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Abstract—We design low-complexity polar codes for empirical
and strong coordination in two-node network. Our constructions
hinge on the observation that polar codes may be used to
approximate distribution; which we leverage to prove that nested
polar codes achieve the capacity region of empirical coordination
and strong coordination.

I. INTRODUCTION

The information-theoretic limits of coordination in networks
have been investigated in [1]. The coordinated actions of nodes
in the network are modeled by joint probability distributions,
and the level of coordination is measured in terms of how well
these joint distributions approximate a target joint distribution.
Two types of coordination have been introduced: empirical
coordination, which only requires the empirical distribution
of a sequence of coordinated actions to approach a target
distribution, and strong coordination, which requires the total
variational distance of a sequence of coordinated actions to
approach a target distribution. The concept of coordination
sheds light into the fundamental limits of several problems,
such as distributed control or task assignment in a network.

The design of practical and efficient coordination schemes
approaching the fundamental limits predicted by information
theory has attracted little attention to date. One of the hurdles
faced for code design is that the metric to optimize is not
a probability of error but a variational distance between
distributions.

In this paper, we demonstrate the ability of polar codes to
provide a constructive alternative to the information-theoretic
proof in [1] for two-node network. Specifically, the contribu-
tions of this paper are the following.
• We design a polar coding scheme that achieves the entire

empirical coordination capacity region when common
randomness, whose rate vanishes to zero as the block-
length grows, is available at the nodes. This construction
extends [2], which only deals with uniform distributions
and requires a non negligible rate of common randomness
available at the nodes,

• We construct a polar coding scheme that achieves the en-
tire strong coordination capacity region. It generalizes [3],
which only deals with uniform distributions and actions
obtained via a symmetric channel.

The research was supported in part by NSF grants CCF-1320304 and CCF-
1440014.

A key characteristic of our coding schemes is to rely on
distribution approximation and to not require a reconstruction
algorithm, such as the successive-cancellation decoder for
source coding or channel coding schemes.

The remainder of the paper is organized as follows. Sec-
tion II sets the notation. Section III formally introduces the
problem. For a two-node network, Sections IV and V provide
polar coding schemes that achieve the empirical coordination
capacity region and the strong coordination capacity region,
respectively.

II. NOTATION

We define the integer interval Ja, bK, as the set of integers

between bac and dbe. For n ∈ N, we let Gn ,
[

1 0

1 1

]⊗n
be

the source polarization transform defined in [4]. We note the
components of a vector, X1:N , of size N , with superscripts,
i.e., X1:N , (X1, X2, . . . , XN ). For any set A ⊂ J1, NK, we
note X1:N [A] the components of X1:N whose indices are in
A. We note V(·, ·) and D(·||·) the variational distance and the
divergence, respectively, between two distributions. We note
the conditional divergence w.r.t. pX , D(·||·|pX). Finally, we
note the indicator function 1{ω}, which is equal to 1 if the
predicate ω is true and 0 otherwise.

III. PROBLEM STATEMENT

Consider a source (XY, qXY ) with Y , {0, 1} and X a
countable alphabet. Consider two nodes, Node 1 and Node 2.

Definition 1. A (2NR, 2NR0 , N) coordination code CN for a
fixed joint distribution qXY consists of
• common randomness C with rate R0;
• an encoding function fN : XN × J1, 2nR0K→ J1, 2NRK;
• a decoding function gN : J1, 2NRK× J1, 2nR0K→ YN ,

and operates as follows
• Node 1 observes X1:N , N i.i.d. realizations of (X , qX);
• Node 1 transmits fN (X1:N , C) to Node 2;
• Node 2 forms Ỹ 1:N , gN (fN (X1:N , C), C), whose joint

distribution with X1:N is denoted p̃X1:NY 1:N .

Definition 2. A rate pair (R,R0) for a fixed joint distribution
qXY is achievable for empirical coordination if there exists
a sequence of (2NR, 2NR0 , N) coordination codes, {CN}N>1

such that for ε > 0

lim
N→∞

P[V(qXY , TX1:N Ỹ 1:N ) > ε] = 0,
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where for a sequence (x1:N , ỹ1:N ) generated at Nodes 1, 2,
and for (x, y) ∈ X × Y ,

Tx1:N ỹ1:N (x, y) ,
1

N

N∑
i=1

1{(xi, ỹi) = (x, y)}.

The closure of the set of achievable rates is called the
empirical coordination capacity region.

Definition 3. A rate pair (R,R0) for a fixed joint distribution
qXY is achievable for strong coordination if there exists a
sequence of (2NR, 2NR0 , N) coordination codes, {CN}N>1

such that for ε > 0

lim
N→∞

V(p̃X1:NY 1:N , qX1:NY 1:N ) = 0.

The closure of the set of achievable rate pairs is called the
strong coordination capacity region.

The coordination capacity regions have been fully charac-
terized using random coding arguments.

Theorem 1 ([1]). The empirical coordination capacity region
is

REC(qXY ) , {(R,R0) : R > I(X;Y ), R0 = 0}.
Theorem 2 ([1]). The strong coordination capacity region is
RSC(qXY )

,
⋃

X→ V→Y
{(R,R0) : R+R0 > I(XY ;V ), R > I(X;V )}.

IV. POLAR CODING FOR EMPIRICAL COORDINATION

The high-level idea of the coding scheme can be summa-
rized as follows. From X1:N and some randomness C1 shared
with Node 2, Node 1 constructs a random variable Ỹ 1:N

whose joint probability distribution with X1:N is close to the
target distribution qX1:NY 1:N . Moreover, Node 1 can construct
a message M with rate close to I(X;Y ) such that Node 2
can reconstruct Ỹ 1:N with M and C1. Finally, by performing
encoding over k ∈ N∗ blocks with the same randomness C1,
the overall rate of shared randomness vanishes to zero as the
number of blocks increases.

Note that the coding scheme for each block is similar to
lossy source coding schemes [5], [6], as suggested by the
optimal communication rate described in Theorem 1. However,
the performance metric of interest is totally different.

A. Coding Scheme
Consider the random variables X , Y distributed according

to the fixed p.m.f. qXY . Let N , 2n, n ∈ N∗. Define U1:N ,
Y 1:NGn and define for β < 1/2, δN , 2−N

β

, the sets

VY ,
{
i ∈ J1, NK : H(U i|U1:i−1) > 1− δN

}
,

HY ,
{
i ∈ J1, NK : H(U i|U1:i−1) > δN

}
,

VY |X ,
{
i ∈ J1, NK : H(U i|U1:i−1X1:N ) > 1− δN

}
,

HY |X ,
{
i ∈ J1, NK : H(U i|U1:i−1X1:N ) > δN

}
.

Encoding is performed over k ∈ N∗ blocks of length N .
We use the subscript i ∈ J1, kK to denote random variables
associated to encoding Block i. The encoding and decoding
procedures are described in Algorithms 1, 2, respectively.

Algorithm 1 Encoding algorithm at Node 1 for empirical
coordination
Require: A vector C1 of |VY |X | uniformly distributed bits

shared with Node 2 and X1:N
1:k .

1: for Block i = 1 to k do
2: Ci ← C1

3: Ũ1:N
i [VY |X ]← Ci

4: Given X1:N
i , successively draw the remaining bits of

Ũ1:N
i according to p̃U1:N

i X1:N
i

defined by

p̃Uji |U
1:j−1
i X1:N

i
(uji |Ũ

1:j−1
i X1:N

i ) ,{
qUj |U1:j−1X1:N (uji |Ũ

1:j−1
i X1:N

i ) if j ∈ HY \VY |X
qUj |U1:j−1(uji |Ũ

1:j−1
i ) if j ∈ HcY

(1)

5: Transmit Mi , Ũ1:N
i [HY \VY |X ] and C̃i, the random-

ness necessary to draw Ũ1:N
i [HcY ], to Node 2.

6: end for

Algorithm 2 Decoding algorithm at Node 2 for empirical
coordination
Require: The vector C1 used in Algorithm 1 and M1:k.

1: for Block i = 1 to k do
2: Ci ← C1

3: Ũ1:N
i [VY |X ]← Ci

4: Ũ1:N
i [HY \VY |X ]←Mi

5: Using C̃i, successively draw the remaining bits of Ũ1:N
i

according to qUj |U1:j−1

6: end for

B. Scheme Analysis

The following lemma shows that p̃Y 1:NX1:N , defined by
p̃X1:N , qX1:N and Equation (1), approximates qX1:NY 1:N .

Lemma 1. For any i ∈ J1, kK,

V(qX1:NY 1:N , p̃X1:N
i Y 1:N

i
) 6

√
2 log 2

√
NδN .

The proof of Lemma 1 is similar to the proof of Lemma 4
and is thus omitted. The following lemma shows that empirical
coordination holds for each block.

Lemma 2. For i ∈ J1, kK, we have

lim
N→∞

P[V(qXY , TX1:N
i Ỹ 1:N

i
) > ε] = 0.

Proof. For ε > 0, define Tε(qXY ) , {(x1:N , y1:N ) :
V(qXY , Tx1:Ny1:N ) 6 ε}. We note for a joint distribution q
over (X × Y),

Pq[(X1:N , Y 1:N ) ∈ Tε(qXY )]

,
∑

x1:N ,y1:N

qX1:NY 1:N (x1:N , y1:N )1{(x1:N , y1:N ) ∈ Tε(qXY )}.

Let i ∈ J1, kK, we have

Pp̃[V(qXY , TX1:N
i Ỹ 1:N

i
) > ε]
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=
∑

x1:N ,y1:N

[
p̃X1:N

i Y 1:N
i

(x1:N , y1:N )− qX1:NY 1:N (x1:N , y1:N )

+ qX1:NY 1:N (x1:N , y1:N )
]
1{(x1:N , y1:N ) /∈ Tε(qXY )}

6 V(p̃X1:N
i Y 1:N

i
, qX1:NY 1:N ) + Pq[(X1:N , Y 1:N ) /∈ Tε(qXY )]

N→∞−→ 0,

where we have used Lemma 1 and the AEP for strongly typical
set [7]. �

We now show that empirical coordination holds for all
blocks jointly.

Lemma 3. We have

lim
N→∞

P[V(qXY , TX1:N
1:k Ỹ

1:N
1:k

) > ε] = 0.

Proof. We have

V(qXY , Tx1:N
1:k ỹ

1:N
1:k

)

=
∑
x,y

∣∣∣∣∣∣qXY (x, y)− 1

kN

k∑
j=1

N∑
i=1

1{(xij , ỹij) = (x, y)}

∣∣∣∣∣∣
=
∑
x,y

∣∣∣∣∣∣
k∑
j=1

(
1

k
qXY (x, y)− 1

kN

N∑
i=1

1{(xij , ỹij) = (x, y)}

)∣∣∣∣∣∣
6

1

k

k∑
j=1

∑
x,y

∣∣∣∣∣qXY (x, y)− 1

N

N∑
i=1

1{(xij , ỹij) = (x, y)}

∣∣∣∣∣
6

1

k

k∑
j=1

V(qXY , Tx1:N
j ỹ1:Nj

),

hence,

Ep̃
X1:N

1:k
,Y 1:N

1:k

[V(qXY , Tx1:N
1:k ỹ

1:N
1:k

)]

6
1

k

k∑
j=1

Ep̃
X1:N

1:k
,Y 1:N

1:k

[V(qXY , Tx1:N
j ỹ1:Nj

)]
N→∞−→ 0,

where the limit holds by Lemma 2 and because convergence
in probability and uniform integrability implies convergence
in the mean. We then obtain the result because convergence
in the mean implies convergence in probability. �

Theorem 3. The coding scheme described in Algorithms 1, 2
achieves the empirical coordination capacity region.

Proof. The communication rate is

k|HY \VY |X |
kN

6
|VY \VY |X |+|HY \VY |

N

=
|VY |−|VY |X |+|HY |−|VY |

N

N→∞−−−−→ I(X;Y ),

where we have used [4] and [8, Lemma 1].
Node 1 also communicates randomness to reconstruct

U1:N [HcY ], but its rate is o(N) since

lim
N→∞

1

N

∑
j∈HcY

H(Ũ j |Ũ1:j−1) = 0,

which can be shown using Lemma 1 similarly to [9, Lemma
9]. Then, the common randomness rate is

|VY |X |
kN

N→∞−−−−→ H(Y |X)

k

k→∞−−−→ 0,

where we have used [8, Lemma 1]. Finally, we conclude with
Lemma 3. �

V. POLAR CODING FOR STRONG COORDINATION

The principle of the strong coordination coding scheme can
be summarized as follows. From X1:N and some randomness
(C1, C̄1) shared with Node 2, Node 1 constructs a random
variable Ṽ 1:N whose joint probability distribution with X1:N

is close to the target distribution qX1:NV 1:N . Moreover, Node 1
can construct a message M with rate close to I(X;V ) such
that Node 2 can reconstruct Ṽ 1:N with M and (C1, C̄1). Then,
Node 2 performs channel prefixing on Ṽ 1:N to form Ỹ 1:N

whose joint distribution with X1:N is close to qX1:NY 1:N .
Finally, by performing encoding over k ∈ N∗ blocks with the
same randomness C̄1, the overall rate of shared randomness
becomes the rate of C1, which can be chosen on the order of
I(V ;Y |X).

A. Coding Scheme

Consider the random variables X , Y , V distributed ac-
cording to the fixed p.m.f. qXY V such that X → V → Y
and |X |= |Y|= |V|= 2. Let N , 2n, n ∈ N∗. Define
U1:N , V 1:NGn, T 1:N , Y 1:NGn, and define for β < 1/2

and δN , 2−N
β

the sets

HV ,
{
i ∈ J1, NK : H(U i|U1:i−1) > δN

}
,

VV |X ,
{
i ∈ J1, NK : H(U i|U1:i−1X1:N ) > 1− δN

}
,

VV |XY ,
{
i ∈ J1, NK : H(U i|U1:i−1X1:NY 1:N ) > 1− δN

}
,

VY |V ,
{
i ∈ J1, NK : H(T i|T 1:i−1V 1:N ) > 1− δN

}
.

Note that VV |XY ⊂ VV |X ⊂ VV .
We define F1 , HcV , F2 , VV |XY , F3 , VV |X\VV |XY ,

and F4 , HV \VV |X . Observe that (F1,F2,F3,F4) forms
a partition of J1, NK. Encoding is performed over k ∈ N∗
blocks of length N . We use the subscript i ∈ J1, kK to denote
random variables associated to encoding Block i. The encod-
ing and decoding procedures are described in Algorithms 3,
4, respectively.

B. Scheme Analysis

The following lemma shows that p̃V 1:NX1:N , defined by
p̃X1:N , qX1:N and Equation (2), approximates qV 1:NX1:N .

Lemma 4. For any i ∈ J1, kK,

V(qV 1:NX1:N , p̃V 1:N
i X1:N

i
) 6 δ

(A)
N ,

where δ(A)
N ,

√
2 log 2

√
NδN .

Proof. We have

D(qV 1:NX1:N , p̃V 1:N
i X1:N

i
)

(a)
= D(qU1:NX1:N ||p̃U1:N

i X1:N
i

)
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Algorithm 3 Encoding algorithm at Node 1 for strong coor-
dination
Require: A vector C1:k of k|F3| uniformly distributed bits

shared with Node 2. A vector C̄1 of |F2| uniformly
distributed bits shared with Node 2 and X1:N

1:k .
1: for Block i = 1 to k do
2: C̄i ← C̄1

3: Ũ1:N
i [F2]← C̄i

4: Ũ1:N
i [F3]← Ci

5: Given X1:N
i , successively draw the remaining bits of

Ũ1:N
i according to p̃U1:N

i X1:N
i

defined by

p̃Uji |U
1:j−1
i X1:N

i
(uji |Ũ

1:j−1
i X1:N

i )

,

{
qUj |U1:j−1(uji |Ũ

1:j−1
i ) if j ∈ F1

qUj |U1:j−1X1:N (uji |Ũ
1:j−1
i X1:N

i ) if j ∈ F4

(2)

6: Transmit Mi , Ũ1:N
i [F4] and C ′i, the randomness

necessary to draw Ũ1:N
i [F1], to Node 2.

7: end for

Algorithm 4 Decoding algorithm at Node 2 for strong coor-
dination
Require: The vectors C1:k and C̄1 used in Algorithm 3 and

M1:k.
1: for Block i = 1 to k do
2: C̄i ← C̄1

3: Ũ1:N
i [F2]← C̄i

4: Ũ1:N
i [F3]← Ci

5: Ũ1:N
i [F4]←Mi

6: Using C ′i, successively draw the remaining bits of Ũ1:N
i

according to qUj |U1:j−1

7: Ṽ 1:N
i ← Ũ1:N

i Gn
8: Channel prefixing: Given Ṽ 1:N

i , successively draw the
bits of T̃ 1:N

i according to p̃T 1:N
i V 1:N

i
defined by

p̃T ji |T
1:j−1
i V 1:N

i
(tji |T̃

1:j−1
i Ṽ 1:N

i )

,

{
1/2 if j ∈ VY |V
qT j |T 1:j−1V 1:N (tji |T̃

1:j−1
i Ṽ 1:N

i ) if j ∈ VcY |V

9: Ỹ 1:N
i ← T̃ 1:N

i Gn
10: end for

(b)
= D(qU1:N |X1:N ||p̃U1:N

i |X1:N
i
|qX1:N )

(c)
=

N∑
j=1

D(qUj |U1:j−1X1:N ||p̃Uji |U1:j−1
i X1:N

i
|qU1:j−1X1:N )

(d)
=

∑
j∈F1∪F2∪F3

D(qUj |U1:j−1X1:N ||p̃Uji |U1:j−1
i X1:N

i
|qU1:j−1X1:N )

(e)
=

∑
j∈VV |X

(1−H(U j |U1:j−1X1:N ))

+
∑
j∈HcV

(H(U j |U1:j−1)−H(U j |U1:j−1X1:N ))

6 |VV |X |δN + |HcV |δN 6 NδN ,

where (a) holds by invertibility of Gn, (b) and (c) hold by the
chain rule for divergence [7], (d) and (e) hold by (2). Finally,
we conclude with Pinsker’s inequality. �

We now show that strong coordination holds for each block
in the following lemma.

Lemma 5. For i ∈ J1, kK, we have

V(p̃X1:N
i Y 1:N

i
, qX1:NY 1:N )

6 V(p̃V 1:N
i X1:N

i Y 1:N
i

, qV 1:NX1:NY 1:N ) 6 δ
(B)
N ,

where δ(B)
N , (

√
2 + 2)

√
2 log 2

√
NδN .

Proof. We have

V(p̃V 1:N
i X1:N

i Y 1:N
i

, qV 1:NX1:NY 1:N )

= V(p̃Y 1:N
i |V 1:N

i X1:N
i
p̃V 1:N

i X1:N
i
, qY 1:N |V 1:NX1:N qV 1:NX1:N )

= V(p̃Y 1:N
i |V 1:N

i
p̃V 1:N

i X1:N
i
, qY 1:N |V 1:N qV 1:NX1:N )

(a)

6 V(p̃Y 1:N
i |V 1:N

i
p̃V 1:N

i X1:N
i
, p̃Y 1:N

i |V 1:N
i

qV 1:NX1:N )

+ V(p̃Y 1:N
i |V 1:N

i
qV 1:NX1:N , qY 1:N |V 1:N qV 1:NX1:N )

= V(p̃V 1:N
i X1:N

i
, qV 1:NX1:N )

+ V(p̃Y 1:N
i |V 1:N

i
qV 1:N , qY 1:NV 1:N )

(b)

6 δ
(A)
N + V(p̃Y 1:N

i |V 1:N
i

qV 1:N , qY 1:NV 1:N )

(c)

6 δ
(A)
N + V(p̃Y 1:N

i |V 1:N
i

qV 1:N , p̃Y 1:N
i V 1:N

i
)

+ V(p̃Y 1:N
i V 1:N

i
, qY 1:NV 1:N )

= δ
(A)
N + V(qV 1:N , p̃V 1:N

i
) + V(p̃Y 1:N

i V 1:N
i

, qY 1:NV 1:N )

(d)

6 2δ
(A)
N + V(p̃Y 1:N

i V 1:N
i

, qY 1:NV 1:N ), (3)

where (a) and (c) hold by the triangle inequality, (b) and (d)
hold by Lemma 4. We bound the r.h.s. of (3) via its associated
divergence by analyzing Step 8. of Algorithm 4 as follows.

D(qY 1:NV 1:N ||p̃Y 1:N
i V 1:N

i
)

(e)
= D(qT 1:N |V 1:N ||p̃T 1:N

i |V 1:N
i
|qV 1:N ) + D(qU1:N ||p̃U1:N

i
)

(f)

6 D(qT 1:N |V 1:N ||p̃T 1:N
i |V 1:N

i
|qV 1:N )

+ D(qU1:NX1:N ||p̃U1:N
i X1:N

i
)

(g)

6 NδN + D(qT 1:N |V 1:N ||p̃T 1:N
i |V 1:N

i
|qV 1:N )

(h)
= NδN+

N∑
j=1

D(qT j |T 1:j−1V 1:N ||p̃T ji |T 1:j−1
i V 1:N

i
|qT 1:j−1V 1:N )

= NδN +
∑

j∈VY |V

D(qT j |T 1:j−1V 1:N ||p̃T ji |T 1:j−1
i V 1:N

i
|qT 1:j−1V 1:N )
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= NδN +
∑

j∈VY |V

(1−H(T j |T 1:j−1V 1:N ))

(i)

6 NδN + |VY |V |δN 6 2NδN , (4)

where (e) holds by invertibility of Gn and the chain rule
for divergence, (f) holds by the chain rule for divergence
and positivity of the divergence, (g) holds by the proof of
Lemma 4, (h) holds by the chain rule for divergence, (i)
holds by definition of VY |V . Finally, combining (3), (4), and
Pinsker’s inequality yields the result. �

Using Lemma 5, we show in the following lemma that
an asymptotic independence result holds for two consecutive
blocks.

Lemma 6. For i ∈ J2, kK, we have,

V
(
p̃X1:N

i−1:iY
1:N
i−1:iC̄1

, p̃Y 1:N
i−1 X

1:N
i−1
p̃X1:N

i Y 1:N
i C̄1

)
6 δ

(C)
N ,

where δ(C)
N ,

√
2 log 2

√
NδN + 2δ

(B)
N

(
3N − log δ

(B)
N

)
.

Proof. Let i ∈ J1, kK. We have for N large enough∣∣∣H(Ũ1:N
i [VV |XY ]|X̃1:N

i Ỹ 1:N
i )−H(U1:N[VV |XY ]|X1:NY 1:N )

∣∣∣
(a)

6
∣∣∣H(Ũ1:N

i [VV |XY ]X̃1:N
i Ỹ 1:N

i )−H(U1:N[VV |XY ]X1:NY 1:N )
∣∣∣

+
∣∣∣H(X̃1:N

i Ỹ 1:N
i )−H(X1:NY 1:N )

∣∣∣
(b)

6 V(p̃U1:N
i [VV |XY ]X1:N

i Y 1:N
i

, qU1:N [VV |XY ]X1:NY 1:N )

× log
23N

V(p̃U1:N
i [VV |XY ]X1:N

i Y 1:N
i

), qU1:N [VV |XY ]X1:NY 1:N )

+
∣∣∣H(X̃1:N

i Ỹ 1:N
i )−H(X1:NY 1:N )

∣∣∣
(c)

6 δ
(B)
N (3N−log δ

(B)
N ) +

∣∣∣H(X̃1:N
i Ỹ 1:N

i )−H(X1:NY 1:N )
∣∣∣

6 2δ
(B)
N

(
3N − log δ

(B)
N

)
, δ

(V XY )
N ,

where (a) holds by the triangle inequality, (b) follows from
[10, Lemma 2.7], (c) holds by Lemma 5, invertibility of Gn,
and because x 7→ x log x is decreasing for x > 0 small
enough.

Hence,

I(X̃1:N
i Ỹ 1:N

i ; Ũ1:N
i [VV |XY ])

(d)
= |VV |XY |−H(Ũ1:N

i [VV |XY ]|X̃1:N
i Ỹ 1:N

i )

6 |VV |XY |−H(U1:N [VV |XY ]|X1:NY 1:N ) + δ
(V XY )
N

(e)

6 |VV |XY |−
∑

j∈VV |XY

H(U j |U1:j−1X1:NY 1:N ) + δ
(V XY )
N

(f)

6 |VV |XY |−|VV |XY |(1− δN ) + δ
(V XY )
N 6 NδN+δ

(V XY )
N ,

where (d) holds by uniformity of Ũ1:N
i [VV |XY ], (e) holds

because conditioning reduces entropy, (f) holds by definition
of VV |XY .

Then, for i ∈ J2, kK, we can show

D
(
p̃X1:N

i−1:iY
1:N
i−1:iC̄1

||p̃Y 1:N
i−1 X

1:N
i−1
p̃X1:N

i Y 1:N
i C̄1

)
= I(X̃1:N

i−1 Ỹ
1:N
i−1 ; C̄1X̃

1:N
i Ỹ 1:N

i )

= I(X̃1:N
i−1 Ỹ

1:N
i−1 ; Ũ1:N

i−1 [VV |XY ]) 6 NδN + δ
(V XY )
N .

�

Using Lemma 6 we can show an asymptotical independence
result for all blocks as stated in the following lemma.

Lemma 7. We have

V

(
p̃X1:N

1:k Y
1:N
1:k

,

k∏
i=1

p̃X1:N
i Y 1:N

i

)
6 kδ

(C)
N .

where δ(C)
N is defined in Lemma 6.

Using Lemmas 5, 7, we can show that strong coordination
holds over all blocks as stated in the following lemma.

Lemma 8. We have

V
(
p̃X1:N

1:k Y
1:N
1:k

, qX1:kNY 1:kN

)
6 kδ

(D)
N .

where δ(C)
N , δ

(B)
N + δ

(C)
N .

Finally, using [4], [8, Lemma 1], and using Lemma 5
as in the proof of [9, Lemma 9], we can prove that the
communication rate and the common randomness rate are
optimal. Our final result is stated as follows.

Theorem 4. The coding scheme described in Algorithms 3, 4
achieves strong coordination for the rate pair (R,R0) such
that R + R0 = I(XY ;V ), R = I(X;V ) for any p.m.f.
qXY V = qXV qY |V with |X |= |Y|= |V|= 2.

Note that our analysis for a binary alphabet V can be
extended to alphabets with prime size to achieve RSC(qXY ).
Justification of this extension and the proofs of Lemmas 7, 8
and Theorem 4 are omitted due to space constraints.
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