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Private and Secure Distributed Matrix
Multiplication With Flexible
Communication Load

Malihe Aliasgari

Abstract—Large matrix multiplications are central to
large-scale machine learning applications. These operations are
often carried out on a distributed computing platform with a
master server and multiple workers in the cloud operating in
parallel. For such distributed platforms, it has been recently
shown that coding over the input data matrices can reduce
the computational delay, yielding a trade-off between recovery
threshold, i.e., the number of workers required to recover the
matrix product, and communication load, i.e., the total amount
of data to be downloaded from the workers. In this paper,
in addition to exact recovery requirements, we impose security
and privacy constraints on the data matrices, and study the
recovery threshold as a function of the communication load.
We first assume that both matrices contain private information
and that workers can collude to eavesdrop on the content of these
data matrices. For this problem, we introduce a novel class of
secure codes, referred to as secure generalized PolyDot (SGPD)
codes, that generalize state-of-the-art non-secure codes for matrix
multiplication. SGPD codes allow a flexible trade-off between
recovery threshold and communication load for a fixed maximum
number of colluding workers while providing perfect secrecy
for the two data matrices. We then study a connection between
secure matrix multiplication and private information retrieval.
We specifically assume that one of the data matrices is taken from
a public set known to all the workers. In this setup, the identity
of the matrix of interest should be kept private from the workers.
For this model, we present a variant of generalized PolyDot codes
that can guarantee both secrecy of one matrix and privacy for the
identity of the other matrix for the case of no colluding servers.

Index Terms— Coded distributed computation, distributed
learning, secret sharing, information theoretic security, private
information retrieval.

I. INTRODUCTION
A. Motivation and Problem Definition

T THE core of many signal processing and machine
learning applications are tensor operations, most notably
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large matrix multiplications [2]. In the presence of practically
sized data sets, such operations are typically carried out using
distributed computing platforms with a master server and
multiple workers that can operate in parallel over distinct
parts of the data set. The master server plays the role of
the parameter server, distributing data to the workers and
periodically reconciling their internal state [3]. Workers are
commercial off-the-shelf servers that are characterized by
possible temporary failures and delays [4].

Straggling workers can affect the computation latency by
orders of magnitude, e.g., [5], [6]. While current distributed
computing platforms conventionally handle straggling servers
by means of replication of computing tasks [7], recent work
has shown that encoding the input data can help reduce
the computation latency. More generally, coding is able to
control the trade-off between computational delay and com-
munication load between workers and master server [8]-[17].
Furthermore, stochastic coding can help keeping both input
and output data secure from the workers, assuming that the
latter are honest, i.e., carrying out the prescribed protocol, but
curious [18]-[25]. This paper contributes to this line of work
by investigating the trade-off between computational delay and
communication load as a function of the privacy level.

As illustrated in Figs. 1 and 2, we focus on the basic
problem of computing a matrix multiplication C = AB in
a distributed computing system of P workers that can process
each only a fraction 1/m and 1/n of matrices A and B,
respectively. In the first setup under study, illustrated in Fig. 1,
both matrices A and B are to be kept private from the workers.
Here, three performance criteria are of interest:

o the recovery threshold Pg, that is, the number of workers
that need to complete their task before the master server
can recover the product C;

o the communication load C; between workers and master
server, i.e., the amount of information to be downloaded
from the workers;

o the maximum number Pc of colluding servers that
ensures perfect secrecy for both data matrices A and B.

In the second setup of interest shown in Fig. 2, only matrix A
is private, while matrix B is selected from a public data set B.
In this case, apart from the security constraint on A, we only
impose a privacy constraint on the identity of the specific
matrix B € B of interest. As a motivation for this second
setup, consider a recommender system based on collaborative
filtering [26]. In this case, recommendations are based on the
product of two matrices, one describing the profile of a user,
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Secure matrix multiplication: the master server encodes both input matrices A and B, to be kept secure from the workers, and both random matrices

R and R/, respectively, to define the computational tasks of the slave servers or workers. The workers may fail or straggle, and they are honest but curious,
with colluding subsets of workers of size at most Pc. The master server must be able to decode the product C = AB from the output of a subset of Pgp

servers, which defines the recovery threshold.
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Fig. 2. Private and secure matrix multiplication: the master server encodes the input matrix A, to be kept secret from the workers, and generates the encoded
matrix Ag«) for each worker p. It also sends a query qgc) as a function of the index x € [1, L], to be kept private from workers, of the desired product
C®) = AB®), with matrices {B(" )})Ijz | available at all workers. The non-colluding workers may fail or straggle, and they are honest but curious. The master
server must be able to decode the product C®) from the output of a subset of Pg servers, which defines the recovery threshold.

or a group of users, and one representing features of the
items of interest, such as movies, music or TV shows. The
users’ profile matrix can be modelled by the private matrix A,
hence ensuring the privacy of users’ data; while the items’
data matrix for each category is represented by one of the
matrices in the public data set B = {B(k)},le. This latter
assumption captures the constraint that users may want to keep
the confidential types of items they are interested in. For this
problem, the criteria of interest are still Pg and Pc, and we
simplify the problem by setting Pc = 1. This paper focuses
on the design of coding and computing techniques for both
problems.

B. Related Work

In order to put our contribution in perspective, we briefly
review prior related work. Consider first solutions that provide
no security guarantees, i.e., Pc = 0, for the problem in Fig. 1.
As a direct extension of [8], a first approach is to use
product codes that apply separately the maximum distance

separable (MDS) codes to encode the two matrices [27]. The
recovery threshold of this scheme is improved by [9], which
introduces polynomial codes. The construction in [9] is proved
to be optimal under the assumption that minimal communica-
tion is allowed between workers and master server. In [15],
MatDot codes are introduced, resulting in a lower recovery
threshold at the expense of a larger communication load.
The construction in [13] bridges the gap between polynomial
and MatDot codes and presents PolyDot codes, yielding a
trade-off between recovery threshold and communication load.
An extension of this scheme, termed Generalized PolyDot
(GPD) codes improves on the recovery threshold of PolyDot
codes [14], which is independently obtained also by the
construction in [28]. In [14], GPD codes are used to design
a unified coded computing strategy for the training of deep
neural networks.

Much less work has been done in the literature for the
case in which security constraints are factored in, i.e., where
Pc # 0, for the problem of Fig. 1. In [19], Lagrange coding
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is presented that achieves the minimum recovery threshold for
multilinear functions by generalizing MatDot codes. In [18],
[25], coded schemes have been used to develop multi-party
computation techniques to calculate arbitrary polynomials of
massive matrices, preserving the security of the data matrices.
In [20], [21], [23] a reduction of the communication load is
obtained by extending polynomial codes. While these works
focus on either minimizing recovery threshold or commu-
nication load, the frade-off between these two fundamental
quantities has not been addressed in the open literature to
the best of our knowledge. A new class of secure distributed
matrix multiplication and its capacity is studied in [29].

In the second part of this work, we study a connection
between secure matrix multiplication and private information
retrieval (PIR), as illustrated in Fig. 2. The PIR problem was
introduced in [30] and has been widely studied in recent years,
e.g., in [31]-[40]. In [38] and [39] the PIR setup was inves-
tigated for the problem of distributed matrix multiplication
illustrated in Fig. 2 that imposes PIR guarantees for the index
of matrix B within a public library. In [38], a coding strategy
is proposed that combines the PIR scheme for non-colluding
servers (i.e., with Pc = 1) [30] with polynomial codes [9].
In [39], the authors introduce a related approach for this
problem, and show that it outperforms the scheme proposed in
[38] in terms of upload and download cost. The code design in
[39] focuses on the minimization of the communication load,
and does not explore the trade-off between this metric and the
recovery threshold.

C. Main Contribution

In this paper we first present a novel class of secure
computation codes, referred to as secure GPD (SGPD) codes,
for the setup in Fig. 1, SGPD codes generalize GPD codes to
operate at a flexible communication load level. This yields a
new achievable trade-off between recovery threshold Pg and
communication load Cr, as a function of a prescribed number
of colluding workers Pc. In the process, we also introduce
a novel perspective on distributed computing codes based on
the signal processing concepts of convolution and z-transform.
SGPD codes were first introduced in the conference version
of this paper [1], which did not contain complete proofs and
provided only limited illustrations and examples. Then, SGPD
codes are modified to offer a solution, introduced here for the
first time, for the scenario in Fig. 2. This is done through
concatenation with the PIR code in [38], which ensures both
secrecy of the input matrix A and privacy of the identity for the
desired matrix in the library B if Pc = 1. The resulting codes
are referred to as private and secure GPD (PSGPD) codes.
They generalize the approach in [39], enabling a trade-off
between (upload) communication load and recovery threshold.
We finally illustrate the benefits of the proposed codes, which
offer a flexible trade-off between communication load and
recovery threshold, by analyzing the overall completion time
due to both computation and communication.

D. Organization

The rest of the paper is organized as follows. In Section II,
we present the system models for secure matrix multiplication
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(Fig. 1 in Section II-C) and for private and secure matrix mul-
tiplication (Fig. 2 in Section II-D), respectively. In Section III
we propose an intuitive interpretation of the GPD code intro-
duced in [15]. Using z-transforms, Section IV proposes a novel
extension of GPD codes by imposing a security constraint on
the data matrices and deriving the resulting trade-off between
recovery threshold Pg and communication load Cp. In this
section, we also study overall completion latency encompass-
ing both computation and communication latencies for SGPD
codes. In Section V, we address the setup in Fig. 2, again with
respect to the trade-off between Pr and C and to the overall
completion latency. The paper is concluded in Section VI.

II. PROBLEM STATEMENT
A. Notation

Throughout the paper, we denote a matrix with upper
boldface letters (e.g., X), and lower boldface letters indicate a
vector or a sequence of matrices (e.g., X). Furthermore, a math
calligraphic font refers to a set (e.g., X). A set F represents
the Galois field with cardinality |F|. We denote by N the
set of all non-zero positive integers, and for some a,b € N,
a <b,la,b] ES {a,a+1,...,b}. For any real number r, [r]
represents the largest integer nearest to r. he function H(-)
represents the entropy of its argument, and /(X; Y) denotes
the mutual information of the random variables X and Y.

B. System Model

As illustrated in Figs. 1 and 2, we consider a distributed
computing system with a master server and P slave servers or
workers. The master server is interested in computing securely
the matrix product C = AB of two data matrices A and B with
dimensions 7" x S and S x D, respectively. The matrices have
ii.d. uniformly distributed entries from a sufficient large finite
field F, with |F| > P. More precisely, we will consider two
scenarios. In the first, both matrices A and B are available
at the master server and contain confidential data that should
be kept secure from the workers (see Fig. 1). In the second,
only matrix A contains confidential information, and there are
L public matrices in the set B = {B"}L_ from which the
master node wishes to compute the product C*) = AB® for
some xth index x € [1, L]. The index must be kept private
against the workers (see Fig. 2). In the following, we first
describe the system model for the setup in Fig. 1, referred
to as secure matrix multiplication, followed by the setup for
the model in Fig. 2, referred to as private and secure matrix
multiplication.

C. Secure Matrix Multiplication

For the scenario in Fig. 1 workers receive information
on matrices A € F'*5 and B e F5*P from the master
server; they process this information and they respond to the
master server, which finally recovers the product C = AB
with minimal computational effort. Due to communication and
complexity constraints, each worker can receive only 7S/m
and SD/n symbols, respectively, for some integers m and n.
The workers are honest but curious. Accordingly, we impose
the secrecy constraint that, even if up to Pc < P workers
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collude, the workers cannot obtain any information about both
matrices A and B based on the data received from the master
server.

To keep the data secure and to leverage possible
computational redundancy at the workers (namely, if P/m >
1 and/or P/n > 1), the master server sends encoded
versions of the input matrices to the workers due to the
above mentioned communication and complexity constraints.
Specifically, it produces the encoded matrices A, = f,(A, R),
where R is a random matrix of dimension 7’ x S’, for some
integers 7’ and S’ to be defined below, via the function

fp . FTXS X FT/XS/ N FT/[XS/S’ (1)

for some integers ¢ and s such that m = sr. The resulting
TS/m entries in the output of function f, are then sent
to worker p, with p € [1, P]. Likewise, the master server
computes the encoded matrices B, = g, (B, R’), where R’ is
a random matrix of dimension S’ x D’, for some integers S’
and D’ to be defined below, using the function

g): FSXD X FS/XD/ — FS/SXD/d, (2)

for some integers s and d such that n = sd. The resulting
SD/n entries in B, are then sent to worker p. The random
matrices R and R’ consists of i.i.d. uniformly distributed
entries from a field F. The security constraint imposes the
condition

I(Ap,Bp; A, B) =0, 3)

for all subsets of P C [1, P] of Pc workers, where the random
matrices R and R’ serve as random keys in order to meet the
security constraint (3) [41].

Each worker p computes the product C, = A,B, of the
encoded sub-matrices A, and B,,. The master server collects a
subset of Pgp < P outputs from the workers as defined by the
subset {Cp},ep, With [Pg| = Pg. It then applies a decoding
function as h ({C,} pepy)s

h:]FT/tXD/dX X]FT/tXD/d_>}FT><D. (4)

Pp times

Note that correct decoding translates into the condition
H(AB[{Cp}pep,) = 0. (%)

A coding and decoding strategy that satisfies condition (3) and
(5) is said to be feasible.

For given parameters m and n the performance of a coding
and decoding scheme is measured by the triple (P¢c, Pr, Cpr),
where Cy, is defined as

CL= D IC,l; (6)

P€PR

|Cp| is the dimension of the product matrix C, computed
by worker p. Note that condition (5) requires the inequality
min{Pg/m, Pg/n} = 1 or Pk > Pg.min = max{m, n}, which
is hence a lower bound for the minimum recovery threshold.
Furthermore, the communication load is lower bounded by

Cr > CL min e T D, which is the size of the product C = AB.
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D. Private and Secure Matrix Multiplication

In this subsection, we discuss the private and secure matrix
multiplication problem illustrated in Fig. 2. In this setup,
the master server wishes to compute the product C*) = AB®)
of a confidential input matrix A with a matrix B%) from a set
of public matrices {B(), ..., B}, while keeping the index
x of the matrix B%) of interest private from the workers.

Similar to the secure model in Fig. 1, we consider a
distributed computing system with a master server and P
honest but curious workers. The master server contains a
confidential data matrix A with dimension 7 x S. Each
worker has access to the library B, which consists of L
distinct matrices {BW), ..., B}, each with dimension S x D.
As above, all matrices contain data symbols chosen uniformly
ii.d. from a sufficient large finite field F, with |[F| > P. The
master server is interested in computing the matrix product
C® = AB® of the data matrix A and of a matrix B%*) for
some index x € [1, L]. This should be done while keeping the
data matrix A secret against the workers in the same sense as
in the scenario of Fig. 1, while also ensuring that the index x
is kept secret from the workers.

To do so, as in the PIR problem [33], [34], the master server
generates P query vectors qIK), R qyf) e FE, for some L >
1 as a function of the desired index x and sends each worker
p € [1, P], the query vector qg‘). We assume that the workers
do not collude, i.e., we set Pc = 1. Extensions to any Pc > 1
are possible and are left for future work. We note that, when
the input matrix A is an identity matrix, the setup reduces to
a PIR problem.

To keep the data matrix A secure against workers, the master
server sends each worker p € [1, P] an encoded version
AE,K) =f,(x,A,R) € FT/txS/s which is a function of index
x, and through it, of the query qgc), of the data matrix A and
of a random matrix R, for some integers ¢ and s such that
m =ts.

Upon receiving (qg‘), Al(,,")), each worker p uses the query
qg‘) to derive an S/s x D/d matrix Bg‘) = gp(qg,"),l’j') IS
[FS/sxD/d from the library B by using an encoding function

gpZFLXFSXDX"'XFSXD—)FS/SXD/d, (7)

L times

for some integers s and d such that n = sd. We emphasize
that, unlike the setup considered in Fig. 1, the content of the
desired matrix B®) is not secure against workers, since the
library B is public. Each worker p then computes the product
C% = A%YBY) and sends it to the master server. The master
server collects a subset {Cg‘)} pePr Of Pp < P outputs from
the workers with |Pgr| = Pg. It then applies a decoding
function h({Cg‘) }pepg)s as in (4), in order to retrieve the
desired product C*) = AB®).

To guarantee the secrecy of input matrix A, in a manner
similar to (3), we have the constraint

IAY,BY, qf, B; A) =0, ®)

for all p € [1, P]. Following the PIR formulation on [38],
in order to ensure the privacy of index x, for some value
of x the information available at each worker should be
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sequences. Each solid arrows in a and b shows a distinct row of A and a column of B, respectively.

statistically indistinguishable from that available for any other
value k' # . Mathematically, for all «x,x’ € [1,L] with
k' # Kk and for all workers p € [1, P], we have the condition

(9, A0 ) B) ~ (q¥), AL, C.B). ()

(q,
that is, the joint distribution of variables (qg‘/), AI(UK/), Cg‘/), B)
should be the same for any pair of index values x” # «. Finally,
the correct decoding requirement is defined as in (5), that is

HABW{CW},cp,) = 0. (10)

A coding and decoding strategy that satisfies conditions (8),
(9), and (10) is said to be feasible. For given parameters m
and n the performance is measured by the pair (Pg, Cr), with
Pc =1, where Cy, is the communication load defined in (6).

III. BACKGROUND: GENERALIZED PoLYDOT CODE
WITHOUT SECURITY CONSTRAINT

In this section, we consider the system model shown
in Fig. 1 and review the GPD construction first proposed
in [15] and later improved in [14], [28] for the special
case of no secrecy constrains, i.e., Pc = 0. In the process,
we propose a novel intuitive interpretation of GPD encoding
and decoding based on the distributed computation of samples
from convolutions via z-transforms.

We start by recalling that the GPD coding scheme achieves
the best currently known trade-off between recovery threshold
Pr and communication load C; for Pc = 0, i.e., under no
security constraint. The entangled polynomial codes of [28]
have the same properties in terms of (Pg, Pc). The GPD codes
for Pc = 0 also achieve the optimal recovery threshold among
all linear coding strategies in the cases of t = 1 or d = 1,
also they minimize the recovery threshold for the minimum
communication load Cy, min [9], [28].

The GPD code splits the data matrices A and B both
horizontally and vertically as

Ay Ay
A= : o
At,l At,s

B Big

B=| : _ an
Bs,l Bs,d

The parameters s,f, and d can be set arbitrarily under the
constraints m = ts and n = sd. Note that polynomial codes

set s 1, while MatDot codes have t = d = 1 [13]. All
sub-matrices A; ; and By ; have dimensions 7'/t x §/s and
S/s x D/d, respectively. The GPD code computes each block
(i, j) of the product C = AB, namely C; ; = > ;_; A;«Bx ;.
for i € [1,¢] and j € [1,d], in a distributed fashion. This
is done by means of polynomial encoding and polynomial
interpolation. As we review next, the computation of block
C;,j can be interpreted as the evaluation of the middle sam-
ple of the convolution ¢;; = a; * b; between the block
sequences a; = [A;1,...,Ajs] and b; = [Byj,...,By ;]
In fact, the sth sample of the block sequence c; ; equals
G, ie, [¢;;]ls = C;;. The computation is carried out
distributively in the frequency domain by using z-transforms
with different workers being assigned distinct samples in the
frequency domain.

To elaborate, define the block sequence a obtained by
concatenating the block sequences a; as a = {aj, a, ..., a;}.
Pictorially, a sequence a is obtained from the matrix A by
reading the blocks in the left-to-right top-to-bottom order,
as seen in Fig. 3. We also introduce the longer time block
sequence b as

b =1{b,0,b2,0,...,by},

with 0 being a block sequence of s(t* — 1) all-zero block
matrices with dimensions S/s x D/d. The sequence b can be
obtained from the matrix B by following the bottom-to-top
left-to-right order shown in Fig. 3 and by adding the all-zero
block sequences between any two columns of the matrix B.

In the frequency domain, the z-transforms of sequences a
and b are obtained as

(12)

ts—1 t

N
Fa@) = D [aly12" = D > Ay 0L

r=0 i=1 j=I

s—1+ts(d—1) s d
[b]r+12r _ Z ZBk,lZS_k+tS(l_1)’ (14)

2
k=1 I=1

r=0

13)

Fp(z) =

respectively. The master server evaluates the polynomials
Fa(z) and Fp(z) in P non-zero distinct points zy,...,2p €
F and sends the corresponding linearly encoded matrices
A, = Fa(zp) and B, = Fp(zp) to server p. The encoding
functions are hence given by the polynomial evaluations (13)
and (14), for z1, ..., zp. Server p computes the multiplication
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Fa(z,)Fp(zp) and sends it to the master server. The master
server computes the inverse z-transform for the received
products {A,B,},ep, = (Fa(zp)Fp(zp)}pepy, obtaining the
convolution a x b.

From the convolution a * b we can see that the master
server is able to compute all the desired blocks C; ; by reading
the middle samples of the convolutions ¢; ; = a; * b; from
samples of the sequence ¢ = a x b in the order [c];—1 =
Ci1, [elos—1 Cot,.. el Cr1, [Cls—141%s
Cio,....[€lis—14%s = C;2,.... Note that, in particular,
the zero block subsequences added to sequence b ensure that
no interference from the other convolutions, ¢; ;- affects the
middle (sth) sample of a convolution ¢; ; with i’ # i and
.

To carry out the inverse transform, the master server needs
to collect as many values Fa(z,)Fn(z,) as there are samples
of the sequence a * b, yielding the recovery threshold

Pr =tsd +s — 1. (15)

Equivalently, in terms of the underlying polynomial interpre-
tation, the master server needs to collect a number of eval-
uations of the polynomial F,(z)Fp(z) equal to the degree of
F,(z)F(z) plus one. This computation is of complexity order
O(T D Pg(log(Pg))?) [13]. Furthermore, the communication

load is given as
CL=P D
L=Fr—

where T D/(td) is the size of each matrix Fu(2)Fp(z).
IV. SECURE PoLYDoOT CODE

(16)

In this section, we propose a novel extension of the GPD
code that is able to ensure the secrecy constraint for any
Pc < P. We also derive the corresponding achievable set
of triples (Pc, Pr,Cr). As we will discuss, the projection
of this set onto the plane defined by the condition Pc = 0
includes the set of pairs (P, Cr) in (15) and (16) obtained
by the GPD code [14]. The proposed secure GPD (SGPD)
code augments matrices A and B by adding Pc random block
matrices to the input matrices A and B, in a manner similar
to prior works [18]-[21], [23], yielding augmented matrices
A* and B*. As we will see, a direct application of the GPD
codes to these matrices is suboptimal.

In contrast, we propose a novel way to construct sequences
a* and b* from matrices A* and B* that enables the definition
of a more efficient code by means of the z-transform approach
discussed in the previous section. To this end, we follow the
design criterion of decreasing the recovery threshold Pg for
a given communication load Cr. Based on the discussion in
the previous section, this goal can be realized by decreasing
the length of the sequence ¢* = a* xb*, which can in turn be
ensured by reducing the length of the sequence b* for a given
length of the sequence a*. We accomplish this objective by (i)
adaptively appending rows or columns with random elements
to matrix A, and, correspondingly columns or rows to B,
which can reduce the recovery threshold; and (ii) modifying
the zero padding procedure (see Fig. 3) for the construction
of sequence b*. In order to account for point (i), we consider
separately the two cases s <t and s > .

A. Secure Generalized PolyDot Code: The s <t Case

As illustrated in Fig. 4, when s < #, we augment the input
matrices A and B by adding
Pc
s b

random row and column blocks to matrices A and B, respec-
tively. Accordingly, the t* x s augmented block matrix A* with
t* =t + Ap. is obtained as

A

Ape (17)

Ay Ay
A A A
* J— — b £
AT = |:Ri| Ri 1 Ris |’ (18)
_RAPC,l RAPC,s _

while the s x d* augmented matrix B* = [B R’] with d*

d + A p. is obtained as
By

/
S,Apc

By

4 RO,
B* (19)

/ /
Bs,l Bs,d Rl,l Rl,APC

In (18) and (19), if s divides Pc, all block matrices R; ; €
F7*5 and lej e F3¥7 are generated with i.i.d. uniform
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random elements in [F. Otherwise, if Ap. — Pc/s > 0, the last
s A p. — Pc matrices in (18), with right-to-left ordering in the
last row of R; ;, and in (19) with top-to-bottom ordering in
the last column of Rz/', .. are all-zero block matrices.

As illustrated in Fig. 4, in the SGPD scheme, the block
sequence a* is defined in the same way as in the conventional
GPD, yielding

a*:{ala'-"al"rl’-'-arApC}’ (20)

where r; is the ith row of the block matrix R, i € [1, Ap.].
We also define the time block sequence b* = {b, r'} as

b* = {b1,0,b2,0,...,bd,O,r/l,r/z,...,r/APC}, (21)

where 0 is block sequences of s(¢*—1) all-zero block matrices,
respectively, with dimensions S/s x D/d, while r} is the jth
column of the random matrix R’. The key novel idea of this
construction is that no zero matrices are introduced between
the columns of matrix R’. As shown in Theorem 1 below, this
construction allows the master server to recover all the desired
submatrices C; ; fori € [1,7] and j € [1, d] from the middle
samples of the convolutions ¢; ; = a; *b; (see Fig. 5 for an
illustration).

Theorem 1: For a given security level Pc < P, the pro-
posed SGPD code achieves the recovery threshold Pr

tsd+s—1, lf‘PczO’
P
t*s(d + 1)+sAp. — 1, if Pc>1and Ap,==-<,
S
P
t*s(d +1)—sAp. +2Pc — 1, if Pc>1and Ap, > —=,
S
(22)

and the communication load (16), where t* =t + Ap. and
d* = d + Ap. for any integer values t,s, and d such that
s <t,m=ts, and n = sd.

Proof: The z-transform of sequences a* and b* are given
respectively as

t

N
b = 33 A7,

i=1 j=1

Fi(2)

n i iA;ijs(i—l)+j—1’

i=t+1 j=1

(23)

2 ()

s d
Fp- (Z) _ ZZszlZskart s(I—1)

k=1 [=1

2 ()

s d*
+z Z Bz,lzz*sdﬂ(z—d)—p

k=1 Il=d+1

(24)

2 F4(2)

The master server evaluates Fa«(z) and Fp«(z) at P
non-zero distinct points z1,...,zp € [F, which define the
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Fig. 5. Outcome of the communication C; ; = a; *b; for t = 3,5 =

2,d = 2, and Pc = 2. Dashed blue stems with filled markers represent
the convolution ¢*. Individual convolutions ¢;, j are shown in different colors
with square markers. Contributions from one or both random matrices are
shown as red crosses. The desired submatrices C; ; are seen to equal the
corresponding samples from the sequence ¢*, associated with the center points
of the individual convolutions.

encoding functions, and sends both matrices A, = Fa:(z,)
and B, = Fp:(z,) to worker p. Worker p performs the
multiplication Fa«(z,)Fp*(zp), and sends the results back to
the master server. To reconstruct all blocks C; ; of matrix C =
AB, the master server carries out a polynomial interpolation,
or equivalently, it computes the inverse z-transform, upon
receiving a number of multiplication results equal to at least
the length of the sequence ¢* = a* x b*. As we detail next,
the (i,1) block Ci; = >7_,; Ai,B,y, for all i € [1,7] and
[l € [1,d], of matrix C = AB can be seen equal to the
(si — 14 (I — 1)t*s)th sample of the convolution ¢* = a* xb*.
An illustration can be found in Fig. 5.

To see this, we first note that, by the properties of
GPD codes, matrix C;; is the coefficient of the monomial
ZSi=1HE=Ds iy F(2)F3(z). Note that this holds since the
polynomial Fi(z) and F3z(z) are defined as GPD codes.
We now need to show that no other contribution to this
term arises from the products Fi(z)F4(z), F2(z)F3(z), and
F2(z)F4(z). The terms in the product F{(z)F4(z) have expo-
nents (t*sd +s(i — 1) +s({ —d) — 1), for i € [1,¢] and
[ € [d + 1,d*], which do not include the desired values
(si — 1+ — Dr*s) fori € [1,¢] and I € [1,d]. A similar
discussion applies to the product F»(z)F3(z), whose exponents
are (s(i +t*l—t*)—1),fori € [t+1,t*] and [ € [1,d], and
F2(z)F4(z), whose exponents are (t*sd+s(i—1)+s((—d)—1),
forie[t+1,t*]andl € [d+1,d"].

In order to recover the convolution ¢*, the master server
needs to collect a number of values of the product F,(z)Fp(z)
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Fig. 6. Construction of the time block sequences a* and b* in (31) and (32) used to define the secure generalized PolyDot (SGPD) code for the case s > t.
The solid line and the zero dashed lines in b* indicate columns of B and all-zero block sequences, respectively.

equal to the length of the sequence ¢*, which can be computed
as the degree deg (F4(2)Fp(z)) + 1, where deg(F,(z)Fp(2)) is

P,
t's(d+1)+sAp. — 1, if APC:—C,

FIGL)
dst* —sAp. +2Pc +1—2, if Ap. > —

For Pc > 1 this implies the recovery threshold Pg in (22). The
communication load Cy, in (16) follows from the fact that there
are T D/(td) entries in Fa+(z,)Fp+(zp), for all p € [1, PR].

The security constraint (3) can be proved in a manner
similar to [20] by the following steps:

I(A, B; Ap, Bp)
= H(Ap,Bp) — H(Ap,Bp|A, B)
@ H(Ap,Bp) — H(Ap, BplA, B)
+H(Ap,Bp|A,B,Ry,....Rp.,R,...,R})
= HAp.Bp)—IAp,Bp;Ry,...,Rp. R}, ... ,R}, |A,B)
= H(Ap.Bp) — HRy,...,Rp.,R},....R} |A,B)

+H(Ry,....Rp. R},....,Rp |A, B, Ap, Bp)

= H(A'p,B'p)—H(Rl,...,RPC,R/l,...,R/PC)

Pc Pc
< H(Ap) + HBp) — D HR,) — > HR))

p=1 p=1
(d TS SD
< H(Ap)+ H(Bp) — Pe—= log|F| - Pc =" log|F|
Pc Pc
(e) TS SD
< D H(Ap+D H®By)—Pc—log|F| — Pc— log|F|
p=1 p=1
)

TS SD TS
= Pc—log|F| + Pc— log |F| — Pc— log |F|
m n m

SD
—Pc— log |IF|
n

=0, (26)

where (a) follows from the definition of encoding functions,
since Ap is a deterministic function of A and R,, and Bp

is a deterministic function of B and R;,, respectively, for all
p € [1, Pc]; (b) follows from (23) and (24), since from
Pr polynomial evaluations Ap and Bp in (23) and (24)
we can recover 2Pc unknowns when the coefficients A; ;
and By ; are known, given that we have Pg > 2Pc; (c)
and (d) follows since R, and R; are independent uniformly
distributed entries; (e) follows by upper bounding the joint
entropy using the sum of individual entropies; and (f) follows
from an argument similar to (d). Hence, the proposed scheme
is information-theoretically secure. 0

Remark 1: When Pc > 1 a direct application of the GPD
construction in Fig. 3 would yield the larger recovery threshold

P
rrsd* + s — 1, if App = ==,
P = }fC (27
dst* +s—1—-2(sAp. — Pc), if Ap. > —.
S

B. Secure Generalized PolyDot Code: The s >t Case

As illustrated in Fig. 6, when s > ¢, we instead augment
input matrices A and B by adding

Pc
A, B ¢
Pe [min{t,d}—‘

column and row blocks to matrices A and B. This can be seen
to yield a smaller recovery threshold. Accordingly, the ¢ x s*
augmented block matrix A* = [A R] with s* = s + A/PC is
obtained as

(28)

A Ay Ry RI’A/PC
AT = : : : . (29)
Al Ais R R ap,
while the s* x d augmented block matrix B* is defined as
R R,
APC,I Ape.d
) : :
B* — [l; } —| R, R, (30)
By By
L Bs,l Bs,d a
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As for (29) and (30), if A’PC — Pc/min{t,d} > 0, the last
s A’PC — P¢ block matrices in (29), with bottom-to-top right-to-
left ordering in R, and in (30) with right-to-left top-to-bottom
ordering in R/, are all-zero block matrices. The construction of
sequences a* and b* is analogous to the GPD in the non-secure
case. In particular, as seen in Fig. 6, the time block sequence

a* is

:{al,r1,329r29~«~,at,rt}a (31)
whereas the block sequence b* is defined as
={b1,0,bs,...,0,bs,0,r,, ,....r}}. (32)
Pc

Here, 0 and 0 are a block sequence of ¢ and ¢ — 1 all-zero block
matrices with dimensions S/s x D/d, respectively, while r; is
the ith row of the random matrix R’.

Theorem 2: For a given security level Pc < P,
proposed SGPD code achieves the recovery threshold

the

(33)

and the communication load (16), where s* = s + A’PC for
any integer values t,s, and d such that s > t, m = ts, and
n =sd.

Proof: We define the z-transform of sequences a* and b*
respectively as

t s
e = XY AL 0

Pr=1(s"d — Ap) +1s +2Pc — 1

i=1 j=1
t s*
T2 2 AU, (34)
i=1 j—s+1
Fi () = Z ZB* (s*—k)t+1s*(I—1)
k= 1+A’ =1
PC d * ! ’
+ZZBkl t(s d*APC)+d(APC7k)+171. (35)

k=1 I=1

The (i,1) block Ci; = > 7_, Ai,B,;, for all i € [1,7] and
[l € [1,d], of matrix C = AB can be seen equal to the
(i — 141t(s*l — 1))th sample of the convolution ¢* = a* x b*.
The rest of the proof follows in a manner akin to Theorem 1.
O
Remark 2: The computational complexity of SGPD codes
for both workers and master server can be summarized as
follows. Each worker is assigned to compute the multiplication
C, = A,B,, requiring TSD/(tsd) multiplications. For the
master server, encoding matrices A, and B, at each worker
amounts to evaluating z-transforms Fax(z) and Fy=(2) at a
random point z . This requires multiplying z, by (ts+Pc) and
(sd+ Pc) submatrices, each of dimension T/t xS /s and S /s x
D/d, respectively. This requires Pc(TS/(ts) + SD/(sd)) +
TS + SD multiplications. Overall, the master server needs to
carry out PPc(TS/(ts)+ SD/(sd))+ P(T S+ SD) multipli-
cations. For decoding, the master server interpolates a polyno-
mial degree Pr — 1 for each element in C. Using a polynomial
interpolation algorithm, the decoding complexity amounts to
(Pr — 1)(log(Pg — 1))2T D/(td) multiplications [42].
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Fig. 7. Communication load Cy versus recovery threshold Pg for both

non-secure  generalized PolyDot (GPD) and secure
PolyDot (SGPD) codes (m = n = 36 and P = 3000 workers).

generalized

Example 1: We now provide some numerical results of the
proposed SGPD scheme. We set P = 3000 workers and
parameters m = n = 36. The trade-off between communica-
tion load Cr and recovery threshold P for both non-secure
conventional GPD codes (Pc = 0) and proposed SGPD code
with colluding workers Pc = 11 and Pc = 29 is illustrated
in Fig. 7. The figure quantifies the loss in terms of achievable
pairs (Pg, Cpr) that is caused by the security constraint.

C. Trading Off Computation and Communication Latencies

In this subsection, we elaborate on the importance of
enabling a flexible trade-off between communication load and
recovery threshold by analyzing the overall completion time
for the matrix multiplication task at hand. The completion
delay is the sum of latencies due to computation and com-
munication.

To this end, following a well-established model [8], [11],
we assume that computation at each worker p requires a
random time Tlfomp , measured in some specified unit of time,
that is modeled as a shifted exponential distribution with
cumulative distribution function (cdf)

uTSD

(TCOmp
tsd

FCOMP(TCOMPY — | _ exp ( TP ) , (36)
for T > T, and F Comp(T) = 0 otherwise. According to
(36), the parameter Tmm represents the minimum processing
time, and 1/u represents the average excess computing time,
with respect to Tmm , per multiplication (recall Remark 2).
Assuming independent computing times, for a given recovery
threshold Pg, the computation time 7°°™P is hence given as
the Pgth-order statistic, i.e., the Pgth smallest variable, among
the i.i.d. variables (TComp . T}C,Omp ). Its expectation is
given by [43]
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Fig. 8.  Average completion time E[T] versus communication rate R€°™™

for secure generalized PolyDot (SGPD) codes with P = 3000, Pc = 29,
T=8=D=1008 u=05x10"% and T =1, and m = n = 36:
(i)t =d =36, s =1 (SGPD code), (ii) t =s =d =6, and (iii)) t =d =1,
s = 36 (secure MatDot code).

tsd Pr 1 B tsd
uTSD & P—Pr+i  uTSD

E[T™]= (Hp — Hp-pg),
i

(37)

where Hp is the generalized harmonic number defined as
P .
Hp=73%,_,1/i.
Suppose now that the workers communicate with the master
server are a link with an overall download rate R°°™ (symbols
per unit time). The communication latency is hence given as

TD
td Reomm’

since the workers need to return PRT D/(td) symbols to the
master server. Overall, the average completion time is given
as

Tcomm — PR (38)

tsd
uTSD

E[T] = Too® + (Hp — Hp—pp) + Pr (39)

Example 2: Let consider P = 3000 workers and para-
meters m = n = 36. We assume that Pc = 29, T =
S = D = 1008 u = 0.5 x 1074 and TEO™ = 1.
We compare the performance of the following SGPD codes:
(i)t =d = 36 and s = 1 (secure Polynomial code); (ii)
t=s=d=6; (i)t =d =1 and s = 36 (secure MatDot
code). The values of C1, and Pg for these codes are shown
in Fig. 7. The average completion time (39) is plotted versus
the communication rate R°"™" in Fig. 8. The figure shows that
the optimal choice of the latency-minimizing SGPD code along
the curve in Fig. 7 depends on the system’s operating point:
For small communication rates, it is preferable to reduce the
communication load Cy, and hence secure Polynomial codes
are the best choice; while for large communication rate, it is
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Fig. 9. Communication load Cj versus recovery threshold Pg for secure

generalized PolyDot (SGPD) codes with Pc = 1 and private and secure
generalized PolyDot (PSGPD) codes (m = n = 36 and P = 3000 workers).

optimal to choose codes with an increasingly large value of
the communication load Cy.

V. SECURE AND PRIVATE GENERALIZED POLYDOT CODE

In this section, we study the setup shown in Fig. 2. We
propose a variant of the private and secure GPD code
introduced in [38] that we refer to as private and secure
GPD (PSGPD) code. Note that in [38] a private coded matrix
multiplication scheme is proposed only for Polynomial codes
with s = 1 in (11). We derive the corresponding achievable set
of pairs (Pg, Cr) as defined in Section II under the condition
Pc =1, i.e., the workers do not collude.

Theorem 3: For a given security level Pc = 1, there is an
achievable PSGPD codes with the recovery threshold

s(t+ 1)d,
ts(d+1)—1t+1,

ifs <t,
ifs>t,

(40)

and the communication load (16), for any integer values t, s,
and d such that m = ts, and n = sd.
Proof: The proof is presented in Appendix A. 0
Remark 3: The computational complexity of PSGPD codes
for both workers and master server is summarized as fol-
lows. In PSGPD codes, each worker has two duties, namely
encoding the library B and computing the multiplication
Cg‘) = é%K)BLK). Encoding the library, i.e., computing the
in (44), requires to evaluate Fgw(z), r € [1, L]
at query vector qg‘). Hence, the former task requires LSD
multiplications, while the latter entails TSD/(tsd) multipli-
cations. In total, each worker carries out LSD +TSD/(tsd)
multiplications. The master server encodes matrix Apk) with
(1 + 2s)T S/(ts) multiplications. In total, for all P workers,
the master server needs P(1 + ts)TS/(ts) multiplications.

matrix B
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The computation complexity of the decoding complexity of
the master server is the same as for SGPD codes, namely
O((Pg — D(log(P, — 1))*T D/(td))).

Example 3: Let us consider P = 3000 workers and para-
meters m = n = 36. We assume that Pc = 1 in order
to compare the performance of proposed SGPD and PSGPD
codes. Note that both recovery threshold and communication
load of the PSGPD code do not depend on the number
of public matrices |B| = L in the library. The trade-off
between communication load Cy and recovery threshold Pg
is illustrated in Fig. 9 for both codes. The figure shows that,
for a fixed value of Pg, the resulting achievable value of the
communication load Cy, is smaller for PSGPD than for SGPD
codes. This suggests that the privacy requirement on the index
x imposed by PSGPD is less demanding than the security
constraint on matrix B under which SGPD codes operate.

Remark 4: As for SGPD codes, the overall average com-
pletion time of PSGPD codes can be derived following the
same steps as described in Section IV-C.

VI. CONCLUDING REMARKS

In this work, we have considered the problem of secure and
private distributed matrix multiplication on C = AB in terms
of design of computational codes for two settings. In the first
setting, the two matrices A and B contain confidential data
and must be kept secure from the workers; and in the second
setting , matrix A is confidential, while matrix B is selected in
a private manner from a library of public matrices. For both
problems, this work presents the best currently known trade-off
between communication load and recovery threshold. This is
done by presenting two code constructions that generalize the
state-of-the-art GPD codes [13]-[15], in combination with PIR
based codes [38].

Among important items for future research, we mention the
extension of the proposed PSGPD construction to Pc > 1.
Here, we note that one can design an achievable PSGPD
scheme for any arbitrary privacy level by trivially concatenat-
ing a robust PIR scheme for arbitrary colluding workers and
private databases [33] and the proposed SGPD code. However,
this approach would require multiplying the data matrix A with
all L public matrices in the set B = {B(’)}rL:1 for each worker
p € [1, P], implying a significantly increased computation
load. Future work will focus on PSGPD schemes for any
number of colluding workers that provides a smaller compu-
tational complexity at the workers. Finally, the establishment
of a converse bound and the consideration of non-perfect
communication channels between workers and master server
[44] are open problems.

APPENDIX A
PROOF OF THEOREM 3

We start by discussing the s < ¢ case, as done in Section IV.
The polynomial encoding function for the input matrix A,
is obtained is defined as in (23) for Pc = 1, that is

t s
Z Z Ai jZS(i—l)-‘r(j—l) + RZSI,

i=1 j=I

Fa(z) = (41)
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where we recall that R is an 7'/t x §/s random matrix with
ii.d. uniform random elements in F. The encoded matrices
are given as A ) — = Fa(zy,p) for values z, , to be discussed
below. For the desned index x, the master server also computes
the query vector qg‘) for all p € [1, P]. This is obtained as

() —

qp [Z19"'5ZK—19ZK,[75ZK+15"'9ZL]9 (42)

where all points {z;}; -+« are selected uniformly i.i.d. from I but
are identical for all p. The points {z,, ,} 1€=1 are selected i.i.d.
as distinct elements from F (recall that we have |F| > P).
We note that, as in the PIR scheme [38], the query vector
(42) does not leak any information on index x in the sense
defined by condition (9). The master server evaluates Fa (z) in
(41) at the distinct random point z, ,, to produce the encoded
matrices Ag‘) = Fa(z«,p), and then sends AE,K) along with the
query vector qu to worker p € [1, P].

Each worker p, after receiving the query vectors q( )
encodes the library 5 into a matrix B; ©) as follows. Define the
polynomial encoding function for each matrix B"), r € [1, L],
in the library B as in (24) for Pc =0, i.e.,

s d
Fpo (2) = Z Z ]((fgzskar(lfl)s(tJrl). (43)
Each worker p computes the encoded matrices as
A
BY = > Fpo(q)l)
rell,L]
=FpoGep) + D, Fpo@), (44)

re[l,L]\x

where [q » )] » denotes the rth element of the query vector q( ).

After encoding the library, each worker p computes the
matrix product Cg‘) = Ag‘) Bg‘) and then sends Cg‘ back to
the master server. We note that both polynomials Fa(z) and
Fp (z), assigned to the input matrix A and the desired matrix
B®), are evaluated at the same random points Zy 1,..., 2k P
for workers 1,..., P, respectively. Since each undesired
matrix is evaluated at an identical random point for all workers
the second term in (44), i.e., Zre[l L1\ « Fpo (z,), can be
considered as a constant term.

To reconstruct all blocks C(K) of the product matrix
C®) = AB®, the master server carries out polynomial inter-
polation, upon receiving a number of multiplication results
equal to at least deg(Fa (z)Ggx) (2)) + 1, which is s(t + 1)d,
for the case s < t.

Similarly, for the s > ¢ case, the polynomial encoding
function for the input matrix A as in (34) for Pc = 1, that is,

t N
— ZZAijZi—1+I(j—1) +RZ1S’

i=1 j=1

Fa(2) (45)

and the encoding function for matrices B") is given as in (35)
for Pc = 0, that is

s d
Fpo (2) = z z B]((r’gz(s—k)tﬁs(l—l).

k=1 I=1

(46)
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The encoded matrices Ag‘) and Bg‘) are defined as above, and

so are the query vectors qg‘) for all p € [1, P].
The security of the data matrix A against non-colluding
workers is guaranteed by appending the random matrix R to

the

input matrix A in (41) in the same way as described in

Section IV. The details for both cases s < r and s > ¢ are
given in the proofs of Theorems 1 and 2, respectively, for

the

case of Pc = 1. The privacy condition of (9) follows

by definition of the query vectors (42) for the desired index
x € [1, L], as proved in [38]. Finally, the recovery threshold
and the communication load follow in a manner analogous to
Theorems 1 and 2.
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