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Abstract—The minimum common randomness required for the
approximate and separate generation of a pair of correlated
discrete memoryless sources is quantified by Wyner’s notion
of common information. Recently, Kumar, Li, and El Gamal
introduced the notion of exact common information as the min-
imum common randomness required for the exact and separate
generation of a pair of correlated discrete memoryless sources.
This new notion of common information, which does not have
a general single-letter characterization, was shown to match
Wyner’s notion for the symmetric binary erasure source. In this
work, we present two conditions on the joint statistics of the
pair of sources under either of which the exact and Wyner’s
notions of common information coincide. Though the conditions
are implicit, we prove the equality of Wyner and exact common
information for the generalized binary Z-source, generalized
erasure source and the noisy typewriter source by establishing
that these sources meet either of these conditions.

Index Terms—Distributed source generation, Wyner common
information, exact common information, channel resolvability,
letter typicality.

I. INTRODUCTION

One of the fundamental issues in source coding is to
quantify the information common to two (or more) random
variables. Significant research efforts during the last sixty
years have uncovered a great deal of knowledge in answering
this question, and in particular, one observation has become
evident. The answer to this fundamental question is subjective,
and depends on the actual context and/or application involved,
partly because many notions of information exist in informa-
tion theory.

The primary and most ubiquitous of all notions is that
of mutual information, which quantifies the reduction in the
entropy of a random variable due to the knowledge of a corre-
lated random variable. Gács and Körner formulated a notion of
common information of two DMSs as the rate of randomness
that can be simultaneously extracted from either of the two
correlated sources [1]. While it was hoped that this notion will
agree with the notion of mutual information, it was proven
that the Gács-Körner common information between a pair
of sources is more restrictive than and distinct from mutual
information. Despite being restrictive, Gács-Körner common
information plays a critical role in the optimal or best-known
schemes for several multi-user source coding problems (see
e.g. [2]–[4]).

This work builds a deeper understanding between the prob-
lem of distributed exact generation of a pair of correlated

sources and another notion of common information introduced
by Wyner. The origin of Wyner common information lies in
part in the Gray-Wyner problem [5]. As depicted in Fig. 1a,
the Gray-Wyner problem corresponds to the characterization
of the rates of communication required to communicate a pair
of correlated sources to two receivers with each requiring one
of the sources. The rate region is characterized in [5] to be

R , cl

[
∪
{

(R0, R1, R2) :
R0≥I(X,Y ;W )
R1≥H(X|W )
R2≥H(Y |W )

}]
, (1)

where cl denotes the topological closure, and the union is over
all joint probability mass functions (pmfs) QXYW such that
their marginal QXY equal the pmf of the pair of sources. A
particularly interesting operating point in the Gray-Wyner rate
region is the one with the least common channel rate on the
Pangloss plane R0 +R1 +R2 = H(X,Y ), i.e., the least rate
conveyed on the common channel so as to be sum-rate optimal.
This rate was characterized to be

W (X;Y ) , min
X↔W↔Y

I(X,Y ;W ). (2)
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Fig. 1: Two setups for defining Wyner common information.



In [6], Wyner presented yet another operational interpreta-
tion for the quantity W (X;Y ) – commonly known as the
Wyner common information (between X and Y ). In [6],
Wyner considered the setup in Fig. 1b to show that W (X;Y )
is the smallest rate of a uniform random seed that must be
supplied to two independent processors in order for them to
approximately generate the two DMSs X and Y separately.
The Kullback-Leibler divergence was the metric chosen for
quantifying the precision of the approximation of the generated
sources to the design distribution of the correlated discrete
memoryless sources. Owing to this operational interpretation,
Wyner common information and the achievability scheme
in [6] play a central role in strong coordination problems,
which can be broadly termed as problems of generating
distributed correlated sources with a specified distribution (see
e.g. [7]–[10]). Other connections of Wyner common infor-
mation to lossy reconstruction problems, and an extension to
multiple random variables were explored in [11, 12]. It must be
remarked here that despite the innocuous-looking formulation
in (2), the computation of Wyner common information is
known only for a few joint pmfs [13].

Recently, in [14], Kumar et al. proposed the notion of exact
common information using the setup in Fig. 1b with the exact
reconstruction requirement to match the distribution QX̂n,Ŷ n

precisely to Q⊗nXY – the n-fold product of QXY , which is the
pmf of n i.i.d. RVs each distributed according to QXY . In
other words, exact common information is the smallest rate
of a common message that must be shared by two processors
to separately generate DMSs QX and QY correlated jointly
according to QXY .

In [14], the authors derived the fundamental properties
of exact common information and proved that for the sym-
metric binary erasure source, the exact common information
rate matches the Wyner common information rate. Since the
reconstruction requirement is more stringent than the one
Wyner imposed in [6], the exact common information between
two random variables is lower bounded by Wyner common
information. However, it is unknown if this inequality is strict.

In this work, we present two sufficient conditions under
which the notions of exact and Wyner common information
coincide. The conditions are implicit in the sense that they
depend on the auxiliary random variable W that results from
the optimization of Wyner common information in (2). We
then present a few examples of pairs of sources, namely the
generalized binary Z-source, the generalized erasure source
and the noisy typewriter source, that satisfy these conditions.

II. NOTATION

Given a finite set S, unif(S) denotes the uniform pmf on
S, and 1S denotes the indicator function on S . For a vector
an ∈ An and ã ∈ A, #an(ã) , {i : ai = ã}. Given a joint
pmf QAB over an alphabet A × B, we define the following
letter-typical sets.

Tnε [QA] ,

{
an : sup

ã∈S(QA)

∣∣∣∣
#an(ã)

nQA(a)
− 1

∣∣∣∣ ≤ ε
}
,

Tnε [QA|B ; bn] ,




an : sup

(ã,b̃)∈S(QAB)

#bn (b̃)>0

∣∣∣∣∣∣

#an,bn (ã,b̃)

#bn (b̃)

QA|B(ã|b̃)
− 1

∣∣∣∣∣∣
≤ ε




.

For ` ∈ N and 1 ≤ i ≤ `, ei,` denotes a unit column
vector of length ` with a single 1 at the ith component. Given
random variables A,B,C, we let A↔ B ↔ C to indicate the
conditional independence of A and C given B. The support of
a random variable X is denoted by S(X). For two m×n matri-
ces A,B, we let A � B if Aij ≤ Bij for all i = 1, . . . ,m and
j = 1, . . . , n. Lastly, h(x) , −x log2 x− (1− x) log2(1− x)
is the binary entropy function.

The following remarks can be now made.
Remark 1: For any 0 < ε < 1, there exists n0 ∈ N such

that for n > n0 and An ∼ Q⊗nA ,

P[An ∈ Tnε [QA]] > 1− ε. (3)

Note that unlike the oft-used definition of conditional (letter)
typicality [15], the above definition of Tnε [QA|B ; bn] does
not require bn to meet any marginal typicality requirement.
Consequently, the following seemingly surprising result holds
even though the infinitesimal for conditional typicality is
smaller than that for marginal typicality for B.

Remark 2: For any 0 < ε < 1, there exists n0 ∈ N such

that for n > n0, bn ∈ Tnε [QB ], and An ∼
n∏
i=1

QA|B=bi ,

P[An ∈ Tnε
2

[QA|B ; bn]] > 1− ε. (4)

III. PROBLEM DEFINITION AND BASIC RESULTS

We define the exact common information E (X;Y ) through
Fig. 1b with the Kullback-Leibler divergence term equated
to zero instead. Given a joint pmf QXY , we say that exact
generation is possible at a rate of R if for every ε > 0,
there exists an n ∈ N, and random variable Wn such that
Xn ↔ W ↔ Y n and H(Wn) ≤ n(R + ε). In other words,
if Wn is conveyed to two randomized processors, they can
individually use the realization of Wn to separately generate
Xn and Y n, respectively, and the reconstructions together
will have a joint pmf matching Q⊗nXY . The exact common
information is then infimum of all such achievable rates,
summarized by the following functional definition.

Definition 1: Given pmf QXY , the exact common informa-
tion is defined to be

E (X;Y ) , lim
n→∞

(
inf

Xn↔Wn↔Y n

H(Wn)

n

)
. (5)

Notice that the alphabet size of Wn is allowed to grow with
n, and hence, this is not a computable form of exact common
information. Several basic properties of E (X;Y ) can be found
in [14] where G(X;Y ) is used to indicate the same quantity.
For the sake of completeness, we denote the Wyner common
information by the following.

Definition 2: Given pmf QXY , the Wyner common infor-
mation is defined to be

W (X;Y ) , inf
X↔W↔Y
|W|≤|X||Y|

I(X,Y ;W ). (6)



The following properties are in order. Since the setups for
exact and Wyner common information are identical, and
the generation requirement for the former is more stringent,
the following ordering of the different notions of common
information holds.

Remark 3: [14, Prop. 3] Given (X,Y ) ∼ QXY , let G (X;Y )
denote the Gács-Körner common information between random
variables X and Y . Then,

G (X;Y ) ≤ I(X;Y ) ≤ W (X;Y ) ≤ E (X;Y ) ≤ H(X,Y ).

The next property argues that concatenation increases exact
common information.

Lemma 1: Let (A,B,C,D) ∼ QABQCD, X = (A,C) and
Y = (B,D). Then,

max{E (A;B),E (C;D),W (X;Y )} ≤ E (X;Y )

= E (A;B) + E (C;D).

Further, if E (A;B) = W (A;B) and E (C;D) = W (C;D),
then E (X;Y ) = E (A;B) + E (C;D) = W (X;Y ).

Proof: The lower bound is trivial since the separate
generation of X and Y involves the generation of A and
B, and the generation of C and D. For the upper bound,
let {W (1)

n : n ∈ N} and {W (2)
n : n ∈ N} be sequences

of random variables such that An ↔ W
(1)
n ↔ Bn and

Cn ↔ W
(2)
n ↔ Dn for each n ∈ N, H(W (1)

n )
n → E (A;B)

and H(W (2)
n )
n → E (C;D). Define for each n ∈ N, joint pmf

Q
AnBnCnDnW

(1)
n W

(2)
n

,

(
Q
W

(1)
n
Q
AnW(1)

n
Q
Bn|W (1)

n

×Q
W

(2)
n
Q
CnW(2)

n
Q
Dn|W (2)

n

)
.

Then, the upper bound follows from the following argument,

E (X;Y ) = lim
n→∞

(
inf

Xn↔Wn↔Y n

H(Wn)

n

)

≤ lim
n→∞

(
H(W

(1)
n ) +H(W

(2)
n )

n

)

= E (A;B) + E (C;D). (7)

Note that

W (A;B) + W (C;D)

= inf
A↔W↔B

I(A,B;W ) + inf
C↔W↔D

I(C,D;W ) (8)

≤ inf
A↔W↔B

I(A,B;W ) + inf
C↔W↔D

I(C,D;W,A,B)

(a)
= inf

A↔W↔B
I(A,B;W ) + inf

C↔W↔D
I(C,D;W |A,B)

≤ inf
X↔W↔Y

I(A,B;W ) + inf
X↔W↔Y

I(C,D;W |A,B)

≤ inf
X↔W↔Y

(
I(A,B;W ) + I(C,D;W |A,B)

)

≤ inf
X↔W↔Y

I(X,Y ;W ) = W (X;Y ), (9)

where (a) follows from the independence of (A,B) and
(C,D). Now, define a joint pmf

QA,B,C,D,W1W2 = QW1QW2QA|W1
QB|W1

QC|W2
QD|W2

,

where QAW1B and QCW2D are chosen to attain the infima in
(8). Then, we see that

W (X;Y ) = inf
X↔W↔Y

I(X,Y ;W )

≤ I(A,B,C,D;W1,W2)

= I(A,B;W1) + I(C,D;W2)

= W (A;B) + W (C;D). (10)

Hence, it follows that W (A;B) + W (C;D) = W (X;Y ).
Now, if E (A;B) = W (A;B) and E (C;D) = W (C;D), then

E (A;B) + E (C;D) = W (A;B) + W (C;D)

= W (X;Y ) ≤ E (X;Y ). (11)

The claim then follows from (7).
Another property is analogous to the data processing inequality
and characterizes the monotonicity of exact common informa-
tion with respect to channel degradedness.

Remark 4: E (X;Y ) ≤ E (X ′;Y ′) for any pmf QXX′Y Y ′
such that X ↔ X ′ ↔ Y ′ ↔ Y

IV. NEW RESULTS

In this section, we present the two conditions that ensure
the equality of exact and Wyner common information.

Theorem 1: Let (X,Y ) ∼ QXY be given. Let random vari-
able W be such that X ↔W ↔ Y , I(X,Y ;W ) = W (X;Y ),
and H(W |X,Y ) = 0, then

E (X;Y ) = W (X;Y ). (12)

Proof: Note that this theorem is applicable only when
W that satisfies X ↔ W ↔ Y also meets I(X,Y ;W ) =
W (X;Y ) = H(W ), i.e., the Wyner-optimal auxiliary RV W
is a function of X , or Y or (X,Y ). In this setting, from
Definition 1, we see that

E (X;Y ) , lim
n→∞

(
inf

Xn↔Z↔Y n

H(Z)

n

)
(a)

≤ H(Wn)

n
(13)

= H(W ) = W (X;Y )
(b)

≤ E (X;Y ), (14)

where (a) follows by setting Z = Wn and (b) follows
from Remark 3. The achievability follows simply by using
a variable-length code (such as a Huffman code [16]) to
compress the source Wn that, on average, uses no more than
nH(W ) + 1 bits. The two sources are then generated using
the channels Q⊗nX|W and Q⊗nY |W , respectively.

Theorem 2: Given (X,Y ) ∼ QXY , if there exists a random
variable W such that I(X,Y ;W ) = W (X;Y ) and

∑

w∈W
H(X|W = w) ·H(Y |W = w) = 0, (15)

then E (X;Y ) = W (X;Y ).
Proof: Let Wx = {x : H(X|W = w) > 0} and Wy =

{w : H(Y |W = w) > 0}. Then, by (15), we must have
Wx ∩Wy = ∅. Hence,

H(X,Y |W ) =
∑

w∈W
QW (w)H(X,Y |W = w)



≥
∑

w∈Wx∪Wy

QW (w)H(X,Y |W = w)

≥
( ∑

w∈Wx

QW (w)H(X|W = w)

+
∑

w∈Wy

QW (w)H(Y |W = w)

)

= H(X|W ) +H(Y |W ) ≥ H(X,Y |W ) (16)

Hence, it follows that X ↔W ↔ Y .
We now devise a two-stage scheme to exactly match the

output statistics to Q⊗nXY . The first stage, which does the bulk
of approximating the joint pmf is a modification of Wyner’s
achievability scheme that is also used in the problem of
approximating the statistics of a channel output, also known
as the channel resolvability problem [7, 17, 18]. Wyner’s
approach and that in [7] only require the sources to match in
the sense of an asymptotically vanishing variational distance
(or Kullback-Leibler divergence) constraint. The modification
we impose will allow for a nearly-uniform-type convergence
constraint. The second stage then refines the shortcomings of
the first to match the exact generation requirement.

Let auxiliary random variable W and joint pmf QXWY be
such that (a) I(X,Y ;W ) = W (X;Y ) and (b) (15) is met.
To devise a scheme to exactly generate the two sources, we
first pick ε > 0, and pick n sufficiently large so that (3) of
Remark 1 holds for QW , and (4) of Remark 2 holds for both
QX|W and QY |W . Consequently,

P
[
Wn ∈ Tnε [QW ]

]
> 1− ε, (17)

and for any wn ∈ Tnε [QW ], Xn ∼ Q⊗nX|W (·|wn) and Y n ∼
Q⊗nY |W (·|wn),

P
[
Xn ∈ Tnε

2
[QX|W ;wn]

]
> 1− ε, (18)

P
[
Y n ∈ Tnε

2
[QY |W ;wn]

]
> 1− ε. (19)

Next, suppose that

R , I(X,Y ;W ) + 7ε log2 |X ||Y|. (20)

Now, let C , {Wn(i)}2nR

i=1 be a codebook with each codeword
Wn(i), i = 1, . . . , 2nR, generated i.i.d. using Q̃nW defined by

Q̃nW (wn) =
Q⊗nW (wn)1Tn

ε [QW ](w
n)

Q⊗nW (Tnε [QW ])
. (21)

Now, define a channel Q̃nX|W (·|·) with input alphabet Tnε [QW ]
and output alphabet Xn by

Q̃nX|W (xn|wn) =
Q⊗nX|W (xn|wn)1Tn

ε
2

[QX|W ;wn](x
n)

Q⊗nX|W (Tnε
2

[QX|W ;wn]|wn)
, (22)

and similarly define the channel Q̃nY |W with input alphabet
Tnε [QW ] and output alphabet Yn by

Q̃nY |W (yn|wn) =
Q⊗nY |W (yn|wn)1Tn

ε
2

[QY |W ;wn](y
n)

Q⊗nY |W (Tnε
2

[QY |W ;wn]|wn)
. (23)

Codebook CI ⇠ unif({1, . . . , 2nR})

Q̃n
X|W

Q̃n
Y |W

X̃n

Ỹ n

Wn(I)
(X̃n, Ỹ n) ⇠ Q̃C,n

XY

Fig. 2: The codebook setup for generating (X̃n, Ỹ n).

For each (xn, yn) ∈ Xn×Yn, define 2nR i.i.d. RVs Zi(xn, yn)
by

Zi(x
n, yn) = Q̃nX|W (xn|Wn(i))Q̃nY |W (yn|Wn(i)). (24)

As a consequence of Lemma 2 of Appendix A and (16)-(19),
we have for any i = 1, . . . , 2nR, and (xn, yn) ∈ Xn × Yn,

Zi(x
n, yn) ∈

[
0,

2−n(H(X,Y |W )(1−2ε)

(1− ε)2

]
(25)

Let µ(xn, yn) , E[Zi(x
n, yn)]. Since we have chosen n

appropriately large, we can easily see that

µ(xn, yn) = E[Zi(x
n, yn)]

=
∑

wn

Q̃nW (wn)Q̃nX|W (xn|wn)Q̃nY |W (yn|wn)

(17)−(19)
≤

∑

wn

Q⊗nW (wn)

1− ε
Q⊗nX|W (xn|wn)

1− ε
Q⊗nY |W (yn|wn)

1− ε

=
Q⊗nXY (xn, yn)

(1− ε)3
. (26)

E[Z2
i (xn, yn)]

(25)
≤ 2−nH(X,Y |W )(1−2ε)

(1− ε)2
E[Zi(x

n, yn)] (27)

=
2−nH(X,Y |W )(1−2ε)

(1− ε)2
µ(xn, yn). (28)

From the above, it also follows that

var(Zi(x
n, yn)) ≤ 2−nH(X,Y |W )(1−2ε)

(1− ε)2
µ(xn, yn) (29)

Now, define a (random) pmf Q̃C,nXY on Xn × Yn that is
determined by the random codebook C by

Q̃C,nXY (xn, yn) ,
2nR∑

i=1

Zi(x
n, yn)

2nR

=

2nR∑

i=1

Q̃nX|W (xn|Wn(i))Q̃nY |W (yn|Wn(i))

2nR
.

As shown in Fig. 2, the pmf Q̃C,nXY can be seen to be the
output pmf when a codeword from the channel resolvability
codebook C is passed through two parallel channels Q̃nX|W
and Q̃nY |W , respectively. Note that p̃C,nXY is a weighted sum of
i.i.d. RVs, and hence, we can use well-known concentration
inequalities to bound tail events of interest. In this work, the
inequality of choice will be Bernstein’s inequality [19]. We
now make the following observation. For any realization of



the codebook, all W -codewords lie in Tnε [QW ], and for each
wn ∈ Tnε [QW ], the support of the pair of outputs from the
combined parallel channels is

S
(
Q̃nX|W (·|wn)Q̃nY |W (·|wn)

)
=

(
Tnε

2
[QX|W ;wn]

×Tnε
2

[QY |W ;wn]

)

= Tnε
2

[QXY |W ;wn], (30)

where the last equality follows from Lemma 3 of Appendix A.
Therefore, from (63) of Lemma 2 of Appendix A, for any C,

S(Q̃C,nXY ) ⊆ Tn2ε[QXY ]. (31)

In other words, no matter what the realization of the W -
codebook, the support of the (random) code-induced distri-
bution Q̃C,nXY , which itself is a random subset of Xn × Yn
is always subset of the typical set Tn2ε[QXY ]. Thus, it then
follows that µ(xn, yn) = 0 for any (xn, yn) /∈ Tn2ε[QXY ], and

S(µ) =
⋃

C
S(Q̃C,nXY ) ⊆ Tn2ε[QXY ]. (32)

Now, fix (xn, yn) ∈ S(µ) and suppose that η , 1
(1−ε)3 + ε.

Then, from (26) and (32), we see that

∆(xn, yn) , η Q⊗nXY (xn, yn)− µ(xn, yn)

≥ εQ⊗nXY (xn, yn)
(32)
≥ ε 2−nH(XY )(1+2ε), (33)

∆1(xn, yn) , η
3Q
⊗n
XY (xn, yn) + 2

3µ(xn, yn)

≤ η Q⊗nXY (xn, yn)
(32)
≤ η 2−nH(XY )(1−2ε). (34)

We proceed with the computation of the following tail event
for this choice of (xn, yn).

P
[∣∣∣ Q̃C,nXY (xn, yn)− µ(xn, yn)

∣∣∣ > ∆(xn, yn)
]

= P



∣∣∣∣

2nR∑

i=1

Zi(x
n, yn)

2nR
− µ(xn, yn)

∣∣∣∣ > ∆(xn, yn)




(25)
≤ 2 exp


 − 1

2

(
2nR∆(xn, yn)

)2
2−nR

var(Z1(xn, yn)) + 2−nH(X,Y |W )(1−2ε)

(1−ε)2
∆(xn,yn)

3


 ,

where we have used Bernstein’s inequality to bound the tail
event. Note that the above bound quantifies the probability that
a random code C meets the upper bound for Q̃C,nXY evaluated
at the chosen (xn, yn). We can now use the upper bounds and
lower bounds of ∆(xn, yn) in (33), (34), and the upper bound
for variance from (29) to show that

P
[∣∣∣ Q̃C,nXY (xn, yn)− µ(xn, yn)

∣∣∣ > ∆(xn, yn)
]

(29)
≤ 2 exp


 − 1

22nR
(
η Q⊗nXY (xn, yn)− µ(xn, yn)

)2

2−nH(X,Y |W )(1−2ε)

(1−ε)2
(η Q⊗n

XY (xn,yn)+2µ(xn,yn))
3




(33),(34)
≤ 2 exp

[
− 1

2ε
22nR2−nH(XY )(2+4ε)

2−nH(X,Y |W )(1−2ε)

(1−ε)2 η 2−nH(X,Y )(1−2ε)

]

≤ 2 exp

[
− (1− ε)2ε2

2η
2n(R−I(W ;X,Y )(1+6ε))

]

(20)
≤ 2 exp

[
− (1− ε)2ε2

2η
2nε|X ||Y|

]
. (35)

Note that the above bound holds for any (xn, yn) ∈ S(µ). Let∧
denote the logical “and” operator. Then,

P




∧

(xn,yn)∈S(Q̃C,nXY )

(
Q̃C,nXY (xn, yn)

Q⊗nXY (xn, yn)
≤ η

)


≥ P


 ∧

(xn,yn)∈S(µ)

(
Q̃C,nXY (xn, yn)

Q⊗nXY (xn, yn)
≤ η

)


= P


 ∧

(xn,yn)∈S(µ)

(
Q̃C,nXY (xn, yn)− µ(xn, yn)

∆(xn, yn)
≤ 1

)


≥ P


 ∧

(xn,yn)∈S(µ)




∣∣∣ Q̃C,nXY (xn, yn)− µ(xn, yn)
∣∣∣

∆(xn, yn)
≤ 1






(a)

≥ 1− |S(µ)|
(

2 exp

[
− (1− ε)2ε2

2η
2nε|X ||Y|

])

≥ 1− 2 exp

[
− (1− ε)2ε2

2η
2nε|X ||Y| − n loge |X ||Y|

]
, (36)

where (a) follows from (35) and the union bound. Thus,
by choosing n large enough, we can ensure that the quantity
in (36) is positive. Hence, there exists a realization of the
random codebook C = {w̄n(i) : i = 1, . . . , 2nR} such that for
any (xn, yn) ∈ S

(
Q̃C,nXY

)
,

Q̃C,nXY (xn, yn) ,
1

2nR

2nR∑

i=1

Q̃nX|W (xn|w̄n(i))Q̃nY |W (yn|w̄n(i))

≤ η Q⊗nXY (xn, yn). (37)

Since Q̃C,nXY (xn, yn) = 0 if (xn, yn) /∈ S
(
Q̃C,nXY

)
, the above

bound holds for all (xn, yn) ∈ Xn × Yn. Thus, it must be
true that

rnXY ,
η Q⊗nXY − Q̃C,nXY

η − 1
. (38)

defines a pmf over Xn × Yn. We can then rewrite Q⊗nXY as
an convex combination of Q̃C,nXY and rnXY that highlights the
two stages for generation of Q⊗nXY .

Q⊗nXY =
1

η
Q̃C,nXY +

(
1− 1

η

)
rnXY , (39)

In the above, the first term that encompasses all but an
infinitesimal portion of the probability measure indicates the
first-stage approximation of Q⊗nXY using a modified Wyner-
style codebook. This is followed by the second-stage ap-
proximation, which carries an infinitesimal portion of the
probability measure, but is indispensable in meeting the exact
generation constraint. To generate n copies of the two sources
exactly distributed according to QXY , the controller first
generates an instance of a binary random variable V with

QV (0) ,
∣∣∣
∣∣∣Q⊗nXY −

1

η
Q̃C,nXY

∣∣∣
∣∣∣
1

= 1− 1

η
. (40)



The controller conveys the realization of V to both terminals.
If V = 0, the controller additionally generates an instance
of (X̃n, Ỹ n) ∼ rnXY , and conveys φr(X̃n, Ỹ n) to the two
terminals, where φr : Xn × Yn → {1, . . . , 2dn log2 |X ||Y|e}
is a bijective map. Note that conveying the outcome of this
bijective map requires no more than dn log2 |X ||Y|e bits. The
two terminals then map the bits back to the corresponding
instances using φ−1

r , and output the respective components.
Note that when V = 0, each terminal knows exactly the
realization of the other source as well.

Now, if V = 1, the controller generates nR bits uniformly
at random, and conveys it to both terminals. The terminals
use the bits to identify the appropriate codeword from C, and
generate their source realizations using the chosen codeword
and the respective channels Q̃nX|W or Q̃nY |W . On average, this
scheme uses no more than

1

n
+
R

η
+

(
1− 1

η

)(
log2 |X ||Y|+

1

n

)
bits/symbol. (41)

By allowing n to grow unbounded and then ε to vanish, we can
see that η approaches unity and the above quantity approaches
the required limit of I(X,Y ;W ) = W (X;Y ). Thus we can
build schemes for separate but exact generation of the pair of
sources at rates arbitrarily close to but larger than W (X;Y ).
Combined with Remark 3, the claim follows.

V. SOME EXAMPLES

The two main conditions derived in the previous section
characterize when the exact and Wyner notions of common
information coincide. However, they are implicit in the sense
that a given pmf QXY can be verified to meet either of these
criteria only after solving for the Wyner-optimal auxiliary
RV W corresponding to QXY . Since the characterization of
Wyner common information in (6) involves the optimization
of convex function over a non-convex set, we are stymied
when attempting to quantify the Wyner-optimal auxiliary RV
W , and hence in verifying if a pmf QXY meets either of these
implicit conditions of Theorems 1 and 2. Despite this obstacle,
we can establish three classes of pmfs that meet the implicit
condition of Theorem 2.

A. The General Noisy Typewriter Source

Definition 3: A general noisy typewriter channel is k-input
k-output channel (for some integer k ≥ 2) whose output B ∈
{1, . . . , k} is related to the input A ∈ {1, . . . , k} as follows.
For i, j ∈ {1, . . . , k},

QB|A(j|i) ≥ 0⇔ (j − i) ∈ {0, 1, 1− k}. (42)

A pair (X,Y ) ∼ QXY is a general noisy typewriter source if
either QX|Y or QY |X is a general noisy typewriter channel.

Theorem 3: If pmf QXY is a general noisy typewriter
source, then E (X;Y ) = W (X;Y ).

Proof: Let QXY be a general noisy typewriter source
with |X | = |Y| = k. Then, QXY takes the form

QXY ≡




∗ ∗ 0 0 · · · 0 0
0 ∗ ∗ 0 · · · 0 0

...

0 0 0 0 · · · ∗ ∗
∗ 0 0 0 · · · 0 ∗



, (43)

where ∗ indicates a possible non-zero entry. Now, let W be
such that X ↔ W ↔ Y . Let w ∈ S(W ), QX|W (·|w) =
[α1 · · · αk], and QY |W (·|w) = [β1 · · · βk]. Then,

QX,Y |W=w =




α1β1 α1β2 · · · α1βk
α2β1 α2β2 · · · α2βk

...
...

...
αk−1β1 αk−1β2 · · · αk−1βk
αkβ1 αkβ2 · · · αkβk




� QXY
pW (w)

≡




∗ ∗ 0 0 · · · 0 0
0 ∗ ∗ 0 · · · 0 0

...

0 0 0 0 · · · ∗ ∗
∗ 0 0 0 · · · 0 ∗




(44)

Let us now characterize all matrices QX,Y |W=w that meet
the above requirement. To this end, we may assume that the
entries in positions indicated by ∗ are positive. We proceed by
simply comparing the entries of the two matrices in positions
(i, j) where QXY (i, j) is guaranteed to be zero. Let us first
identify matrices with α1β1 > 0 satisfying (44). Comparing
the zero entries in the first row and column, we infer that

βj = 0, 2 < j ≤ k, (45)
αi = 0, 2 ≤ i < k. (46)

Now, (α1β2)(αkβ1) ≤ αkβ2 ≤ QXY (k, 2) = 0. Hence,
both the (1, 2)th and (k, 1)st entries of QX,Y |W (·, ·|w) in
(44) cannot be positive. Hence, the only possible solutions
to (44) with α1β1 > 0 are e1,k · (β1eT1,k + β2eT2,k) or
(α1e1,k + αkek,k) · eT1,k.

Now, to identify solutions with α1β2 > 0, we compare the
first row and the second column on both sides to infer that

βj = 0, 2 < j ≤ k, (47)
αi = 0, 2 < i ≤ k. (48)

Also, as before, (α1β1)(α2β2) ≤ α2β1 ≤ QXY (2, 1) = 0.
Hence, at most one of the (1, 1)st and (2, 2)nd entries of
QX,Y |W (·, ·|w) in (44) can be positive. Hence, the only
possible solution other than e1,k·(β1eT1,k+β2eT2,k) is (α1e1,k+

α2e2,k) · eT2,k. Note that in the above three solutions, either

H(X|W = w) = −
k∑

i=1

αi log2 αi = 0, or (49)

H(Y |W = w) = −
k∑

i=1

βi log2 βi = 0. (50)



By a simple argument that involves renaming indices, we can
show that the possible solutions are as follows.

ei,k · (βieTi,k + βφ(i+1)eTφ(i+1),k) or (51)

(αiei,k + αφ(i−1)eφ(i−1),k) · eTi,k, i = 1, . . . , k, (52)

where φ(0) = k, φ(i) = i for i ∈ {1, . . . , k} and φ(k + 1) =
1. Note that for each of the solution, (50) holds. Hence, all
solutions to (44), and hence for any X ↔ W ↔ Y , we must
have H(X|W = w) = 0 or H(Y |W = w) = 0 for all w ∈
S(W ). Since W is any auxiliary RV that meets X ↔W ↔ Y ,
(15) must also be met by the Wyner-optimal auxiliary RV of
QXY . Hence, from Theorem 2, the claim follows.

B. General Erasure Source

Definition 4: A general erasure source is a pair of RVs
(X,Y ) with X = {1, . . . , k}, Y = {1, . . . , k + 1}, and

QXY (i, j) ≥ 0⇔ j ∈ {i, k + 1}. (53)

Theorem 4: If pmf QXY is a general erasure source, then
E (X;Y ) = W (X;Y ).

Proof: The proof is similar to that of Theorem 3. Here,
for any X ↔W ↔ Y , and w ∈ S(W ), we must have

QXY |W=w =




α1β1 α1β2 · · · α1βk
α2β1 α2β2 · · · α2βk

...
...

...
αkβ1 αkβ2 · · · αkβk




� QXY
pW (w)

≡




∗ 0 0 · · · 0 ∗
0 ∗ 0 · · · 0 ∗

...

0 0 0 · · · ∗ ∗



. (54)

Suppose we seek solutions to (54) with αiβi > 0, 1 ≤ i ≤ k.
By comparing the ith column, we see that αi′ = 0 if i′ 6= i.
Hence, the only solution with with αiβi > 0, 1 ≤ i ≤ k, is
ei,k · (βieTi,k+1 + βk+1eTk+1,k+1). It is straightforward to see
that (α1e1,k+· · ·+αkek,k)·eTk+1,k+1 is the only other possible
solution to (54). As before, it follows that for any X ↔W ↔
Y , we must have H(X|W = w) = 0 or H(Y |W = w) =
0 for all w ∈ W . Since W is any auxiliary RV that meets
X ↔ W ↔ Y , (15) must also be met by the Wyner-optimal
auxiliary RV corresponding to QXY , the claim follows from
Theorem 2.

Theorem 5: For an erasure source QXY =

[
a 0 b
0 c d

]
,

E (X;Y ) = W (X;Y )

=

{
(a + d)h

(
a

a+d

)
+ (b + c)h

(
b

b+c

)
ac ≤ bd

h (a + b) ac > bd
.

Proof: From the proof of Theorem 4, we see that the
optimal decomposition of QXY in terms of its Wyner common
information auxiliary RV must be

QXY =

(
(a + x)

[
a

a+x 0 x
a+x

0 0 0

]

+ (b− x+ d− y)

[
0 0 b−x

b−x+d−y
0 0 d−y

b−x+d−y

]

+ (c + y)

[
0 0 0
0 c

c+y
y

c+y

])
(55)

for some suitable x and y. In the above decomposition, for
a fixed 0 ≤ x ≤ b, the optimal choice of y must correspond
to an optimal decomposition of a pmf QX′Y ′ in terms of its
Wyner common information auxiliary RV, where

QX′Y ′ =

[
0 0 b−x

1−a−x
0 c

1−a−x
d

1−a−x

]
, (56)

which is an L-shaped pmf. From [13], we see that the optimal
y for a given x equals

y =
dc

b− x+ c
. (57)

Hence, the optimal decomposition of QXY should take the
following form:

QXY =

(
a + x)

[
a

a+x 0 x
a+x

0 0 0

]

+
(b− x)(1− a− x)

b− x+ c

[
0 0 b−x+c

1−a−x
0 0 d

1−a−x

]

+
c(1− a− x)

b− x+ c

[
0 0 0
0 b−x+c

1−a−x
d

1−a−x

])
. (58)

The optimal x can then be found by maximizing H(X,Y |W )
as a function of x. The optimal x is given by

x∗ = arg max
0≤x≤b

(
(a + x)h

(
a

a+x

)
+ (1− a− x)h

(
d

1−a−x
))
.

Due to the concavity of the binary entropy function, the
unconstrained optimum is attained when

a
a+x∗ = d

1−a−x∗ = a + d, (59)

which occurs at x∗ = a(b+c)
a+d . Since the derivative is positive

at x = 0, we can conclude that the optimal choice for the
constrained optimization is

x∗ = min

{
b,

a(b + c)

a + d

}
. (60)

Computing I(X,Y ;W ) for this choice yields the result.
Remark 5: For the symmetric binary erasure source

QXY =

[
1
2 (1− p) 1

2p 0
0 1

2p
1
2 (1− p)

]
,

E (X;Y ) = W (X;Y ) = h(p)1[0.5,1](p) + 1[0,0.5)(p). (61)

While the above result was specifically proved for the sym-
metric binary erasure source in [14], through our approach we
are able to establish the equality of exact and Wyner common
information generally for any erasure source QXY according
to Definition 4.



Remark 6: Let a, b, d ∈ [0, 1] with a + b + d = 1. For the

generalized binary Z-channel QXY =

[
a b
0 d

]
,

E (X;Y ) = W (X;Y ) = (a + d)h

(
a

a + d

)
. (62)

APPENDIX A
REQUIRED RESULTS

Lemma 2: Let bn ∈ Tnε [QB ] and an ∈ Tnε
2

[QA|B ; bn] for
some ε ∈ (0, 1). Then,

(an, bn) ∈ Tn2ε[QA,B ], (63)

QA|B(an|bn) ≤ 2−nH(A|B)(1−2ε). (64)

Proof: Let (ã, b̃) ∈ S(QAB). Since bn ∈ Tnε [QB ],

0 < n(1− ε)QB(b̃) ≤ #bn(b̃) ≤ n(1 + ε)QB(b̃). (65)

Next, since an ∈ Tnε
2

[pA|B ; bn], it follows that

1− ε

2
≤ #an,bn(ã, b̃)

#bn(b̃)QA|B(ã|b̃)
≤ 1 +

ε

2
. (66)

Combining the two above equations, we see that

1− 2ε <
#an,bn(ã, b̃)

nQAB(ã, b̃)
< 1 + 2ε, (67)

which establishes that (an, bn) ∈ Tn2ε[QA,B ]. To prove the
next result, we see that

QA|B(an|bn) =
∏

(ã,b̃)∈S(QAB)

(
QA|B(ã|b̃)

)#an,bn (ã,b̃)

(67)
≤

∏

(ã,b̃)∈S(QAB)

(
QA|B(ã|b̃)

)n(1−2ε)QAB(ã,b̃)

= 2−nH(A|B)(1−2ε). (68)

Lemma 3: Let (X,Y ) ∼ QXY be given. Let auxiliary
random variable W be such that for any w ∈ S(W),

H(X |W = w) ·H(Y |W = w) = 0. (69)

Then, for any ε, δ > 0 and wn ∈ Tnδ [QW ],

Tnε [QX|W ;wn]× Tnε [QY |W ;wn] = Tnε [QX,Y |W ;wn].

Proof: Note that (69) implies the conditional indepen-
dence of X and Y given W , i.e., X ↔ W ↔ Y . Thus, we
only need to show that the Cartesian product of marginally
conditional typical sets is a subset of the jointly conditional
typical set. The reverse direction is trivial. Let wn ∈ Tnδ [QW ],
xn ∈ Tnε [QX|W ;wn] and yn ∈ Tnε [QY |W ;wn]. Pick w̃ ∈
S(W ), and (x̃, ỹ, w̃) ∈ S(QXYW ). For this choice of w̃, let us
assume that H(X|W = w̃) = 0. Since (x̃, ỹ, w̃) ∈ S(QXYW ),
it must follow that QX|W (x̃|w̃) = 1. Consequently,

#xn,yn,wn(x̃, ỹ, w̃) = #yn,wn(ỹ, w̃), (70)
QXY |W (x̃, ỹ|w̃) = QY |W (ỹ|w̃). (71)

Then,∣∣∣∣
#xn,yn,wn(x̃, ỹ, w̃)

#wn(w̃)QXY |W (x̃, ỹ|w̃)
− 1

∣∣∣∣
(70),(71)

=

∣∣∣∣
#yn,wn(ỹ, w̃)

#wn(w̃)QY |W (x̃, ỹ|w̃)
− 1

∣∣∣∣ ≤ ε, (72)

where the last inequality follows since yn ∈ Tnε [QY |W ;wn].
For w̃ such that H(Y |W = w̃) = 0 we simply reverse the
roles of X and Y in the above argument. Thus,

sup
(x̃,ỹ,w̃)∈S(QXY W )

#wn (w̃)>0

∣∣∣∣
#xn,yn,wn(x̃, ỹ, w̃)

#wn(w̃)QXY |W (x̃, ỹ|w̃)
− 1

∣∣∣∣ ≤ ε. (73)

Consequently, (xn, yn) ∈ Tnε [QXY |W ;wn].
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