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Abstract—Authentication in the presence of a malicious adver-
sary consists of either recovering the legitimate transmission or
declaring that the adversary has interfered with the transmission.
In this work, we present a structured coding scheme for keyless
authentication over a discrete memoryless binary-input, symmet-
ric adversarial channel. Our scheme allows for coding rates up
to the non-adversarial capacity of the underlying channel, as well
as bounded-complexity decoding.

I. Introduction

Consider a scenario where users wish to ensure reliable
communication over an unsecured channel: in such a setting,
the ability to reliably detect the presence of a malicious
adversary can be of high value. This problem, known as
authentication, is a relaxation of the more general arbitrarily-
varying channel (AVC): in both settings, the channel takes
as inputs both the legitimate transmission and an adversarial
state [1]. The adversary maliciously chooses a state with the
goal of causing a decoding error at the receiver. Over the
AVC, the receiver then attempts to recover the legitimate
transmission in spite of the adversary’s interference. A plethora
of variations on the AVC appear in the literature, in which the
adversary has varying degrees of power and knowledge of
the legitimate transmission, and the sender and receiver may
or may not have access to a shared key. In the authentication
setting, the receiver also succeeds if the presence of adversarial
interference is detected. That is, if no adversary is present,
the receiver must decode to the intended message correctly;
otherwise, the receiver must either decode correctly or detect
the adversary. Variations are examined in [2], [3], [4].

The capacity of the AVC was studied in [5], where the au-
thors establish a necessary and sufficient channel condition for
positive capacity in the case where the adversary is oblivious
to the actual transmission, but has complete knowledge of the
codebook. This condition, called symmetrizability, indicates
channel conditions that allow an adversary to successfully con-
vince the receiver that a different codeword was transmitted.
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In [6], an analogous (but stronger) condition, overwritability,
was given for authentication. It was shown that for channels
which are not overwritable, the capacity is equal to the non-
adversarial capacity of the channel. This result is proven using
techniques similar to those used in [5]. In both cases, the
transmitter and receiver do not have access to any shared secret
key: the adversary is aware of all parts of the coding strategy.

In this paper, we adopt the setting and follow the general
structure of the proof in [6], but with significant differences
in terms of practical realization. While the former makes use
of classical random coding arguments, we aim to demonstrate
that there exist structured coding schemes with bounded de-
coding complexity that may accomplish keyless authentication
at rates approaching channel capacity. To the best of our
knowledge, such results for structured codes have not yet been
presented in the literature. We utilize existing linear codes
designed for non-adversarial channels to arrive at a scheme
that inherits the rate and error probability of these codes. It
is important to note that simply using a linear code designed
for the non-adversarial channel will not provide any security
against the adversary: such a code has so much structure that
the adversary may thwart the legitimate users every time. Thus,
we also incorporate the use of short, nonlinear message hashes
in our scheme. Algebraic manipulation detection (AMD) codes
bear some similarity to our proposed scheme, and are used in
[7] to construct codes for additive errors by concatenating with
a list-decodable linear code. It is important to note that the
authors of [7] focus on error correction, and that their model
includes a power-constrained adversary but no channel noise
on top of adversarial interference, as ours will.

We restrict our focus to discrete memoryless channels
(DMCs) for which the input and state alphabets are binary
and for which the corresponding non-adversarial channel is
symmetric [8]. These channels are simple enough to capture
the basic features of our approach, and will provide guidance
for extensions to more general channels.

The remainder of the paper is organized as follows. In
Section II, we introduce relevant notation and background.We
present our main results in Section III, and Section IV con-
cludes the paper.

II. Preliminaries

We consider authentication when there is a legitimate sender
and receiver, as well as an active adversary who induces some
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channel state at each transmission. More formally, let WY |X,S

be a discrete adversarial channel, with the finite sets X,S, and
Y as the input, state, and output alphabets, respectively. Let F2
denote the field of order two. In this paper, we will consider
the case where X = S = F2, and the output of the channel
depends only on the sum of the input and state in F2: WY |X+S .
Additionally, we will assume WY |X+0 is a non-trivial binary-
input DMC that is symmetric as defined in [8]; roughly, such
channels may be decomposed into a set of binary symmetric
channels (BSCs) and a binary erasure channel (BEC). More
specifically, a binary-input channel is symmetric if there exists
a bijection π : Y → Y such that (1) π = π−1, and (2) W(y | 0) =

W(π(y) | 1) for all y ∈ Y. The BSC and the BEC themselves
are examples of such a channel.

In this paper, any decoder D of a binary linear code C
of length n is assumed to have the symmetry property that
y ∈ D−1(c) where y ∈ Yn, c ∈ C if and only if for all c′ ∈ C,
y′ ∈ D−1(c+c′), where y′i = yi if c′i = 0, and y′i = π(yi) if c′i = 1.
Notice that some channel outputs may belong to multiple
decoder preimages if they contain erasure symbols. For such
output words, we stipulate that the probability the word
decodes to each potential codeword is uniform. This decoder
property holds for a large class of decoders for transmission
over symmetric channels. For example, for low-density parity-
check (LDPC) codes and message passing decoders, these
symmetry conditions on the channel and decoders may be
compared with those of [9]; for polar codes, see [10].

For a length-n sequence, we define

Wn(y | x + s) =

n∏
i=1

W(yi | xi + si).

With a slight abuse of notation, we will write W(y | x+s) when
the sequence lengths are understood. Let s0 := 0 ∈ F2 and the
corresponding state sequence s0 := 0 ∈ Fn

2 represent the no-
adversary state: i.e. WY |X is a non-adversarial channel. Then,
an authentication code for this channel is an encoder/decoder
pair:

f : {1, 2, . . . ,M} → Fn
2

φ : Yn → {0, 1, 2, . . . ,M},

where an output of “0” from φ indicates a declaration of
adversarial interference. The decoder φ is successful if either
the output message is equal to the input message, or, if s , s0,
the output is equal to 0. In other words, the decoder either
successfully detects adversarial interference, or it decodes to
the legitimate message.

Let φ−1(A) ⊆ Yn represent the set of channel outputs
which decode to some i ∈ A under φ, and let φ−1(A)c be the
complement of this set in Yn. Let xi := f (i). Given transmitted
message i and state s, we define the probability of error for
authentication code ( f , φ) as:

e(i, s) =

W(φ−1(i)c | xi, s) if s = s0

W(φ−1({i, 0})c | xi, s) else.

An appropriate measure of error probability should take into
account our assumption that the adversary has knowledge of

the codebook but not the particular message being transmitted.
We assume each message in [M] := {1, 2, . . . ,M} is transmitted
with equal probability, so the average probability of error over
all possible messages for a given state s is

e(s) =
1
M

M∑
i=1

e(i, s).

We say a rate R is achievable if there exists a sequence of
(2nR, n) authentication codes such that

max
s∈Fn

2

e(s)→ 0 as n→ ∞.

Notice that maxs e(s) is the highest error probability the
adversary can hope for without knowledge of the transmitted
message. The authentication capacity Cauth is the supremum
of all achievable rates. Let C denote the capacity in the no-
adversary setting (i.e., s = s0).

In [6], it was shown that a channel property called over-
writability exactly determines when the authentication capacity
is nonzero. An adversarial channel WY |X,S with no-adversary
state s0 is overwritable if there exists a distribution PS |X such
that

∑
s PS |X(s | x′)W(y | x, s) = W(y | x′, s0) for all x, x′, y.

Theorem II.1. [6] If a channel is not overwritable, then
Cauth = C; if it is overwritable, then Cauth = 0.

Intuitively, over an overwritable channel, an adversary can
seamlessly make their own false message appear legitimate
to the receiver without being detected. This should be com-
pared with symmetrizability for the standard AVC problem
[5]: WY |X,S is symmetrizable if there exists PS |X such that∑

s PS |X(s | x′)W(y | x, s) =
∑

s PS |X(s | x)W(y | x′, s) for
all x, x′, y. In [6] it was shown that overwritability implies
symmetrizability, but that the converse does not hold.

The methods of proving Theorem II.1, as well as the
analogous results for the general AVC case [5], rely on
random coding techniques. In this paper, we demonstrate more
structured authentication codes whose rates are arbitrarily
close to the non-adversarial capacity.

In the remainder of the paper, a binary (M, n) code is a
(non-linear) code with M codewords and block length n, and
an [n, k] code is a binary linear code of block length n and
dimension k. The rate of a code is given by log2(M)/n = k/n
in the linear case. Appending one vector to another will be
denoted by ‖.

III. Main Results

In this section, we present structured authentication codes
which can achieve the authentication capacity, Cauth = C,
of the considered, non-overwritable channels. It should be
noted that the BSC and BEC, while non-overwritable, are
symmetrizable; we emphasize that we are restricting our focus
to the authentication setting. The structure of our argument
is as follows: in Section III-A, we show that a positive-
rate code with bounded-complexity decoding is achievable; in
Section III-B, we prove that we may use shared randomness
to construct such codes with a higher rate. Finally, in Section
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III-C we prove that these codes can be combined to form a
deterministic capacity-achieving keyless authentication code
with bounded-complexity decoding.

A. Positive-rate code

We begin by designing a sequence of authentication codes
with positive rate such that maxs e(s) approaches 0 as n goes to
infinity. Each message i ∈ [2k] corresponds to a binary vector
of length k, which we will denote mi. Our strategy will be to
append a hash vector of length k to each message. In the non-
deterministic case (i.e. W(y | x, s) ∈ (0, 1) for some choice of
y, x, s), we will then encode the resulting message-hash vector
using a linear error-correcting code. First, we show that there
exists a hash function that renders unique the state required to
shift between any two message-hash vectors:

Lemma III.1. There exists a hash function h : Fk
2 → F

k
2 such

that

[m1‖h(m1)] + [m2‖h(m2)] , [m3‖h(m3)] + [m4‖h(m4)] (1)

for distinct m1,m2,m3,m4 ∈ F
k
2.

Proof. With a slight abuse of notation, let h(m) := m3, where
the calculation is done in F2k using the isomorphism between
Fk

2 and F2k , and then converted back to a vector in Fk
2 (see, e.g.,

[11], Chapter 13). We claim this h has the desired property.
Suppose, by way of contradiction, that

[m1‖h(m1)] + [m2‖h(m2)] = [m3‖h(m3)] + [m4‖h(m4)]

for some distinct m1,m2,m3,m4 ∈ F
k
2. Then

m1 + m2 + m3 + m4 = 0, and m3
1 + m3

2 + m3
3 + m3

4 = 0. (2)

The intersection of the equations in (2) gives m3
1 + m3

2 + m3
3 +

(m1 + m2 + m3)3 = 0, which reduces to

(m1 + m2)(m1 + m3)(m2 + m3) = 0.

However, this cannot be the case, as the mi’s were chosen
to be distinct. We conclude that [mi‖h(mi)] + [m j‖h(m j)] is
distinct for each pair mi,m j ∈ F

k
2.

�

Remark III.2. For the hash function h(m) = m3 given in
the proof of Lemma III.1, determining whether a particular
binary vector of length 2k is a valid message-hash combination
consists of calculating m3. This requires a calculation in F2k ,
but does not require any stored information regarding hash
function values at either the sender or receiver. We present
this particular function to demonstrate one possibility. Other
hash functions may, of course, have the desired property of
Lemma III.1 and be utilized here, with trade-offs in the length
of the output hash vector, computational complexity, storage
requirements, etc.

By appending a hash whose existence is given by Lemma
III.1, we have established a sequence of positive-rate codes
for the case in which the channel WY |X,S is deterministic (i.e.
there is no channel noise in addition to the adversary’s state
choice). This is formalized in the following theorem.

Theorem III.3. Consider the sequence of (2k, 2k) codes de-
scribed by f (i) = [mi‖h(mi)], where h is as in Lemma III.1,
and φ(y) = j if f ( j) = y, and φ(y) = 0 else. Let W(y | x, s) = 1
if y = x + s, and zero otherwise. Then

max
s

e(s) ≤
2
2k .

Proof. Notice that for a fixed s , s0, there are at most two
valid codewords whose difference from another codeword is
precisely s. Indeed, suppose there are more than two, and
x1, x2, x3 are three such distinct codewords. Then it must be
the case that either x2 +s , x1 or x3 +s , x1 (or both). Without
loss of generality, suppose the former. Because we are working
over a field of characteristic 2, x1, x1 + s, x2, and x2 + s are all
distinct. However, (x1 +s)+x1 = s = (x2 +s)+x2, contradicting
our choice of h as having the property in (1).

Thus, e(i, s) = 1 for at most two values of i, and 0 for
all other values. For s = s0 over this deterministic channel,
e(i, s) = 0 for all i. Together, this gives us:

max
s

e(s) = max
s

 1
2k

2k∑
i=1

e(i, s)

 ≤ 2
2k .

�

In order to protect against channel noise in the case where
s = s0, we encode the message-hash vector of Theorem III.3
using a linear error-correcting code. The encoding process,
f , now consists of two steps: appending an appropriate hash
of the message, and encoding using the chosen linear code.
Decoding consists of decoding according to the linear code,
and then determining whether the resulting word contains a
valid message-hash combination. We will call a codeword of
the inner linear code that is the encoding of a valid message-
hash vector a valid codeword.

First, we observe that encoding using a linear code does not
have an effect on the property given by (1).

Lemma III.4. Let h : Fk
2 → F

`
2, where ` ≥ k, have the property

in (1), and let C : Fk+`
2 → Fn

2 be an [n, k+`] code. For i ∈ [2k],
let f (i) = C([mi‖h(mi)]). Then the difference vector f (i)− f ( j)
uniquely identifies i, j ∈ [2k].

Proof. This is a clear consequence of the linearity of C. �

Theorem III.5. Consider the authentication code of length n
described by f (i) = C([mi‖h(mi)]) for i ∈ [2k], where h : Fk

2 →

Fk
2 is as in Lemma III.1, and C is an [n, 2k] code with average

decoding error probability for WY |X bounded above by Pe(C).
Let D : Yn → Fn

2 be the decoding function of C, and suppose
D(y) = C([m j‖ĥ]). Let φ(y) = j if h(m j) = ĥ, and let φ(y) = 0
otherwise. Then the rate of the authentication code ( f , φ) is
k/n, and

max
s

e(s) ≤ max
{

Pe(C),
2
2k

}
.

Proof. The rate of the authentication code follows from the
length of the message vectors k and the final block length of
the code n. Notice that the rate of the authentication code is
half the rate of the chosen inner linear code C. For ease of
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notation, let M := 2k and xi := f (i). When s = s0, the success
of the decoder depends entirely on the protection of C:

e(s0) =
1
M

M∑
i=1

W(φ−1(i)c | xi, s0) ≤ Pe(C).

Next, suppose s , s0. For 0 ≤ t ≤ 22k −1, let δi,t be equal to
W(D−1(xi +ct) | xi, s) for codeword ct ∈ C, where c0 = 0. That
is, δi,t is the probability that the output of the channel with
input xi + s ∈ Fn

2 decodes under D to the codeword xi + ct ∈ C,
so that

∑22k−1
t=0 δi,t = 1. Then,

e(i, s) = W(φ−1({i, 0})c | xi, s)

=

22k−1∑
t=1

W(D−1(xi + ct) | xi, s) · 1i,t

=

22k−1∑
t=1

δi,t · 1i,t

where the indicator function 1i,t is equal to 1 when xi + ct

is a valid codeword (notice t , 0), and zero otherwise. From
our assumption in Section II on the symmetry of the decoder,
δi,t = δ j,t for all i, j ∈ [M] (but it is not necessarily the case
that 1i,t = 1 j,t). So,

e(s) =
1
M

M∑
i=1

22k−1∑
t=1

δt · 1i,t

≤
1
M

22k−1∑
t=1

2δt

 ≤ 2
M

(3)

where (3) follows from the fact that at most two values of i
yield a valid codeword xi + ct for a fixed t , 0 (see Lemma
III.4 and the proof of Theorem III.3), and hence 1i,t = 1 for
at most two values of i. �

B. Coding with shared randomness

The rate of a code constructed as in Section III-A is
upper bounded by half the non-adversarial channel capacity.
However, the non-adversarial capacity is achievable. We next
present a sequence of codes that, given a small amount of
shared randomness in the form of a shared secret key, allows
for authentication with maxs e(s) → 0 as n → ∞ while
maintaining a high rate. In particular, we achieve the non-
adversarial capacity at the cost of requiring a shared key.

The encoding of our authentication code is as follows: to
each message i ∈ [2k], represented by mi ∈ F

k
2, we append

a short vector which is a function of the message itself as
well as a small amount of shared randomness; we denote this
function by h. As in Section III-A, we may then further protect
against channel noise using a linear inner code. This entire
encoding process is encapsulated in the authentication code
encoding function fu,v : [2k] → Fn

2, where (u, v) is the shared
key between sender and receiver.

We propose a particular choice for the function h : Fk
2×F

`
2×

F`2 → F
`
2, where the shared random information is in F`2 × F

`
2

(equivalently, F2`
2 ). Letting ∆2,` : F`2 → F2` be the bijective map

implied by the isomorphism between the two fields, define

h : Fk
2 × F

`
2 × F

`
2 → F

`
2

(m,u, v) 7→ ∆−1
2,`

 k∑
j=1

m j∆2,`(u) j

 + v (4)

where m j is the jth coordinate of the vector m, and ∆2,`(u) j

indicates the jth power of ∆2,`(u) in F2` . The choice of function
given in (4) is similar to one used in [12]; its structure leads
to an efficient decoder φu,v based on the shared information
(u, v). Let D : Yn → Fn

2 be the decoding rule of the inner
linear code C : Fk+`

2 → Fn
2. The function φu,v first decodes y

according to D, then decides if the result is a valid codeword.
Denote the subset of C which is valid for shared u, v by Cu,v.
If the decoded codeword is valid, φu,v(y) is the corresponding
message in [2k]. Otherwise, φu,v(y) = 0.

To see how the validity of a codeword may be determined,
we first note that a codeword is in Cu,v if and only if, when
unencoded using C−1 (the inverse map from the image of C
back into Fk+`

2 ) the result is a valid message-hash vector. Define

Q1 :=
k∑

j=1

C−1(D(y)) j∆2,`(u) j + ∆2,`(v), (5)

Q2 := ∆2,`

(
C−1(D(y))k+`

k+1

)
, (6)

where C−1(·)k+`
k+1 is the last ` coordinates of C−1(·), and C−1(·) j

is the jth coordinate of C−1(·). The value Q1 is the the correct
value in F2` of h, given by the first k coordinates of C−1(D(y));
Q2 is the observed value in F2` of h.

If Q1 = Q2, we will declare that the message is authentic
and output as φu,v(y) the value in [2k] corresponding to the
first k coordinates of C−1(D(y)). If Q1 , Q2, we will declare
adversarial interference and output φu,v(y) = 0.

Next, we give results on the reliability of this scheme in a
noisy channel setting. The following theorem easily reduces
to the noiseless case.

Theorem III.6. Let the shared random vectors u and v each
be chosen uniformly at random from F`2, and let Pe(C) be
an upper bound on the average probability of decoding error
over WY |X of the [n, k + `] linear inner code C. Then for the
authentication code ( fu,v, φu,v) described above,

max
s

e(s) ≤ max
{

Pe(C),
k
2`

}
.

Proof. Let M := 2k and xi,u,v := fu,v(i). If s = s0,

e(s0) =
1

M · 22`

M∑
i=1

∑
u,v

W(φ−1
u,v(i)c | xi,u,v, s0) ≤ Pe(C).

Now, let s , s0. For 0 ≤ t ≤ 2k+` − 1, let δi,u,v,t be equal to
W(D−1(xi,u,v +ct) | xi,u,v, s) for codeword ct ∈ C, where c0 = 0.
That is, δi,u,v,t is the probability that the output of the channel
with input xi,u,v +s ∈ Fn

2 decodes to the codeword xi,u,v +ct ∈ C

under D, so that
∑2k+`−1

t=0 δi,u,v,t = 1. We let 1i,u,v,t be equal to
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1 if xi,u,v + ct ∈ Cu,v, and zero otherwise. As in the proof of
Theorem III.5, δi,u,v,t is independent of xi,u,v for our class of
decoders, so we have δi,u,v,t = δt, and

e(s) =
1

M · 22`

M∑
i=1

∑
u,v

W(φ−1
u,v({i, 0})c | xi,u,v, s)

=
1

M · 22`

M∑
i=1

2k+`−1∑
t=1

δt

∑
u,v

1i,u,v,t

≤
k

M · 2`

M∑
i=1

2k+`−1∑
t=1

δt (7)

≤
k

M · 2`

M∑
i=1

1 =
k
2`
,

Observe that each codeword xi,u,v + ct is in Cu,v if and only if

k∑
j=1

C−1(xi,u,v + ct) j∆2,`(u) j + ∆2,`(v) = ∆2,`

(
C−1(xi,u,v + ct)k+`

k+1

)
,

where C−1(·)k+`
k+1 is the last ` coordinates of C−1(·), and C−1(·) j

is the jth coordinate of C−1(·). This holds if and only if ∆2,`(u)
is a root of the degree (at most) k polynomial ∆2,`(C−1(ct)k+`

k+1)−∑k
j=1 C

−1(ct) jX j ∈ F2` [X]. For fixed t, this occurs for at most
k choices of u. We may then bound

∑
u,v 1i,u,v,t ≤

∑
v k = 2`k,

giving (7). �

C. Final coding scheme

Finally, we put the results of the previous two subsections
together in order to arrive at a code of high rate that may
accomplish authentication without the use of a shared key.
Loosely, we use the positive rate code of Section III-A to
encode the shared randomness needed for the code in Section
III-B, and send both codes across the adversarial channel.

Theorem III.7. Let ( fp, φp) denote the positive-rate code
of Section III-A, and let ( fr,u,v, φr,u,v) denote the code with
shared randomness of Section III-B. Let C(p)

n′ and C(r)
n be the

[n′,Rpn′] and [n,Rrn] linear inner code sequences chosen for
the two encoding procedures, respectively, and assume each
has average error probability approaching zero as n → ∞.
Let (u, v) be the shared randomness for ( fr,u,v, φr,u,v), chosen
uniformly at random from F`2 × F

`
2, where ` is such that

` = o(Rrn) and ` = ω(log(Rrn)).
Let j ∈ [22`] correspond to [u‖v] ∈ F2`

2 . Then, the code
described by [ fp( j)‖ fr,u,v(i)] has rate approaching Rr and error
probability approaching zero as block length goes to infinity.

Proof. Let y j be the channel output of the first portion of
the transmitted word, corresponding to input fp( j), and yi the
output of the second portion, corresponding to input fr,u,v(i).
First decode y j according to φp. If the decoder outputs “0” (i.e.
detects adversarial interference), output 0. Otherwise, decode
yi according to φr,û,v̂, where [û‖v̂] corresponds to the output
message ĵ of φp.

By Theorem III.5, the first decoder succeeds with probabil-
ity at least 1−max{Pe(C(p)

4`/Rp
), 2

22` } (notice here that the message

length of the positive-rate code is 2`, the required shared
randomness of the code ( fr,u,v, φr,u,v)). Given that this code
is successful, the code fr,u,v succeeds with probability at least
1−max{Pe(C(r)

n ), Rrn−`
2` } by Theorem III.6. In all, the probability

of success is bounded below by the product of these. As
n → ∞, ` → ∞, and the probability of success converges
to 1 given our assumptions on the asymptotic growth of `.

The rate of the code is given by R = (Rrn − `)/(n + 4`
Rp

).
Since ` = o(Rrn), as n→ ∞, R→ Rr. �

Remark III.8. Observe that the decoding complexity of this
scheme is bounded above by the sum of the decoding complex-
ities of the chosen linear inner codes, and the complexities of
three polynomial calculations in F2` (to verify the message-
hash vectors in the codes of Sections III-A and III-B). The
asymptotic rate Rr of this scheme is derived from the rate of
the linear code used in constructing the randomized code in
Section III-B. Since capacity-achieving linear codes exist for
the underlying symmetric channel, the capacity of our scheme
can approach the non-adversarial capacity.

IV. Conclusions

We presented a structured coding scheme utilizing linear
codes for authentication over binary-input, symmetric adver-
sarial channels. This strategy allows for coding rates up to
the non-adversarial capacity of the underlying channel, and
for bounded-complexity decoding. Expanding our work to a
broader class of adversarial channels is ongoing work.
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