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Abstract— We consider relaying strategies for two-way relay
channels, where two terminals transmits simultaneously to each
other with the help of relays. A memoryless system is considered,
where the signal transmitted by a relay depends only on its
last received signal. For binary antipodal signaling, we analyze
and optimize the performance of existing amplify and forward
(AF) and absolute (abs) decode and forward (ADF) for two-
way AWGN relay channels. A new abs-based AF (AAF) scheme
is proposed, which has better performance than AF. In low
SNR, AAF performs even better than ADF. Furthermore, a novel
estimate and forward (EF) strategy is proposed which performs
better than ADF. More importantly, we optimize the relay
strategy within the class of abs-based strategies via functional
analysis, which minimizes the average probability of error over
all possible relay functions. The optimized function is shown to
be a Lambert’s W function parameterized on the noise power
and the transmission energy. The optimized function behaves like
AAF in low SNR and like ADF in high SNR, resp., where EF
behaves like the optimized function over the whole SNR range.

I. INTRODUCTION

Two-way communication is a common scenario where two
parties wish to send information to each other. The two-way
channel was first considered by Shannon [1], who derived
inner and outer bounds on the capacity region. Recently, the
two-way relay channel (TWRC) has drawn renewed interest
from both academic and industrial communities [2]–[6]. AF
and DF protocols for one-way relay channels are extended
to the half-duplex Gaussian TWRC in [2] and the general
full-duplex discrete TWRC in [3]. In [4], network coding is
used to increase the sum-rate of two users. With network
coding, each node in a network is allowed to perform algebraic
operations on received packets instead of only forwarding or
replicating received packets. Most of these works [2]–[4] focus
on capacity bounds for strategies similar to those for one-way
relay channels [7].

Physical layer network coding (PNC) is considered in [5]
for two-way AWGN relay channels. Two partial decode and
forward (PDF) schemes are proposed in [6] for distributed
space time coding to achieve diversity in two-way relay fading
channels with multiple relays.

In this paper, we focus on memoryless relay operation
and analyze the bit error probability at each receiver without
considering channel coding. We analyze the performance
of existing amplify and forward (AF) and absolute-based
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(abs-based) decode and forward (ADF) schemes for two-
way AWGN relay channels using binary antipodal signaling,
and develop a number of new schemes which overcome
performance limitations of existing schemes. We classify the
various schemes into abs-based schemes, where the relay first
takes the absolute value of the received signal, and non-
abs-based schemes. Their relative performance depends on
the characteristics of the uplink and downlink channels. The
schemes we propose include an abs AF (AAF) scheme and
an estimate and forward (EF) strategy which extends the EF
strategy in [8] for the one-way relay channel to TWRCs.
Besides characterizing the performance of different schemes,
we also optimize the relay strategy within the class of abs-
based strategies via functional analysis, in terms of average
probability of symbol error. The optimized function is show
to be a Lambert’s W function parameterized on the noise
power and the transmission energy. Interestingly, the optimized
function looks like the AAF scheme in low SNR and looks
like the ADF scheme in high SNR. EF has the same shape
as the optimized function in all SNRs. In our extended report
[9] and in [10], we generalize these results to higher order
constellations, two-way channels with multiple relays, and
fading channels.

Notations: N (x,σ2) denotes the Gaussian distribution
1√

2πσ2 exp
(
− x2

2σ2

)
. Q(·) denotes the Q-function.

II. SYSTEM MODEL

We consider a memoryless two-way relay AWGN channel
with two terminals and one relay, where the two terminals have
data to be transmitted to each other. The system is memoryless,
which means that the signal transmitted by a relay depends
only on its last received signal and no channel coding is used.
The discrete-time model for the memoryless two-way relay
channel can be written as

Yi=f(X1+X2+N)+Zi, i=1,2, (1)

where Xi and Yi are the transmitted symbol and received
symbol at terminal i, and Zi∼N (0,σ2

s) is the additive white
Gaussian noise (AWGN) at terminal i, i=1,2, and N∼
N (0,σ2

r) is the AWGN at the relay. For simplicity, we assume
that the noises at the two terminals have the same variance. To
accommodate for energy limitations, we impose on Xi an aver-
age power constraint: E{|Xi|2}≤Ps, i=1,2, as well as on the
output of the relay E{|f(X1+X2+N)|2}≤Pr. For notational
convenience we define the random variable U=X1+X2+N .



Note that (1) both applies to a half duplex system with two
time slots, where the transmission from one terminal to the
other takes place in a multiple-access and a broadcast time
slot, or a full duplex system. Throughout this paper, we
assume that there is no direct communication between the two
terminals and the system is perfectly synchronized, which may
be possibly attained via pilot symbols.

In this paper, binary phase shift keying (BPSK) is assumed,
i.e., the random variable Xi is taken to be ±√

Ps with equal
probability. Multiple relays, fading channels, and higher order
constellations are considered in [9], [10]. We focus on symbol
error probability as a performance metric.

III. AMPLIFY AND FORWARD

In this subsection, we analyze the performance of amplify
and forward [2], where, more precisely, a linear function f(·)
is used at the relay. To satisfy the average power constraint at
the relay, f(·) is equal to

f(u)=

√
Pr

2Ps+σ2
r

u, (2)

which yields an output at terminal i

Yi=

√
Pr

2Ps+σ2
r

(X1+X2)+

(√
Pr

2Ps+σ2
r

N+Zi

)
,i=1,2. (3)

Therefore, given x1 and x2 were transmitted, the conditional
probability density function of the output Yi is

pYi|X1,X2(yi|x1,x2)∼N
(√

Pr

2Ps+σ2
r

(x1+x2),
Prσ

2
r

2Ps+σ2
r

+σ2
s

)
. (4)

As terminal i already knows xi, the optimal decision rule is
to decide on

√
Ps if ui=yi−

√
Pr

2Ps+σ2
r
xi≥0 and on −√

Ps

otherwise.
Therefore, the average probability of error at each terminal

of this scheme is

Pe=

∫ 0

−∞
N
(

u−
√

PrPs

2Ps+σ2
r

,
Prσ

2
r

2Ps+σ2
r

+σ2
s

)
du

=Q

(√
PrPs

Prσ2
r +2Psσ2

s +σ2
rσ2

s

)
.

(5)

In practice, there may be a total power constraint on the
two-way relay channel, i.e., 2Ps+Pr=P , where P is the total
power. Given P , we can optimize the power allocation between
terminals and the relay to achieve the minimum average error
probability. Assuming that σ2

r =σ2
s , it is easy to see that the

average probability of error (5) is minimized when

Ps=
P

4
, Pr=

P

2
. (6)

IV. ABSOLUTE VALUE-BASED RELAY STRATEGIES

In the absence of noise at the relay, the relay gets X1+X2,
the possible values of which are 2

√
Ps,0,−2

√
Ps. If the

terminals do not distinguish 2
√

Ps from −2
√

Ps, they can
still decode the other terminal’s signal correctly by using
their own signal as side information. With this intuition, we
propose a class of strategies in which the relay transmits
a function of the absolute value of its received signal. At

each terminal, if the received signal exceeds a threshold value
v, it decides that (X1=

√
Ps, X2=

√
Ps) or (X1=−√

Ps,
X2=−√

Ps), otherwise it decides (X1=
√

Ps, X2=−√
Ps)

or (X1=
√

Ps, X2=−√
Ps). Each terminal uses knowledge

of its own signal to decode the other terminal’s signal. In
the presence of relay and terminal noise the average error
probability at each terminal can be written as

Pe=
1

2

∫ +∞

−∞
N (u,σ2

r

)[∫ +∞

v

N (y−f(u),σ2
s

)
dy

]
du

+
1

2

∫ +∞

−∞
N
(
u−2

√
Ps,σ

2
r

)[∫ v

−∞
N (y−f(u),σ2

s

)
dy

]
du.

(7)

A. Abs Amplify and Forward

Within this class of strategies we propose a new scheme,
abs amplify and forward, where the relay takes the absolute
value of the received signal and transmits a scaled and shifted
version:

f(u)=β(|u|−C), (8)

where |u| denotes the absolute value of u, C is a positive
constant and β is a scaling coefficient to maintain the average
power constraint at the relay. From (7), we have

Pe=
1

2
+

1

2

∫ +∞

0

(
N
(
u−2

√
Ps,σ

2
r

)
+N

(
u+2

√
Ps,σ

2
r

)
−2N (u,σ2

r

))[∫ v

−∞
N (y−β(u−C),σ2

s

)
dy

]
du

)
.

(9)

Differentiating (9) with respect to v and setting the resulting
equation to zero, we obtain∫ +∞

0

(
N
(
u−2

√
Ps,σ

2
r

)
+N

(
u+2

√
Ps,σ

2
r

)
−2N (u,σ2

r

))N (v−β(u−C),σ2
s

)
du=0.

(10)

We can minimize (9) with respect to both v and C. However,
the optimal C depends on SNR in a complicated way. Given
C, the optimal detection threshold can be obtained by solving
(10). Two intuitively reasonable choices of C are

√
Ps and√

Ps+σr/
√

2. In our simulations, we have seen the optimal
threshold approaches to zero as SNR increases. In practice, if
SNR is not accurately known, since the optimal threshold is
very close to zero, we simply set v=0.

B. Abs Decode and Forward

The class of abs-based strategies includes an existing
scheme for the two-way AWGN relay channel called physical
network coding [5]. In ADF, the relay first performs hard
decisions, based on the absolute value of the received signal,
to decide whether 2

√
Ps, 0, or −2

√
Ps is received. The relay

does not actually decode x1 and x2, but only x1+x2. To
satisfy the relay’s average power constraint,

√
Pr and −√

Pr

are transmitted, i.e.,

f(u)=
{ √

Pr, if |u|≥w,
−√

Pr, otherwise,
(11)

where w is a threshold which will be determined below.
The average error probability at each terminal (7) can be

written as



Pe=
1

2
+

1

2

∫ w

0

(
N
(
u−2

√
Ps,σ

2
r

)
+N

(
u+2

√
Ps,σ

2
r

)
−2N (u,σ2

r

))
du

∫ v

−∞

(
N
(
y+

√
Pr,σ

2
s

)
−N

(
y−√

Pr,σ
2
s

))
dy

(12)

Expression (12) has the nice property that the optimization
of w and v is separated. Minimizing (12) over w and v, we
obtain the optimal w as

w=
√

Ps

(
1+

σ2
r

2Ps
log
(
1+
√

1−e−4Ps/σ2
r

))
, (13)

and the optimal v as v=0. When σ2
r→0, the optimal w

converges to
√

Ps. In practice, we can simply choose w=
√

Ps.
If we are given a total power P , we can optimize the

power allocation between terminals and the relay to achieve
the minimum average error probability. Pe in (12) can be
simplified as

Pe=
1

2
+

1

2

(
1−2Q

(√
Pr

σs

))

×
(

Q

(
2
√

Ps−w

σr

)
+2Q

(
w

σr

)
−Q

(
2
√

Ps+w

σr

)
−1

)
.

(14)

We consider high SNR case, i.e., P�σ2
s ,σ2

r , and assume
σ2

s =σ2
r =σ2. In this case, the optimal w in (13) can be

approximated as w=
√

Ps. By applying Chernoff bound-type
arguments and ignoring high order terms, we can obtain

Pe�
3
2
e−

Ps
2σ2 +e−

Pr
2σ2 . (15)

Minimizing the right hand side of (15) and using the high SNR
assumption, we can obtain Ps=Pr= P

3 . This is different from
the optimal power allocation for AF in (6) because ADF saves
half of power to transmit redundant information as compared
with AF.

C. Abs Estimate and Forward

In this subsection, we describe a strategy that lies between
the simple strategies discussed so far and the optimal strategy.
Instead of minimizing the error probability directly, we con-
sider minimizing the mean squared error (MSE) of estimating
|x1+x2| at the relay.

We first consider the function g(u) such that

g(u)=argmin
g′(u)

E
{
||x1+x2|−g′(u)|2

∣∣∣u}. (16)

The objective function in (16) can be written as

E
{ ∣∣|x1+x2|−g′(u)

∣∣2∣∣∣u}
=

∑
x1,x2∈{−√

Ps,
√

Ps}
Pr(x1+x2|u)

∣∣|x1+x2|−g′(u)
∣∣2

=
∑

x1,x2∈{−√
Ps,

√
Ps}

Pr(u|x1+x2)Pr(x1+x2)

Pr(u)

∣∣|x1+x2|−g′(u)
∣∣2 .

(17)

Note that Pr(u) is a common factor. Therefore, minimizing
(17) is equivalent to minimizing

∑
x1,x2∈{−√

Ps,
√

Ps}
Pr(u|x1+x2)Pr(x1+x2)

∣∣|x1+x2|−g′(u)
∣∣2

=
1

2
N (u,σ2

r)
∣∣g′(u)

∣∣2+
1

4
N (u−2

√
Ps,σ

2
r)
∣∣∣2√Ps−g′(u)

∣∣∣2
+

1

4
N (u+2

√
Ps,σ

2
r)
∣∣∣2√Ps−g′(u)

∣∣∣2 .

(18)

Minimizing (18) over g′(u) we obtain

g(u)=
2
√

Pscosh 2
√

Psu
σ2

r

e2Ps/σ2
r +cosh 2

√
Psu

σ2
r

. (19)

f(u) is then a scaled version of g(u)−C, where C is a
constant as in AAF, i.e.,

f(u)=
{

β(g(u)−C), if u≥0,
f(−u), otherwise,

(20)

where β≥0 is a scaling factor to keep the average power
constraint E{f2(u)}=Pr. At the two terminals, there also
exists an optimal decision threshold v. We can optimize v
using the same way in AAF.

V. OPTIMIZED ABSOLUTE VALUE-BASED STRATEGY

In this section, we optimize the average probability of error
over even functions f(·) at the relay. Our approach generalizes
the result from [11] for the one-way case. The optimized relay
function for the non-abs-based operation at the relay (i.e.,
assuming that f(u) is an odd function) is considered in [6].
We have found that for low enough SNR or very asymmetric
channels, non-abs-based strategies perform better than abs-
based strategies. Here, we focus on abs based schemes.

From (7), we have

Pe(f)=
1

2

∫ +∞

0

(
N
(
u+2

√
Ps,σ

2
r

)
+N

(
u−2

√
Ps,σ

2
r

)
−2N (u,σ2

r

))
︸ ︷︷ ︸

B(u)

×
[∫ v

−∞
N (y−f(u),σ2

s

)
dy

]
︸ ︷︷ ︸

A(f)

du+
1

2
, (21)

where the second equality holds since B(u) is an even function
in u. Let

D(u)=N
(
u+2

√
Ps,σ

2
r

)
+N

(
u−2

√
Ps,σ

2
r

)
+2N (u,σ2

r

)
. (22)

Our optimization problem is:

min
f,v

G(f)=
∫ +∞

0

B(u)A(f)du,

subject to
1
2

∫ +∞

0

D(u)f2(u)du≤Pr.

(23)

We consider the Lagrangian

φ(λ,f)=G(f)+
λ

2

(∫ +∞

0

D(u)f2(u)du−2Pr

)
, (24)



where λ≥0 is the Lagrange multiplier of the average power
constraint. Differentiating φ(f) with respect to f(u) for each
u and setting the result to zero, we obtain

B(u)N (f(u)−v,σ2
s

)
=λf(u)D(u), (25)

or equivalently

N (f(u)−v,σ2
s

)
f(u)

=λ
D(u)
B(u)

. (26)

Since λ>0,D(u)>0, and B(u)≥0, if |u|≥w; otherwise
B(u)<0, we have{

f(u)≥0, if |u|≥w,
f(u)<0, otherwise,

(27)

where w is the relay hard decision threshold defined in (13).
Lemma 1: For f(u) satisfying{

f(u)≥v, if |u|≥w,
f(u)<v, otherwise,

(28)

Pe(f) in (21) is a strictly convex function in f (when
considering functions that differ on a set of non-zero measure).

Proof: Let f and g be two functions satisfying (28), and let
λ∈[0,1] and γ=1−λ. Clearly, λf+γg also satisfies (28).

Note that

∂2A(f)
∂f2

=
1

2σ2
s

(f(u)−v)N (v−f(u),σ2
s

)
, (29)

which is nonnegative when f(u)≥v and is negative otherwise.
Since by (28), B(u)∂2A(f)

∂f2 is nonnegative for u≥w and
positive otherwise, we have

Pe(λf+γg)=
1

2
+

1

2

∫ +∞

0

B(u)A(λf+γg)du,

<λPe(f)+γPe(g).

(30)

�
If v=0, then Eq. (26) can be further simplified to be

e
−
(

f(u)/
√

2σ2
s

)2

f(u)/
√

2σ2
s

=λ2
√

πσ2
s

cosh 2
√

Psu
σ2

r
+e2Ps/σ2

r

cosh 2
√

Psu
σ2

r
−e2Ps/σ2

r

. (31)

which can be solved to obtain the following expression for
f(u):

f(u)=




√√√√σ2
sW

(
1

2πλ2σ4
s

(
cosh 2

√
Psu

σ2
r

−e2Ps/σ2
r

cosh 2
√

Psu

σ2
r

+e2Ps/σ2
r

)2)
,

if u≥w,

−
√√√√σ2

sW

(
1

2πλ2σ4
s

(
cosh 2

√
Psu

σ2
r

−e2Ps/σ2
r

cosh 2
√

Psu

σ2
r

+e2Ps/σ2
r

)2)
,

if w>u≥0,

f(−u),

if u<0,

(32)

where W (·) denotes the Lambert W function, defined by
W (x)eW (x)=x, and λ is such that the power constraint is
satisfied with equality.

Note that f(u) in (32), which is derived from the Lagrange
dual, satisfies (27). By Lemma 1 and x2 being convex, the set
of functions satisfying (27) and the power constraint of (23)
is a convex set, and the optimization problem (23) under the
additional constraint (27) is convex. Thus, there is no duality
gap between its optimal solution and the optimal solution to
the dual problem under constraint (27). Therefore, (32) is the
optimal solution of (23) when v=0. In high SNR, since

lim
σ2

r→0

N (u+2
√

Ps,σ
2
r

)
+N (u−2

√
Ps,σ

2
r

)−2N (u,σ2
r

)
N (u+2

√
Ps,σ2

r

)
+N (u−2

√
Ps,σ2

r

)
+2N (u,σ2

r)

=

{
1, if |u|>w,
−1, if w>|u|,

(33)

from (26) we obtain

f(u)=
{

C1, if |u|>w,
−C2, if w>|u|, (34)

where C1,C2>0 are constants. Substituting (34) back into
(26), we find that

N (C1−v,σ2
s

)
C1

=λ=
N (C2+v,σ2

s

)
C2

, (35)

which gives

v=
logC1−logC2

C1+C2
σ2

s +
C1−C2

2
→σ2

s→0
C1−C2

2
. (36)

Substituting (36) into (35), we obtain C1=C2=C, which gives
v=0. Also λ can be approximated as

λ=
N (C,σ2

s

)
C

. (37)

Substituting (34)-(37) into (24) and using (14), the dual
problem then becomes

max
C

Q

(
C

σs

)
+
N (C,σ2

s

)
C

(
C2−Pr

)
. (38)

Note that in high SNR Q
(

C
σs

)
can be approximated as

σs√
2πC

exp(− C2

2σ2
s
), which decreases faster than N (C,σ2

s

)
=

1√
2πσs

exp(− C2

2σ2
s
). Therefore, the minimum of (38) is attained

at v=0, C1=C2=C=
√

Pr when σ2
s→0 and σ2

r→0. Note that
with this f∗ and λ∗, minf φ(λ∗,f)=G(f∗) in high SNR, so
there is no duality gap and the optimal solution converges to
(34) or the ADF strategy.

When σ2
r→+∞ and σ2

s→+∞, from (26), we find that

lim
σ2

r→+∞

N (u+2
√

Ps,σ
2
r

)
+N (u−2

√
Ps,σ

2
r

)−2N (u,σ2
r

)
N (u+2

√
Ps,σ2

r

)
+N (u−2

√
Ps,σ2

r

)
+2N (u,σ2

r)

=
Ps

σ2
r

(
u2

σ2
r

−1

)
, if |u|<σr.

(39)

Therefore, in low SNR, f(u) in (32) is like C
(

u2

σ2
r
−1
)

when

|u|<σr where C is a positive constant.
Note that f(u) in (32) is optimal when we apply a threshold

detector with v=0 at the two terminals. In our simulations
this strategy outperforms the other strategies described in this
paper, except in very low SNR where non-absolute value
strategies are better. In general, the optimal v varies with SNR.
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Fig. 1. Comparison of function f(u) in different schemes with σ2
r =σ2

s and
Pr=Ps=1.

A way to optimize both f(u) and v is to solve (25) for f(u)
which depends on both v and λ. For a given v, we can find
λ by satisfying the average power constraint. Finally, v can
be found by substituting the resulting function into G(f) and
optimize over v. The optimized function using this approach
performs better than (32) but the latter is easier to implement
than the former as the former involves an implicit function.

VI. SIMULATION RESULTS

In this section, we compare the performance of different
strategies with σ2

r =σ2
s and Pr=Ps=1 in all cases. A two-

way relay AWGN channel with a single relay is considered.
BPSK is used.

We consider the relay strategies shown in Fig. 1. In AAF,
we choose C=

√
Ps+σr/

√
2. Unlike ADF with a hard limiter,

the optimized relay adapts its transmit power according to
the signal strength it receives which is the benefit of the
average power constraint. If a peak rather than average power
constraint is imposed at the relay, the optimal ADF achieves
the minimum average probability of error. From Fig. 1, we can
also see that when SNR is small, the optimized relay function
looks closer like the AAF of a “V” shape. As SNR increases,
the optimized relay function looks closer like the ADF. This
suggests that ADF performs well in high SNR while AAF is
effective in low SNR. Interestingly, the relay function of EF
has almost the same shape as the optimized relay function in
all SNRs, which agrees with the simulation results in Fig. 2.

Fig. 2 compares the performance of different schemes. We
can see that the performance difference between the optimized
scheme and ADF is at the order of 0.01 in low SNR. When
the SNR is greater than 5 dB, the two schemes perform almost
identically. In low SNR, AAF also performs better than ADF.
EF performs between the optimized scheme and ADF. These
agree with the intuition obtained from Fig. 1. This suggests
that for AWGN two-way relay channel with a single relay the
suboptimal ADF with w=1 and v=0 seems to be a promising
strategy for practical use due to its simplicity and performance.

VII. CONCLUSION

We have analyzed and optimized AF and ADF relaying
strategies for memoryless two-way relay channels with a bi-
nary antipodal input signal. A new AAF scheme was proposed,
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which attains better performance than AF. AAF performs even
better than ADF in low SNR. The relay strategy was also
optimized by minimizing the average probability of error over
all possible relay functions. Furthermore, a novel estimate and
forward strategy is proposed which performs better than ADF.
We found that the optimized function looks like the AAF
in low SNR, looks like the ADF in high SNR, and looks
like EF in all SNRs. Interestingly, the optimized relay can
be considered as waterfilling over the signal space rather than
over spectral or time domain in traditional information theory.
Although this work does not consider channel coding, the
obtained expressions for the error probability allow a rough
determination of the required rate for an end-to-end channel
code. All these results can be also generalized to higher order
constellations, the case with multiple relays, and channels with
unequal SNRs [9], [10].
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