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Abstract— We consider relaying strategies for memoryless
two-way relay channels, where the signal transmitted by a
relay depends only on its previously received signal. For binary
antipodal signaling under the general case of different SNRs
on the terminal-relay channels, we consider two classes of relay
strategies: abs-based strategies in which the processing at the
relay is solely based on the absolute value of the received
signal, and non-abs-based strategies. We analyze and optimize
the performance of existing and new schemes for two-way relay
channels under an average power constraint, including abs-based
and non-abs-based versions of amplify and forward (AF), decode
and forward (DF), and estimate and forward (EF). Additionally,
we optimize the relay function via functional analysis such that
the average probability of error is minimized in the high signal-
to-noise ratio (SNR) regime. Finally, we show that all these results
can also be generalized to higher order constellations.

I. I NTRODUCTION

Recently, the two-way communication problem in which
both parties simultaneously transmit information to each other
has gained a lot of attention in the literature. The two-way
channel was first considered by Shannon [1], who derived
inner and outer bounds on the capacity region. Later, the two-
way relay channel (TWRC) has drawn renewed interest from
both academic and industrial communities [2–6] due to its
potential application in cellular and peer-to-peer networks. AF
and DF protocols for one-way relay channels are extended to
the half-duplex Gaussian TWRC in [2] and the general full-
duplex discrete TWRC in [3]. In [4], network coding [7], [8]
is used to increase the sum-rate of two users. With network
coding, each node in a network is allowed to perform algebraic
operations on received packets instead of only forwarding or
replicating received packets. Works [2–4] focus on capacity
bounds and their strategies are similar to those for one-way
relay channels [9].

In this paper, we consider TWRCs with memoryless relay
operation and average node power constraints. We first con-
sider binary antipodal signaling by the terminals. A class of
so called abs-based relaying schemes, where the processing
at the relay is based on theabsolute value of the received
signal, is proposed in [10] for the special case of identical
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SNRs on the source-relay channel. In the following we remove
this limitation and consider the general case of different SNR
for the terminal-relay channels. We analyze and optimize the
symbol error probability of abs and non-abs relay strategies,
not considering the effect of any end-to-end channel coding
that may be applied. These include existing non-abs amplify
and forward (AF) and decode and forward (DF) schemes for
TWRCs, and their abs-based analogs, abs AF (AAF) and abs
DF (ADF). Furthermore, we extend the estimate and forward
(EF) strategy in [11] for the one-way relay channel to TWRCs.
Besides characterizing the performance of different schemes,
we also optimize the relay function via functional analysis,
where the solution minimizes the average probability of error
over all possible relay functions in the high-SNR regime. We
show that the non-abs DF performs better than ADF if the
two-way channel is very asymmetric or the relay has a greater
power than the two terminals, while ADF performs better
than DF in less asymmetric channels or when the relay has
roughly the same power as the terminals. These results are also
generalized to higher order constellations such as quadrature
amplitude modulation (QAM) and pulse amplitude modulation
(PAM).

Notations: In the followingN (x, σ2) denotes the Gaussian

distribution 1√
2πσ2

exp
(

− x2

2σ2

)

and Q(·) represents the Q-
function.

II. SYSTEM MODEL

An example for a two-way communication over a relay
channel with two terminals and a relay is displayed in Fig. 1,
where theXi are the transmitted symbols from some given
constellation at terminali, i = 1, 2, Yi the received symbols
at the terminals, andYR is the transmitted symbol at the relay.
The communication from terminal 1 to terminal 2 takes place
in two transmission phases. In the multiple-access (MAC)
phase, both terminals simultaneously send a block of data sym-
bols to the relay which generatesYR = f(h1 X1+h2 X2+N)
with the decoding functionf(·). Here, h1 and h2 represent
deterministic attenuation factors for the terminal-to-relay and
relay-to-terminal channels, which could for example represent
a single realization of a fading process. Throughout this
paper, we assume thath1 ≥ h2 without loss of generality.
The quantityN represents the additive white Gaussian noise
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Fig. 1. Two-way relay channel.

(AWGN) at the relay with mean zero and varianceσ2
r . In the

broadcast phase, the relay transmitsYR to both terminals 1
and 2, whereZi is the AWGN at terminali with mean zero
and varianceσ2

si
. The discrete-time model for the TWRC can

therefore be written as

Yi = hi f(h1 X1 + h2 X2 + N) + Zi, i = 1, 2. (1)

For the sake of brevity we also define the received signal at
the relay asU = h1 X1 + h2 X2 + N . Since each terminal
knows what it has sent to the relay in the MAC phase, it can
recover the information from the other terminal based on the
receivedYi and its owna priori symbolsXi. In addition, we
impose an average power constraint onXi:

E{|Xi|2} ≤ Ps, i = 1, 2,

as well as on the output of the relay:

E{|f(X1 + X2 + N)|2} ≤ Pr.

We assume for notational simplicity that the noise varianceat
the two terminals is the same, i.e.,σ2

s1
= σ2

s2
= σ2

s ; extensions
to the more general case are straightforward. We also assume
that the terminals knowh1 andh2, which may be obtained by
using channel estimation at the relay or the feedback channel
from the two terminals, see e.g., [12]. We focus on symbol
error probability as a performance metric: each terminal is
assumed to perform a hypothesis test to decide which symbol
was transmitted by the other terminal; we do not consider the
effect of any end to end channel coding that may be applied.

III. R ELAY STRATEGIES FORBPSK IN ASYMMETRIC

TWRC

We begin by considering BPSK signaling at the terminals;
an extension to higher order constellations is given in Section
V. Each terminal transmitsXi = ±√

Ps. We consider two
classes of relay strategies: absolute value strategies, where the
relay transmits a function of|U | [10], and non-absolute value
strategies, where the relay transmits an odd function ofU .

A. Non-abs Based Strategies

Here, we assume threshold decoding at the terminals where
the following simple decision rule is applied: Ifxi =

√
Ps has

been sent in the MAC phase then terminali decides on
√

Ps

if yi ≥ vi and on−√
Ps otherwise. Likewise, ifxi = −√

Ps

has been sent, then terminali decides on
√

Ps if yi ≥ −vi

and on−√
Ps otherwise.

1) Amplify and Forward: With AF, the relay retransmits its
received signalu, scaled to meet its power constraint.

2) Decode and Forward: In DF the relay performs hard
decisions and maps each decision region to a fixed value that
it transmits, i.e.,

f(u) =







a, if u ≥ w,
b, if w > u ≥ 0,

−f(−u), otherwise,
(2)

wherew is a threshold to be determined. The average proba-
bility of error at terminal 1 can be written as

P (1)
e =

1

2
+

1

2

∫ w

0

A(u)du

[∫ v1

−∞
N
(
y − h1b, σ

2
s

)
dy

]

︸ ︷︷ ︸

C(v1,b)

+
1

2

∫ +∞

w

A(u)du

[∫ v1

−∞
N
(
y − h1a, σ2

s

)
dy

]

︸ ︷︷ ︸

D(v1,a)

+
1

2

∫ w

0

B(u)du

[∫ v1

−∞
N
(
y + h1b, σ

2
s

)
dy

]

︸ ︷︷ ︸

E(v1,b)

+
1

2

∫ +∞

w

B(u)du

[∫ v1

−∞
N
(
y + h1a, σ2

s

)
dy

]

︸ ︷︷ ︸

F (v1,a)

.

(3)

where

A(u) =N
(

u − (h1+h2)
√

Ps, σ
2
r

)

−

N
(

u − (h1−h2)
√

Ps, σ
2
r

)

,

B(u) =N
(

u + (h1+h2)
√

Ps, σ
2
r

)

−

N
(

u + (h1−h2)
√

Ps, σ
2
r

)

.

(4)

Likewise, the average probability of error at terminal 2 canbe
expressed by swapping the indices ”1” and ”2” in both (3) and
(4). Taking the partial derivative ofP (1)

e + P
(2)
e with respect

to w and setting the resulting equation to zero, we obtain

A(w) (C(v1, b) − D(v1, a)) +

B(w) (E(v1, b) − F (v1, a)) +
∂P

(2)
e

∂w
= 0. (5)

As the optimal solution ofw in (5) depends ona, b, v1, v2 in a
complicated way, it is hard to solve (5) directly. A suboptimal
solution to (5) can be approximated to be the root ofA(w),
i.e., w = h1

√
Ps. In high SNR, it is easy to verify that the

first term on the left hand side of (5) is close to zero with
this w. By substitutingw = h1

√
Ps into (3), taking the partial

derivative of (3) with respect tov1, and setting the resulting
equation to zero we obtain

v1 =
h1(a + b)

2
, v2 =

h2(a − b)

2
. (6)



In high SNR we can obtain the optimala andb subject to the
power constraint at the relay by substituting (6) into (3) and
minimizing (2). This leads to the equivalent problem

min
a,b

∫ +∞

a−b
2 h1

N (y) dy +

∫ +∞

a+b
2 h2

N (y) dy,

subject toa2 + b2 = 2Pr, (7)

which gives

a

b
=

h1 + h2

h1 − h2
, a2 + b2 = 2Pr. (8)

Note that (8) agrees with the conventional DF,
where the relay first find a point from the set
{−h1 − h2,−h1 + h2, h1 − h2, h1 + h2} with the minimum
Euclidean distance from the received signal and then transmits
a scaled version of this point.

Whenh1 = h2, (8) gives

a =
√

2Pr, b = 0. (9)

In this strategy, the received signal at the relay is mapped
to only three points instead of four points as mapping both
−h1 +h2 andh1−h2 to zero does not cause ambiguity at the
two terminals. Thus, removing a constellation point results in
power savings and performance improvements.

So far, we have only given suboptimal parameters setting.
One way to approximate the optimal solution is to use an
iterative method. At the beginning of thek-th iteration, as-
suming thatw(k) is given (w(0) = h1

√
Ps), we can choose

a(k), b(k), v
(k)
1 , v

(k)
2 by minimizing the average error probabil-

ity. Then, w(k+1) can be obtained usinga(k), b(k), v
(k)
1 , v

(k)
2

from (5). The process repeats until convergence or the maxi-
mum number of iterations is achieved. From our experiments
we find that less than five iterations are required before
convergence.

From simulation results we find that whenh1/h2 is close
to one, (9) performs better than (8) and performs close to the
optimal solution. Ash1/h2 increases, (8) outperforms (9) in
high SNR. But (9) still performs better than (8) in low SNR.
One advantage of the suboptimal solutions (8) and (9) is that
they do not depend on channel parameters and noise variances
and are easy to implement in practice.

3) Estimate and Forward: In this strategy the relay trans-
mits a scaled version of the MMSE estimate ofh1X1 +h2X2,
i.e., we consider a functiong(u) such that

g(u) = arg min
g′(u)

E
{

|h1x1 + h2x2 − g′(u)|2
∣
∣
∣u
}

. (10)

The objective function in (10) can be written as

E
{

|h1x1 + h2x2 − g(u)|2
∣
∣
∣u
}

=

∑

x1,x2∈{−
√

Ps,
√

Ps}

Pr(u|x1 + x2)Pr(x1 + x2)

Pr(u)
·

|h1x1 + h2x2 − g(u)|2 . (11)

By minimizing (11) overg(u) we obtain (12) shown at the top
of next page. The relay functionf(u) can then be acquired as
a scaled version ofg(u). We find thatg(u) in (12) is close to
the conventional DF (8) in high SNR.

4) Optimized Relay Function: The optimal relay function
minimizes the sum of average probabilities of both terminals
subject to the average power constraint. To solve the functional
optimization problem, we first fixv1 and v2 and derive the
relay function as a function ofv1 and v2 via the Lagrange
dual. Then the relay function is substituted into the objective
function and the resulting equation is minimized overv1 and
v2 by performing a line search aroundv1 andv2 in the optimal
DF strategy. Since we do not have a convex optimization
problem, the obtained solution may be a local optimum.
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Fig. 2. The optimized non-abs relay function at different SNRs and with
different h1 andh2.

Fig. 2 shows the optimized relay function at different SNRs
and with differenth1 andh2. In low SNR, the relay behaves
like the AF strategy, while it looks like the DF strategy (8) in
high SNR.

B. Abs-Based Strategies

Detailed derivations can be found in [10], where abs-based
strategies are proposed and optimized for symmetric Gaussian



g(u) =
sinh (h1+h2)

√
Psu

σ2
r

e
− (h1+h2)2Ps

2σ2
r (h1 + h2)

√
Ps

cosh (h1+h2)
√

Psu

σ2
r

e
− (h1+h2)2Ps

2σ2
r + cosh (h1−h2)

√
Psu

σ2
r

e
− (h1−h2)2Ps

2σ2
r

+
sinh (h1−h2)

√
Psu

σ2
r

e
− (h1−h2)2Ps

2σ2
r (h1 − h2)

√
Ps

cosh (h1+h2)
√

Psu

σ2
r

e
− (h1+h2)2Ps

2σ2
r + cosh (h1−h2)

√
Psu

σ2
r

e
− (h1−h2)2Ps

2σ2
r

. (12)

two-way relay channels; the ADF strategy was previously
proposed in [5]. In the following, we extend those strategies
in [10] to asymmetric/fading channels.

1) Abs Amplify and Forward: In this scheme, the relay
first takes the absolute value of the received signal and then
subtracts a positive constantC from the resulting signal, i.e.,

f(u) = β (|u| − C) , (13)

whereβ is a coefficient to maintain the average power con-
straint at the relay, and|u| denotes the absolute value ofu. At
terminal 1, if the received signal is greater than the detection
thresholdv, it decides thatX1 =

√
Ps and X2 =

√
Ps or

X1 = −√
Ps and X2 = −√

Ps, and it decidesX1 =
√

Ps

andX2 = −√
Ps or X1 =

√
Ps andX2 = −√

Ps otherwise.
By minimizing the average probability of error, the optimalv
andC can be obtained.

2) Abs Decode and Forward: In ADF, to satisfy the relay’s
average power constraint,

√
Pr and−√

Pr are transmitted, i.e.,

f(u) =

{ √
Pr, if |u| ≥ h1

√
Ps,

−√
Pr, otherwise.

(14)

Compared with (13), in ADF, the relay performs hard de-
cisions on the absolute value of the received signal rather
than transmitting a scaled version. At both terminals, the
signal from the other terminal is determined by comparing
the received signal with the threshold 0. The average error
probability at terminal 1 can be written as

P
(1)
e =

1

2
+

1

2

Z

h1
√

Ps

0

“

N
“

u − (h1 + h2)
√

Ps, σ
2
r

”

+N
“

u + (h1 + h2)
√

Ps, σ
2
r

”

−N
“

u − (h1 − h2)
√

Ps, σ
2
r

”

−N
“

u + (h1 − h2)
√

Ps, σ
2
r

””

du

·
Z 0

−∞

“

N
“

y + h1

√
Pr, σ

2
s

”

−N
“

y − h1

√
Pr, σ

2
s

””

dy.

(15)

The average error probability at terminal 2 can be obtained in
the same way.

3) Estimate and Forward: In abs EF, we consider the
function g(u) such that

g(u) = arg min
g′(u)

E
{

||h1x1 + h2x2| − g′(u)|2
∣
∣
∣u
}

. (16)

As in the non-abs case, by solving (16) we obtain (17), shown
at the top of next page. The relay functionf(u) is then a scaled
version ofg(u) − C, whereC is a constant as in AAF.

4) Optimized Relay Function: The abs relay function can
be optimized by following the approach as in the non-abs
counterpart by minimizing the average probability of error
over all possible functionsf(·). The only difference is that in
abs-based strategies we assumef(·) to be an even function.

The average probability of error at terminal 1 can be
obtained as

P (1)
e (f) =

1

2

∫ +∞

−∞
N
(

u − (h1 − h2)
√

Ps, σ
2
r

)

·
[∫ +∞

v1

N
(
y − h1f(u), σ2

s

)
dy

]

du

+
1

2

∫ +∞

−∞
N
(

u − (h1 + h2)
√

Ps, σ
2
r

)

·
[∫ v1

−∞
N
(
y − h1f(u), σ2

s

)
dy

]

du, (18)

where v1 is the decision threshold at terminal 1. We can
similarly obtain P

(2)
e (f), the average probability of error at

terminal 2. By minimizingP
(1)
e (f) + P

(2)
e (f) subject to the

average power constraint, we can approximate the optimal
relay function as in (19) shown at the top of next page. Herein,
λ is a parameter to satisfy the average power constraint and
W (·) denotes Lambert’s W functionW (x), which is defined
as the solution toW (x)eW (x) = x. It can be shown, as in the
symmetric TWRC case [10], that this converges to the ADF
strategy and is the globally optimal abs-based strategy in high
SNR.

IV. A NALYTICAL COMPARISONBETWEEN TWO CLASSES

OF STRATEGIES IN HIGH SNR

For h1 > h2, the average error probability of ADF can
be approximated by applying Chernoff bound-type arguments
to (15) (and the corresponding expression for terminal 2)
according to

P (1)
e + P (2)

e ≈ 1

2

(

e
−h2

1Pr

2σ2
s + e

−h2
2Pr

2σ2
s

)

+ e
−h2

2Ps

2σ2
r . (20)

Likewise, we can approximate the average error probabilityof
non-abs DF by using Chernoff bounds on (3) and (4) (and the



g(u) =
|h1 + h2|

√
Pse

− (h1+h2)2Ps

2σ2
r cosh (h1+h2)

√
Psu

σ2
r

e
− (h1+h2)2Ps

2σ2
r cosh (h1+h2)

√
Psu

σ2
r

+ e
− (h1−h2)2Ps

2σ2
r cosh (h1−h2)

√
Psu

σ2
r

+

|h1 − h2|
√

Pse
− (h1−h2)2Ps

2σ2
r cosh (h1−h2)

√
Psu

σ2
r

e
− (h1+h2)2Ps

2σ2
r cosh (h1+h2)

√
Psu

σ2
r

+ e
− (h1−h2)2Ps

2σ2
r cosh (h1−h2)

√
Psu

σ2
r

. (17)

f(u) =







√
√
√
√
√
√σ2

sW






1
2πλ2h2

1σ4
s






e
−

(h1+h2)2Ps

2σ2
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√

Psu

σ2
r

−e
−

(h1−h2)2Ps

2σ2
r cosh

(h1−h2)
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Psu

σ2
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e
−

(h1+h2)2Ps

2σ2
r cosh

(h1+h2)
√

Psu

σ2
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+e
−

(h1−h2)2Ps

2σ2
r cosh

(h1−h2)
√

Psu

σ2
r
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, if u ≥ w,

−

√
√
√
√
√
√σ2

sW






1
2πλ2h2

1σ4
s






e
−

(h1+h2)2Ps

2σ2
r cosh

(h1+h2)
√

Psu

σ2
r

−e
−

(h1−h2)2Ps

2σ2
r cosh

(h1−h2)
√

Psu

σ2
r

e
−

(h1+h2)2Ps

2σ2
r cosh

(h1+h2)
√

Psu

σ2
r

+e
−

(h1−h2)2Ps

2σ2
r cosh

(h1−h2)
√

Psu

σ2
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2


, if w > u ≥ 0,

f(−u), if u < 0.

(19)

corresponding expression for terminal 2) as

P (1)
e + P (2)

e ≈

e
− β2h2

1h2
2

2σ2
s +

1

2
e
−h2

2Ps

2σ2
r

(

1 +
1

2
Q

(
βh1h2 − 2βh2

2

σr

))

, (21)

where

β =

√

Pr

h2
1 + h2

2

.

In the following, we consider several cases in high SNR.

• If Pr

σ2
s

< Ps

σ2
r
, (20) is dominated by12e

−h2
2Pr

2σ2
s while (21) is

dominated bye
− h2

1h2
2Pr

2(h2
1+h2

2)σ2
r . Therefore, the average error

probability of ADF is at least1/2 of that of DF.
• If h1 > 2h2 and β2h2

1

σ2
s

> Ps

σ2
r
, (20) is dominated by

e
−h2

2Ps

2σ2
r and (21) is dominated by12e

−h2
2Ps

2σ2
r . Therefore,

the average error probability of DF is1/2 of that of ADF.
• If h1 < 2h2 and β2h2

1

σ2
s

> Ps

σ2
r
, (20) is dominated by

e
−h2

2Ps

2σ2
r and (21) is dominated by34e

−h2
2Ps

2σ2
r . Therefore,

the average error probability of DF is3/4 of that of ADF.

These results suggest that when the channel is very asymmetric
or the relay has a greater power than the terminals we should
use DF. When relay has almost the same power as the
terminals we prefer ADF where the power savings by using
the abs operation has a big impact on the overall performance.
Note that from Section III-A2 we know that whenh1/h2 is
close to 1, DF with (9) performs better than DF with (8).
Therefore, when the channel is symmetric and the relay has a
greater power than the terminals we should use DF with (9).

V. H IGHER ORDER CONSTELLATIONS

In practical standards such as the 802.11 series, usually
higher order QAM constellations are employed to achieve high
spectral efficiency. In the following, we assumeh1 = h2 = 1
for simplicity. We first define a mapping functionh(u) at the
relay such that in the noise free case, each terminal can decode
the other terminal’s signal given its transmitted signal. This is
equivalent to

h(u1 + u2) 6= h(u′
1 + u2), ∀u1 6= u′

1 and

h(u1 + u2) 6= h(u1 + u′
2), ∀u2 6= u′

2, ui, u
′
i ∈ V,

(22)

i = 1, 2, whereV is the constellation set used by the two
terminals. Mappingsh(u) satisfying the decodability condition
(22) can be viewed as vertex colorings of an undirected graph
G, where each node corresponds to a different value ofu1+u2

and there is an edge between the node corresponding tou1+u2

and the node corresponding tou′
1 + u2, ∀u′

1 6= u1. Each such
mappingh(u) corresponds to a vertex coloring ofG such that
any pair of adjacent nodes does not have the same color. The
relay constellation size is equal to the number of colors. The
minimum relay constellation size, which equals the chromatic
number ofG, is at least|V|. For example, if the terminals
use an 8-PSK constellation for the uplink channel to the relay,
we obtain from a computer search that the minimum possible
constellation size is eight for the downlink channel1.

The classification of BPSK strategies into absolute and non-
absolute value strategies can be generalized to a classification
based on underlying relay mappingsh(u) satisfying (22). For
each such mapping, the strategies discussed for BPSK in
Section III-A and Section III-B can be generalized as described

1For arbitrary constellationsV the minimum possible relay constellation
size can be larger than|V|.



below. Under different channel parameters, different mappings
achieve the lowest error probability.

Note that rectangular QAM constellations can be easily
transmitted as two PAM signals on quadrature carriers. In the
following, we take 4PAM as an example. The approach can
be generalized to higher PAM constellations. For simplicity,
we assume that the transmit signal by the relay is chosen
from the constellation setV = {−3,−1, 1, 3}. In the absence
of noise, the received signal at the relay is from the set
W = {−6,−4,−2, 0, 2, 4, 6}. The underlying (noise free)
relay mappingh(u) maps the setW to a setV ′ of size at least
|V|. We first consider the class of mapping functions such that
they mapW to V ′ = V. For example, we can choose

h(−6) = −3, h(−4) = −1, h(−2) = 3, h(0) = 1,

h(2) = −3, h(4) = −1, h(6) = 3,
(23)

or

h(−6) = −3, h(−4) = −1, h(−2) = 1, h(0) = 3,

h(2) = −3, h(4) = −1, h(6) = 1.
(24)

It is easy to verify that both (23) and (24) satisfy the condition
in (22). Note that (24) is the physical network coding operation
given in [5] using DF.

AAF can be readily generalized by setting the relay function
to be a piecewise linear function based onh(u) such as

f(u) =







β(u + 3), if u < −3,
β(u + 5), if − 2 > u ≥ −3,
β(1 − u), if 1 > u ≥ −2,

β(−1 − u), if 2 > u ≥ 1,
β(u − 5), if 5 > u ≥ 2,
β(u − 3), if u ≥ 5,

(25)

whereβ is a coefficient to maintain the average power con-
straint at the relay. The decoding at each terminal is similar to
the traditional 4PAM demodulation by comparing with some
thresholds. We can optimizedi andci in the relay function and
the thresholds at the terminals by minimizing the average error
probability. ADF can be adapted similarly. The relay defines
hard decision regions foru, and sends a scaled/shifted version
of h(u). In high SNR, the ADF relay function based on (23)
can be obtained as

f(u) =







−3β, if u < −5,
−β, if − 3 > u ≥ −5,
3β, if − 1 > u ≥ −3,
β, if 1 > u ≥ −1,

−3β, if 3 > u ≥ 1,
−β, if 5 > u ≥ 3,
3β, if u ≥ 5.

(26)

For EF, we first consider the functiong(u) such that

g(u) = arg min
g′(u)

E
{

|h(x1 + x2) − g′(u)|2
∣
∣
∣u
}

. (27)

f(u) is then a scaled version ofg(u), i.e., f(u) = β g(u),
whereβ ≥ 0 is a scalar to satisfy the average power constraint.

At the two terminals, there also exists an optimal decision
threshold v. We can optimizev using the same approach
as in AAF or just choose the conventional 4PAM detection
threshold. In all strategies, we can also apply a maximum
likelihood detector at each terminal, i.e.,

x̂2 = arg min
x̃2∈V

|y1 − f (x1 + x̃2)|2 . (28)

The relay mapping function can also perform a redundant
mapping such thatW = {−6,−4,−2, 0, 2, 4, 6} is mapped to
a setV ′ with 5, 6, or 7 elements. For example, whenV ′ =
{−4,−2, 0, 2, 4}, we can choose

h(−6) = −4, h(−4) = −2, h(−2) = 0, h(0) = 2,

h(2) = 4, h(4) = −2, h(6) = −4,
(29)

or, whenV ′ = {−5,−3,−1, 1, 3, 5}, we can choose

h(−6) = −5, h(−4) = −3, h(−2) = −1, h(0) = 1,

h(2) = 3, h(4) = 5, h(6) = −5.
(30)

WhenV ′ = W, we can simply chooseh(u) = u. It is easy to
verify that (29) and (30) satisfy the condition in (22).

VI. SIMULATION RESULTS

Fig. 3 compares the bit error rate (BER) performance of
different abs and non-abs strategies for BPSK whenh1 = 1
and h2 = 0.8, Pr = Ps = 1. We observe that in low SNR,
the optimized non-abs (abs) relay behaves like the AF (AAF)
strategy, while it looks like the DF (ADF) strategy in high
SNR. Also, EF performs close to the optimized strategy for all
SNR values. It can also be seen that non-abs-based strategies
perform better than abs-based strategies in low SNR in this
scenario while the former performs worse than the latter in
high SNR. The reason for this is that non-abs strategies do
not exploit the fact thata priori information is available at
the terminals and therefore provide extra redundancy whichis
useful particularly in low SNR. A similar behavior is observed
in Fig. 4 where the caseh1 = 1 andh2 = 0.5 is considered.
Compared to the results forh1 = 1 andh2 = 0.8 in Fig. 3, the
threshold SNR below which non-abs-based strategies perform
better than abs-based strategies is increased. Thus, non-abs-
based strategies are beneficial for asymmetric channels.

Fig. 5 compares the symbol error rate (SER) of different
relay functions for 4PAM using ADF and AAF when the relay
constellation sizeV = |V ′| takes values4, 5, 6, 7, for moderate
to high SNR. We can see that the performance degrades
as V increases. There are two factors that may affect the
performance of relay functions with differentV . First, a small
V indicates a higher compression at the relay, which results
in power savings. Second, whenV is small, a decoding error
at the relay may affect the overall performance. In high SNR,
it is clear that the power savings dominate the performance
of ADF. We can also see that the mappings in (23) and (24),
which have equalV , give practically identical performance.
In low SNR, we find that the performance degrades asV
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decreases, which means thatV = 7 achieves the best per-
formance. For example, at SNR= 0 dB, the SERs forV = 4,
5, 6, 7 are0.6904, 0.6472, 0.6428, 0.6146, respectively. This
observation generalizes that in the BPSK case, where the abs-
based functions correspond to the minimum relay constellation
size. The reason for this behavior is again that the redundancy
in the relay constellation set increases for largerV .

VII. C ONCLUSION

We have analyzed and optimized relaying strategies for
memoryless TWRCs. In particular, we propose abs-based
strategies where the relay processes the absolute value of
the received signal. These techniques generally outperform
non-abs-based strategies in the moderate to high SNR regime
since they take into account that side information is available
at the terminals which allows for additional power savings.
Specifically, we have considered abs- and non-abs-based DF,
AF and EF strategies, and also the optimization of the
nonlinear processing function at the relay. In addition, we
showed analytically for the high SNR case that the non-abs
DF performs better than ADF when the two-way channel is
very asymmetric or the relay has a greater power than the
two terminals, while ADF performs better than DF when the
relay has roughly the same power as the terminals. Although
this work does not consider channel coding, the obtained
expressions for the error probability allow rough determination
of the required rate for an end-to-end channel code. Extensions
of these results to higher order constellations such as QAM
and PAM have also been presented, where similar observations
can be made.
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