , r

′
∆PC
}, where 0 is block

1094

sequences of s(t∗ − 1) all-zero block matrices, resp., with
dimensions S/s × D/d, while r′j is the j-th column of the
random matrix R′. The key novel idea of this construction
is that no zero matrices are introduced between columns of
matrix R′. As shown in Theorem 1 below, this construction
allows the master server to recover all the desired submatrices
Ci,j for i = 1, . . . , t and j = 1, . . . , d from the middle samples
of the convolutions ci,j = ai∗bj (see Fig. 3 for an illustration).

Theorem 1. For a given security level PC < P , the proposed
SGPD code achieves the recovery threshold PRtsd + s− 1, if PC = 0,

t∗s(d + 1) + s∆PC − 1, if PC ≥ 1 and ∆PC = PC
s
,

t∗s(d + 1) − s∆PC + 2PC − 1, if PC ≥ 1 and ∆PC > PC
s
,

(11)
and the communication load in (7), where t∗ = t + ∆PC

and
d∗ = d + ∆PC

for any integer values t, s, and d such that
s < t, m = ts, and n = sd.

The proof is given in Appendix A.

Remark 1. For PC ≥ 1 a direct application of the GPD
construction in Fig. 2 yields a larger recovery threshold
compared to (11) as

PR =

{
t∗sd∗ + s− 1, if ∆PC

= PC

s ,

dst∗ + s− 1− 2(s∆PC
− PC), if ∆PC

> PC

s .

B. Secure Generalized PolyDot Code: The s ≥ t Case

When s ≥ t, we augment input matrices A and B by adding

∆′PC

∆
=

⌈
PC

min {t, d}

⌉
. (12)

column and row blocks to matrices A and B. This can be seen
to yield a smaller recovery threshold. Accordingly, the t× s∗

augmented block matrix A∗ = [A R] with s∗ = s + ∆′PC
, is

obtained as

A∗ =

 A1,1 . . . A1,s R1,1 . . . R1,∆′PC

...
. . .

...
...

. . .
...

At,1 . . . At,s Rt,1 . . . Rt,∆′PC

 , (13)

while the s∗ × d augmented block matrix B∗ is defined as

B∗ =

[
R′

B

]
=



R′∆′PC,1
. . . R′∆′PC,d

...
. . .

...
R′1,1 . . . R′1,d
B1,1 . . . B1,d

...
. . .

...
Bs,1 . . . Bs,d


. (14)

As for (13) and (14), if ∆′PC
− PC/min{t, d} > 0, the last

s∆′PC
− PC block matrices in (13) with bottom-to-top right-

to-left ordering in R and in (14) with right-to-left top-to-
bottom ordering in R′, resp., are all-zero block matrices. The
construction of sequences a∗ and b∗ is analogous to the GPD
in non-secure case. In particular, the time block sequence a∗ is
a∗ = {a1, r1,a2, r2, . . . ,at, rt}, whereas the block sequence

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25

Fig. 3: Illustration of correct recovery threshold for t = 3, s = 2, d = 2,
and PC = 2. Dashed blue stems with filled markers represent the overall
convolution c∗. Individual convolutions ci,j are shown in different colors
with square markers. Contributions from one or both random matrices are
shown as red crosses. The desired submatrices Ci,j are seen to equal the
corresponding samples from the sequence c∗, associated with the center points
of the individual convolutions.

b∗ is defined as b∗ = {b1, r
′
1,0,b2, r

′
2,0, . . . ,bd, r

′
d}, Here,

0 is a block sequence of (t−1)s∗ all-zero block matrices with
dimensions S/s×D/d.

Theorem 2. For a given security level PC < P , the proposed
SGPD code achieves the recovery threshold

PR =

{
s∗(t2 + 1)− 3, if ∆′PC

> PC

s and t = d

tds∗ + s∗ − 1, otherwise,
(15)

and the communication load in (7), where s∗ = s + ∆′PC
for

any integer values t, s, and d such that s ≥ t, m = ts, and
n = sd.

The proof is omitted due to space reasons.

Example 1. We now provide some numerical results of the
proposed SGPD construction. We set P = 3000 and m =
n = 36. The trade-off between communication load CL and
recovery threshold PR for both non-secure conventional GPD
codes (PC = 0) and SGPD codes with PC = 11 and PC = 29
is illustrated in Fig. 4. The figure quantifies the loss in terms
of achievable pairs (PR, CL) that is caused by the security
constraint.

APPENDIX A
PROOF OF THEOREM 1

The z-transforms of a∗ and b∗ are given as

Fa∗(z) =

t∑
i=1

s∑
j=1

A∗i,jz
s(i−1)+(j−1)

︸ ︷︷ ︸
∆
= F1(z)

+

t∗∑
i=t+1

s∑
j=1

A∗i,jz
s(i−1)+j−1

︸ ︷︷ ︸
∆
= F2(z)

,

(16)

Fb∗(z)=

s∑
k=1

d∑
l=1

B∗k,lz
s−k+t∗s(l−1)

︸ ︷︷ ︸
∆
= F3(z)

+

s∑
k=1

d∗∑
l=d+1

B∗k,lz
t∗sd+s(l−d)−k

︸ ︷︷ ︸
∆
= F4(z)

.

(17)

To reconstruct all blocks Ci,j of matrix C = AB, the
master server carries out polynomial interpolation on the poly-
nomial Fa∗(z)Fb∗(z), or equivalently computes the inverse z-
transform, upon receiving a number of multiplication results

1095

equal to at least the length of the sequence c∗ = a∗ ∗ b∗. As
we outline next, the (i, l) block Ci,l =

∑s
r=1 Ai,rBr,l, for all

i = 1, . . . , t and l = 1, . . . , d, of matrix C = AB can be seen
equal to the (si−1 + (l−1)t∗s)-th sample of the convolution
c∗ = a∗ ∗ b∗ (see Fig. 3).

Note that, by the properties of GPD codes, matrix Ci,l is the
coefficient of the monomial zsi−1+(l−1)t∗s in F1(z)F3(z). We
now need to show that no other contribution to this term arises
from the products F1(z)F4(z), F2(z)F3(z), and F2(z)F4(z).
The terms in the product F1(z)F4(z) have exponents (t∗sd+
s(i−1)+s(l−d)−1), for i = 1, . . . , t and l = d+1, . . . , d∗,
which do not include the desired values (si−1+(l−1)t∗s) for
i = 1, . . . , t and l = 1, . . . , d. A similar discussion applies to
the product F2(z)F3(z), whose exponents are (s(i+t∗l−t∗)−
1), for i = t + 1, . . . , t∗ and l = 1, . . . , d, and F2(z)F4(z),
whose exponents are (t∗sd + s(i − 1) + s(l − d) − 1), for
i = t + 1, . . . , t∗ and l = d + 1, . . . , d∗.

In order to recover the convolution c∗, the master server
needs to collect a number of values of the product Fa(z)Fb(z)
equal to the length of the sequence c∗, which can be computed
as the degree deg (Fa(z)Fb(z)) + 1, with deg(Fa(z)Fb(z)){

t∗s(d + 1) + s∆PC
− 1, if ∆PC

= PC

s ,

dst∗ − s∆PC
+ 2PC + t− 2, if ∆PC

> PC

s ,
(18)

which for PC ≥ 1 implies the recovery threshold PR in (11).
The communication load CL in (7) follows from the fact that
there are TD/(td) entries in Fa∗(zp)Fb∗(zp), p ∈ [1, PR].

The security constraint (1) can be proved in a manner
similar to [8] by the following steps:

I(A,B;AP ,BP) = H(AP ,BP)−H(AP ,BP |A,B)

(a)
=H(AP ,BP)−H(AP ,BP |A,B)

+ H(AP ,BP |A,B,R1, . . . ,RPC
,R′1, . . . ,R

′
PC

)

(b)
=H(AP ,BP)−H(R1, . . . ,RPC

,R′1, . . . ,R
′
PC

)

(c)

≤
PC∑
p=1

H(Ap) +

PC∑
p=1

H(Bp)− PC
TS

m
log |F| − PC

SD

n
log |F|

=PC
TS

m
log |F|+ PC

SD

n
log |F| − PC

TS

m
log |F|

− PC
SD

n
log |F| = 0

where (a) follows from the definition of encoding functions,
since AP is a deterministic function of A and Rp and BP
is a deterministic function of B and R′p, resp., for all p =
1, . . . , PC ; (b) follows from (16) and (17), since from PR

polynomial evaluations AP and BP in (16) and (17) we can
recover 2PC unknowns when the coefficients Ai,j and Bk,l

are known, given that we have PR ≥ 2PC ; (c) follows since
Rp and R′p are independent uniformly distributed entries and
by upper bounding the joint entropy.

REFERENCES

[1] M. Janzamin, H. Sedghi, and A. Anandkumar, “Beating the perils of
non-convexity: Guaranteed training of neural networks using tensor
methods,” arXiv preprint, arXiv:1506.08473, 2015.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Non-secure GP D
Secure GPD

Fig. 4: Communication load CL versus recovery threshold PR for both
GPD and SGPD codes when P = 3000 and m = n = 36.

[2] G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy techniques
for latency reduction in cloud systems,” ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS), vol. 2,
no. 2, pp. 12:1–12:30, Apr. 2017.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
on Inform. Theory, vol. 64, no. 3, pp. 1514–1529, Aug. 2017.

[4] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Proc. Advances in Neural Inform. Processing Systems, Dec. 2017, pp.
4403–4413.

[5] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. on Inform. Theory, vol. 64, no. 1, pp. 109–128,
Sep. 2017.

[6] M. Aliasgari, J. Kliewer, and O. Simeone, “Coded computation against
processing delays for virtualized cloud-based channel decoding,” IEEE
Trans. on Commun., vol. 67, no. 1, pp. 28–38, Jan. 2019.

[7] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security and privacy,” arXiv
preprint arXiv:1806.00939, 2018.

[8] W.-T. Chang and R. Tandon, “On the capacity of secure distributed
matrix multiplication,” arXiv preprint, arXiv:1806.00469, 2018.

[9] J. Kakar, S. Ebadifar, and A. Sezgin, “Rate-efficiency and straggler-
robustness through partition in distributed two-sided secure matrix
computation,” arXiv preprint, arXiv:1810.13006, 2018.

[10] R. G. D’Oliveira, S. E. Rouayheb, and D. Karpuk, “GASP
codes for secure distributed matrix multiplication,” arXiv preprint,
arXiv:1812.09962, 2018.

[11] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. IEEE International Symposium on Information
Theory (ISIT), Jun. 2017, pp. 2418–2422.

[12] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix multi-
plication,” in Proc. Communication, Control, and Computing (Allerton),
Oct. 2017, pp. 1264–1270.

[13] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” arXiv preprint, arXiv:1801.10292, 2018.

[14] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A unified coded
deep neural network training strategy based on generalized polydot codes
for matrix multiplication,” arXiv preprint arXiv:1811.10751, 2018.

[15] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” arXiv preprint, arXiv:1801.07487, 2018.

1096

