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Abstract—This paper considers secure network coding over
networks with restricted wiretapping sets and unequal link
capacities in the presence of a wiretapper that can wiretap any
subset of k links. In particular, we consider networks with point-
to-point erasure channels. Existing results for wireline networks
show that for the case of both unrestricted wiretapping sets and
equal (unit) link capacities, the secrecy capacity is given by the
cut-set bound, whether or not the location of the wiretapped
links is known, and can be achieved by injecting k random
keys at the source which are decoded at the sink along with
the message. In contrast, for restricted wiretapping sets and
unequal link capacities we show that this global key strategy
is suboptimal. In particular, we propose achievable strategies
where random keys are canceled at intermediate non-sink nodes,
injected at intermediate non-source nodes, or a combination of
both strategies is considered.

I. INTRODUCTION

Information-theoretically secure communication uses cod-
ing to ensure that an adversary eavesdropping on a subset
of network links obtains no information about the secure
message. A theoretical basis for information-theoretic security
was given in the seminal paper by Wyner [1] using Shannon’s
notion of perfect secrecy [2], where a coset coding scheme
based on a linear maximum distance separable code was
used to achieve security for a wiretap channel. More recently,
information-theoretic security has been studied in networks
with general topologies. The secure network coding problem
was introduced in [3] for multicast wireline networks where
each link has equal capacity, and a wiretapper can observe
an unknown (unrestricted) set of up to k network links. For
this problem, constructions of information-theoretically secure
linear network codes are proposed in e.g. [3]–[5]. In [6], secure
communication is considered for wireless erasure networks.
In the case of throughput optimization without security

requirements, the assumption that all links have unit capacity is
made without loss of generality, since links of larger capacity
can be modeled as multiple unit capacity links in parallel.
However, in the secure communication problem, such an
assumption cannot be made without loss of generality. Indeed,
we show in this paper that there are significant differences
between the equal capacity and unequal capacity cases and
that these differences also exist if unrestricted or unrestricted
wiretapping sets are considered. In particular, for the case of

equal (unit) link capacities and unrestricted wiretapping sets,
the secrecy capacity is given by the cut set bound, whether or
not the location of the wiretapped links is known. This capacity
can be achieved by injecting k random keys at the source
which are decoded at the sink along with the message [3]. We
refer to this approach as the global key strategy. In contrast,
the restricted wiretapping set case is more complicated, even
for a single source and sink. We propose new achievable
strategies where random keys are canceled at intermediate
non-sink nodes, injected at intermediate non-source nodes, or
where a combination of both strategies is applied, and show
that these approaches can outperform the global key strategy.

II. NETWORK MODEL AND PROBLEM FORMULATION
In this paper we focus on acyclic graphs for simplicity; we

expect that our results can be generalized to cyclic networks
using the approach in [7], [8] of working over fields of rational
functions in an indeterminate delay variable.
For each node i ∈ V , NO(i) and NI(i) denote the set of

in-neighbors and out-neighbors of i, i.e.,

NI(i) = {j|(j, i) ∈ E} , NO(i) = {j|(i, j) ∈ E} . (1)

A cut for x, y ∈ V is a partition of V into two sets Vx and
Vy = Vc

x such that x ∈ Vx and y ∈ Vy . For the x−y cut given
by Vx, the cut-set [Vx,Vy] is the set of edges going from Vx

to Vy , i.e.,

[Vx,Vy] = {(u, v)|(u, v) ∈ E , u ∈ Vx, v ∈ Vy} . (2)

In the most general network model that we consider, each
edge (i, j) ∈ E represents a memoryless erasure channel from
node i to node j with erasure probability pi,j . As in [3],
there is an eavesdropper, who can wiretap any k edges of this
network. For any wiretapped edge (i, j) ∈ E , the wiretapper
can receive the symbols sent by node i to node j via another
memoryless erasure channel with erasure probability qi,j . Note
that our model includes those in [3], [6] as special cases. When
pi,j = qi,j = 0 for all links (i, j), our model reduces to that
in [3]. When pi,j = qi,j takes different values for different
links (i, j), with appropriate capacity scaling, the network is
equivalent to an network with unequal capacity links where
the wiretapper fully observes transmissions on the links it
wiretaps.



An eavesdropper can wiretap a set A of links chosen from
a known collection W of possible wiretap sets. Without loss
of generality we can restrict our attention to maximal wiretap
sets, i.e. no set in W is a subset of another. The choice of
wiretap set A is unknown to the communicating nodes, except
where otherwise specified in this paper. The secrecy capacity is
the highest possible source-sink communication rate such that
the message communicated is information theoretically secret
regardless of the choice of A, i.e. has zero mutual information
with the wiretapper’s observations.
The strategies we describe below apply to the general prob-

lem with unequal link capacities and restricted wiretapping
sets, but the examples we provide focus on two special cases:
1) Scenario 1 is a wireline network with equal link ca-
pacities, where the wiretapper can wiretap an unknown
subset of k links from a known collection of vulnerable
network links.

2) Scenario 2 is a wireline network with unequal link ca-
pacities, where the wiretapper can wiretap an unknown
subset of k links from the entire network.

Although, for the sake of simplicity, we only discuss single-
source single-sink networks in the following, the cut-set bound
and strategy 2 in the next section can be easily extended to
multicast networks.

III. CUT-SET BOUND AND ACHIEVABLE STRATEGIES
In this section, we consider the general wireline problem

with unequal link capacities where the eavesdropper can
wiretap an unknown set A of links chosen from a known
collectionW of possible wiretap sets. We state a cut-set upper
bound on capacity, and give two new achievable strategies and
examples in which they outperform the existing global key
strategy.

A. Cut-Set Bound
Let Sc denote the set complement of a set S. A cut for

x, y ∈ V is a partition of V into two sets Vx and Vc
x such that

x ∈ Vx and y ∈ Vc
x. For the x−y cut given by Vx, the cut-set

[Vx,Vc
x] is the set of edges going from Vx to Vc

x, i.e.,

[Vx,Vc
x] = {(u, v)|(u, v) ∈ E , u ∈ Vx, v ∈ Vc

x} . (3)

Before stating the theorem, we briefly review the results in [1],
where a wiretap channel with one source, one sink and one
wiretapper is considered. Let X be the secret message sent by
the source, and let Y and Z be the received signal at the sink
and wiretapper, respectively. By using a coset coding scheme
based on a linear maximum distance separable code, Wyner
showed that the secrecy capacity of the wiretap channel is

Cs = max
pX(x)

I(Y ; X) − I(Z; X), (4)

with H(X |Z) = H(X), where pX(x) is the pdf of X .

Theorem 1. Consider a single source and single sink wireline
erasure network in which a secret message M is delivered
from source s to destination d. There exists a wiretapper in the
network that can wiretap at most k links and the wiretapped

messages are denoted as Z. Assuming that the destination
has complete knowledge of the erasure locations on each link
of the network and the locations of the wiretapped links, the
secrecy capacity is given by

Cs = min
{Vs:Vs is an s−d cut}

min
{A|A⊆[Vs,Vc

s ], |A|≤k}
∑

(i,j)∈[Vs,Vc
s ]−A

(1 − pi,j) +
∑

(i,j)∈A

max (qi,j − pi,j , 0) , (5)

where
H(M |Z) = H(M). (6)

Proof: Achievability.We show the achievability of (5) by
applying the coding scheme of [1] on each link individually.
Let Xi,j , Yi,j and Zi,j be the local message, channel output,
and wiretapper’s output on link (i, j) ∈ A. From (4), we know
that as long as the rate of Xi,j is less than

max
Pi,j(xi,j)

I(Xi,j ; Yi,j) − I(Xi,j ; Zi,j) =max
π

(qi,j − pi,j)H(π)

=max (qi,j − pi,j , 0) ,
(7)

node j can receive Xi,j securely, i.e., I(Xi,j ; Zi,j) = 0. As
M → X → Z forms a Markov chain, we have

I(M ;Z) ≤I(X;Z) = H(Z) − H(Z|X)

≤
∑

(i,j)∈A

H(Zi,j) −
∑

(i,j)∈A

H(Zi,j |Xi,j)

=
∑

(i,j)∈A

I(Xi,j ; Zi,j) = 0, (8)

where the second inequality follows since conditioning reduces
entropy [9] and that Zi,j is conditionally independent of the
local messages and wiretapped observations at other nodes
given Xi,j . As mutual information is nonnegative, we have
I(M ;Z) = 0 and perfect secrecy is achieved. Therefore, given
the wiretapping set A, we can decouple the secrecy coding
from the routing or network coding, i.e., routing or network
coding is oblivious to the secrecy coding. We simply replace
the capacity of each link with the secrecy capacity of each
link. Therefore, the following cut-set bound is achievable

min
{Vs:Vs is an s−d cut}

∑

(i,j)∈[Vs,Vc
s ]−A

(1 − pi,j)+

∑

(i,j)∈A

max (qi,j − pi,j , 0) . (9)

The wiretapper chooses the set A to minimize the secrecy rate
in (9), which gives (5). This concludes the achievability part.
Converse. Let Vs be a cut of the network and A ⊆ [Vs,Vc

s ],
|A| ≤ k be the set of wiretapping edges. Denote by X the
transmitted signals from nodes in Vs over links in [Vs,Vc

s ] and
denote by Z and Y the observed signals from links in A and
in [Vs,Vc

s ], respectively. Let Ah be the set of links (i, j) such
that pi,j ≥ qi,j , and let Yh and Yd contain the observations
from links in Ah and [Vs,Vc

s ]−Ah, respectively. Zh and Zd

are defined similarly, where Zd is a degraded version of Yd



while Yh is a degraded version of Zh. We consider block
coding with block length n. We have

nRs ≤H(M |Zn)
(a)
≤H(M |Zn) − H(M |Yn) + nεn
(b)
=H(M |Zn

d ,Zn
h) − H(M |Yn

d ,Yn
h) + nεn

(c)
≤H(M |Zn

d ,Yn
h) − H(M |Yn

d ,Yn
h) + nεn

(d)
≤H(M |Zn

d ,Yn
h) − H(M |Zn

d ,Yn
d ,Yn

h) + nεn

=I(M ;Yn
d |Z

n
d ,Yn

h) + nεn
(e)
≤I(Xn;Yn

d |Z
n
d ,Yn

h) + nεn,

=
n

∑

i=1

H(Yd,i|Z
n
d ,Yn

h) −
n

∑

i=1

H(Yd,i|X
n,Zn

d ,Yn
h)

+ nεn,

(f)
≤

n
∑

i=1

H(Yd,i|Zd,i,Yh,i) −
n

∑

i=1

H(Yd,i|Xi,Zd,i,Yh,i)

+ nεn,

=nI(X;Yd|Zd,Yh) + nεn,

=n (I(X;Yd,Yh) − I(X;Zd,Yh)) + nεn,

≤n max
p(X)

(I(X;Yd,Yh) − I(X;Zd,Yh)) + nεn,

(g)
=n





∑

(i,j)∈[Vs,Vc
s ]

(1 − pi,j) −
∑

(i,j)∈Ad

(1 − qi,j)−

∑

(i,j)∈Ah

(1 − pi,j)



 + nεn,

=n





∑

(i,j)∈[Vs,Vc
s ]−A

(1 − pi,j)+

∑

(i,j)∈A

max(qi,j − pi,j , 0)



 + nεn,

(10)

where εn → 0 as n → +∞ and
(a) comes from Fano’s inequality.
(b) follows from the definition of Yd,Yh,Zd,Zh.
(c) comes from the fact that M → Xn →
(Zn

d ,Zn
h) → (Zn

d ,Yn
h) forms a Markov chain.

(d) follows from conditioning reduces entropy.
(e) comes from the fact that M → Xn →
(Yn

d ,Yn
h) → (Zn

d ,Yn
h) forms a Markov chain and

A → B → C → D ⇒ I(A; C|D) ≤ I(B; C|D).
To show this inequality, we have

I(A; C|D) − I(B; C|D) =I(A; C, D) − I(A; D)−

I(B; C, D) + I(B; D)

=I(B; D|A) − I(B; C|A)

= − I(B; C|A, D) ≤ 0.

(f) follows from the fact that conditioning reduces
entropy and that Yd,i is independent of other vari-
ables given Xi,Zd,i,Yh,i.

(g) is because both I(X;Yd,Yh) and I(X;Zd,Yh)
are maximized when the entries of X are i.i.d.
Bernoulli(1/2).

By decoupling the secrecy coding from the routing or
network coding as in the achievability proof of Theorem 1,
Theorem 1 can be readily extended to the multicast case. The
proof is similar to the unicast case. We thus give the following
theorem without proof.

Theorem 2. Consider a multicast problem in a wireline
erasure network G = (V , E) with a single source s ∈ V and
a set of destinations D ⊆ V . A secret message M is multicast
from s to all nodes in D. There exists a wiretapper in the
network that can wiretap at most k links, and the wiretapped
messages are denoted as Z. Assuming that the destination
has complete knowledge of the erasure locations on each link
of the network and the locations of the wiretapped links, the
secrecy multicast capacity of the network is given by

Cs = min
d∈D

min
{Vs:Vs is an s−d cut}

min
{A|A⊆[Vs,Vc

s ], |A|≤k}

∑

(i,j)∈[Vs,Vc
s ]−A

(1 − pi,j)+

∑

(i,j)∈A

max (qi,j − pi,j , 0) , (11)

where
H(M |Z) = H(M). (12)

B. Achievable Strategies for Unknown Wiretap Set
In the case of unrestricted wiretapping sets, unit link capac-

ities, and pi,j = qi,j on every edge (i, j), the secrecy capacity
can be achieved using global keys generated at the source
and decoded at the sink [3]. The source transmits r secret
information symbols and k random key symbols, where r + k
is equal to the min-cut of the network. This scheme does
not achieve capacity in general networks. Intuitively, this is
because the total rate of random keys is limited by the min
cut from the source to the sink, whereas more random keys
may be required to fully utilize large capacity cuts with large
capacity links.
In this case, capacity can be improved by using a com-

bination of local and global random keys. A local key is
injected at a non-source node and/or canceled at a non-sink
node. However, it is complicated to optimize over all possible
combinations of nodes at which keys are injected and canceled.
Thus, we propose the following more tractable family of
constructions, which we will use in subsequent sections. In
the following, we focus on the case of a single source and a
single sink. Let zi,j be the actual flow on link (i, j).
For the case where qi,j )= pi,j , by using random linear

coding on each link, node i sends zi,j

(1−pi,j)
random linear

combinations over link (i, j) to guarantee that j can decode



zi,j symbols with high probability for large zi,j . The wiretap-
per can get min

(

1−qi,j

1−pi,j
, 1

)

zi,j linearly independent random
combinations from link (i, j) with high probability.

Strategy 1: Random keys injected at the source and possibly
canceled at intermediate nodes

Connect each subset of links A ∈ W in the network G to
a virtual node tA, and connect both tA and the actual sink
to a virtual sink dA. Let Rs→A be the total flow between
s and tA. The virtual link between tA and dA has capacity
Rs→A, and the virtual link between the actual sink and dA has
capacity Rs. This is illustrated in Fig. 1. The source multicasts
a secret message v = [v1, . . . , vRs

]T with Rs symbols plus
Rw random key symbols w = [w1, . . . , wRw

]. We want to
choose the secrecy rate Rs and the random key rate Rw such
that the virtual receiver dA can decode Rs + Rs→A message
and key symbols from the source, and the original receiver
can decode the Rs message symbols.

If the rate Rs + Rs→A satisfies the min-cut between the
source and the virtual receiver dA and Rs→A ≤ Rw, by using
[10, Corollary 19.21], there exists a network code such that
dA receives Rs +Rs→A linearly independent combinations of
v and w when the finite field size is sufficiently large. Let
the signals received at a particular virtual sink dB be denoted
as MB[vT ,wT ]T , where MB is an Rs + Rs→A by Rs + Rw

received coding matrix with full row rank1. We can add Rw −
Rs→B rows to MB to get a full rank (Rs +Rw)× (Rs +Rw)
square matrix M̃B. We thus precode the secret message and
keys using M̃

−1
B , i.e., the source transmits M̃

−1
B [vT ,wT ]T .

This results in the actual sink receiving the message v, which
is transmitted to each virtual sink by the corresponding virtual
link.

For any virtual sink dA, the received coding matrix after
precoding is MAM̃

−1
B , which is a full row rank matrix. As

MAM̃
−1
B is a full row rank matrix, the coding vectors of the

received signals from the set A of wiretapping links span a
rank Rs→A subspace that is linearly independent of the set
of coding vectors of message v which is received from the
actual sink d. Therefore, perfect secrecy with rate Rs can be
achieved provided that the finite field size q >

(

|E|
k

)

. Note that
by applying M̃

−1
B , the random keys injected by the source are

either implicitly canceled at intermediate nodes or decoded by
the sink.

Since computing Rs→A involves a separate linear opti-
mization in zi,j , to simplify the computation, we can replace
Rs→A with an upper bound

∑

(i,j)∈A zi,j min
(

1−qi,j

1−pi,j
, 1

)

.
This gives a lower bound on the achievable secrecy rate using
key cancellation, for which we can write a linear program (LP)

1We assume that Rs and Rs→B are integers, which can be approximated
arbitrarily closely by scaling the capacity of all links by the same factor.
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Fig. 1. Illustration of Strategy 1, an achievable construction where random
keys are injected by the source and possibly canceled at intermediate nodes.
In this figure, k = 2 and only the 5 links in the first layer can be wiretapped.

as follows:
max Rs

subject to
∑

(i,j)∈E

fA
i,j −

∑

(i,j)∈E

fA
j,i =















Rs +
∑

(i,j)∈A zi,j min
(

1−qi,j

1−pi,j
, 1

)

, if i = s,

−Rs −
∑

(i,j)∈A zi,j min
(

1−qi,j

1−pi,j
, 1

)

, if i = dA,

0, otherwise,
∀A ∈ W ,

fA
i,j ≤ zi,j ≤ ci,j , ∀(i, j) ∈ E ,A ∈ W ,

(13)

where fA
i,j is the virtual flow on link (i, j) for the virtual sink

corresponding to wiretapping set A and zi,j is the actual flow
on link (i, j). The optimal value of (14) gives an achievable
secrecy rate.
An alternative simplification is to redefine Rs→A as the

minimum cut capacity between s and tA on the graph (as
opposed to the capacity associated with the chosen flow
variables). This gives another achievable region for which we
can write an LP:

max Rs

subject to
∑

(i,j)∈E

fA
i,j −

∑

(i,j)∈E

fA
j,i =







Rs + Rs→A, if i = s,
−Rs − Rs→A, if i = dA,

0, otherwise,
∀A ∈ W ,

fA
i,j ≤ zi,j ≤ ci,j , ∀(i, j) ∈ E ,A ∈ W .

(14)

An illustration of the Strategy 1 construction in Scenario 1
is given in Fig. 1 for pi,j = qi,j for all edges (i, j) where the
number of wiretapped links is k = 2, and only the first layer of
the three layer network is allowed to be wiretapped. Each link



in the network has unit capacity. Let c denote the minimum cut
after deleting any k links in the first layer of the graph. As the
wiretapped links are connected to the source directly, the min-
cut between each virtual sink and the source is at least c + k.
Since c is the cut-set upper bound on the secrecy rate, by using
the key cancelation scheme the secrecy rate c is achievable,
which is equal to the secrecy rate when the location of wiretap
links is known. For the example in Fig. 1, the secrecy rate
c = 3 is achievable. When key cancelation is not applied,
let r and w be the secrecy rate and the random key rate at
the source, respectively. Let x be the total actual flow on the
first layer. To achieve secrecy, we must have w ≥ 2

5x, where
the min-cut condition on the first layer requires r + w ≤ x.
Since the sink needs to decode both message and random key
symbols from the source, the min-cut condition on the last
layer requires r + w ≤ 4. Combining these we obtain r ≤ 12

5 ,
which is strictly less than 3.
This example can be converted into a Scenario 2 example

with unequal link capacities where the adversary can wiretap
any k = 2 links, where Strategy 1 outperforms the global key
strategy. Each link in the second and third layers is divided
into 1/ε links of ε capacity each, where ε is an arbitrarily
small constant. Since the set of possible wiretapping link sets
is strictly larger in this case, the maximum rate under the
global key strategy is also at most 12

5 . By allocating 2ε of the
capacity of each first layer link to carry an additional global
random key, a rate arbitrarily close to 3 can be achieved.
Strategy 2: Random keys injected at the source and/or

intermediate nodes and decoded at the sink
Connect each subset of links A ∈ W in the network G

to a virtual receiver dA. If the rate of linearly independent
keys received at dA is greater or equal than the rate for the
data received through the corresponding wiretap links, perfect
secrecy can be achieved. Let Rw,v be the secret key injection
rate at node v and Rs be the secrecy rate at the source. We
want to maximize Rs subject to the condition that the sink can
decode the random keys injected at all nodes plus the message,
and each wiretap set gets total key rate greater than or equal
to its received flow. We then have the following LP:

max Rs

subject to
∑

j

fA
i,j −

∑

j

fA
j,i

{

= −
∑

(i,j)∈A gi,j min
(

1−qi,j

1−pi,j
, 1

)

, if i = dA,

≤ Rw,i, otherwise,

∀A ∈ W ,
∑

j

gi,j −
∑

j

gj,i =











Rs + Rw,s, if i = s,

−
(

Rs +
∑

v∈V,v &=d Rw,v

)

, if i = d,

Rw,i, otherwise,

fA
i,j ≤ gi,j, gi,j ≤ ci,j , ∀(i, j) ∈ E ,A ∈ W ,

(15)
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Fig. 2. Example of usefulness of Strategy 2.

where the first equality is the flow conservation for the random
keys intended to the virtual sink dA, fA

i,j is the random key
flow on link (i, j) for dA, and gi,j is the actual flow on
link (i, j); the second equality is the flow conservation for
the secret data and random keys; the third set of inequalities
requires that the the key flow on each link is less than or equal
to the actual flow. The actual flow on each link is constrained
by the capacity of each link. Note that under the assumption
that different nodes do not have common randomness here
we cannot apply the key cancelation and precoding idea in
Strategy 1, as after applying the precoding matrix each node
may potentially be required to transmit a mixture of all the
random keys in the network. Precoding can be applied only if
the various key sources can share random keys.
A Scenario 1 example where this strategy is useful is given

in Fig. 2, which is obtained by interchanging the source and
the sink as well as reversing all the links in Fig. 1. For the
sake of simplicity we again assume pi,j = qi,j for all edges
(i, j). At most three links in the last layer can be wiretapped.
By injecting one local key at node j2 and two global keys
at the source, Strategy 2 can achieve secrecy rate 2. On the
other hand, if random keys are only injected at the source,
the secrecy rate is at most 8

5 . Let r and w be the secrecy
rate and the random key rate at the source, respectively. Let x
be the total actual flow on the last layer. To achieve secrecy,
we must have w ≥ 3

5x, where the min-cut condition on the
last layer requires r + w ≤ x. Since the source injects all the
random keys, the min-cut condition on the first layer requires
r+w ≤ 4. Combining these we obtain r ≤ 8

5 , which is strictly
less than 2.
This example can be converted to a Scenario 2 example

where Strategy 2 outperforms the global key strategy, using
a construction similar to that in the previous example for
Strategy 1.
Strategy 3: Random keys injected at the source and/or

intermediate nodes and some keys from the source are possibly
canceled at intermediate nodes and all other keys are decoded
at the sink (combination of Strategy 2 and Strategy 3)
From the proposed two strategies, we can see that Strategy



1 seems to be useful if the wiretapped links are upstream of
the min-cut while Strategy 2 is useful if the wiretapped links
are downstream of the min-cut. In general, these two strategies
can be combined to obtain a higher secrecy rate.
We can partition the graph G = (V , E) into two graphs

G1 = (V , E1) and G2 = (V , E2), where each edge e in V is
partitioned into two parallel edges e(1) ∈ E1 and e(2) ∈ E2

with capacity c(1)
e and c(2)

e (ce = c(1)
e + c(2)

e ), respectively. We
then apply strategy 1 on graph G1 and strategy 2 on graph G2.
Combining (14) and (15), we get

max R(1)
s + R(2)

s

subject to
∑

(i,j)∈E

f (1),A
i,j −

∑

(i,j)∈E

f (1),A
j,i =















R(1)
s +

∑

(i,j)∈A zi,j min
(

1−qi,j

1−pi,j
, 1

)

, if i = s,

−R(1)
s −

∑

(i,j)∈A zi,j min
(

1−qi,j

1−pi,j
, 1

)

, if i = dA,

0, otherwise,
∀A ∈ W ,

f (1),A
i,j ≤ zi,j ≤ c(1)

i,j , ∀(i, j) ∈ E ,
∑

j

f (2),A
i,j −

∑

j

f (2),A
j,i

{

= −
∑

(i,j)∈A g(2)
i,j min

(

1−qi,j

1−pi,j
, 1

)

, if i = dA,

≤ Rw,i, otherwise,

∀A ∈ W ,
∑

j

g(2)
i,j −

∑

j

g(2)
j,i =











R(2)
s + Rw,s, if i = s,

−
(

Rs +
∑

v∈V,v &=d Rw,v

)

, if i = d,

Rw,i, otherwise,

f (2),A
i,j ≤ g(2)

i,j , g(2)
i,j ≤ c(2)

i,j , ∀(i, j) ∈ E ,

c(1)
i,j + c(2)

i,j = ci,j , ∀(i, j) ∈ E .

(16)

Consider the example in Fig. 2, where all links have unit
capacity and pi,j = qi,j for all edges (i, j). Let the middle
layer links be 1-5 (from top to bottom) and the last layer links
be 6-8 (from top to bottom). Any three of the five links in
the middle layer can be wiretapped. We show that the optimal
solution must inject random keys at the source and random
keys at the second layer nodes and some random keys are
canceled at the fifth layer. At the beginning of Strategy 2, we
have shown that only global keys at the source is not sufficient.
We next consider when random keys are only injected at the
second layer nodes. It is clear that if the source does not inject
any random key the second layer nodes must inject some
random keys otherwise perfect secrecy cannot be achieved.
As the maximum secrecy rate is two obtained by the cut-set
bound, we can move some portion of random keys from the
second layer to the source. Therefore, there are random keys
injected at both the source and the second layer nodes. By
solving the linear programs (14) and (15), we find that both
strategy 1 and strategy 2 achieve a rate 1.2. For strategy 3,

a rate 1.3846 is achievable. Even though strategy 3 cannot
achieve the outer bound 5/3 given in [11], it outperforms both
both strategy 1 and strategy 2. This also shows that strategy 3
is not simply a time sharing strategy between strategy 1 and
strategy 2 over the whole network.
For numerical computation of achievable rates in scenarios

1 and 2, we note that the number of possible wiretapping sets,
and thus the size of the LPs, are exponential in the size k of
each wiretap set, so they are useful for small k.

IV. CONCLUSION
We have considered the secrecy capacity of wireline net-

works with restricted wiretapping sets and for unequal capacity
links. For such a scenario we have shown that inserting global
keys at the source represents a suboptimal strategy. This is
in contrast to the case of unrestricted wiretapping sets and
equal capacity links where a global key strategy achieves the
secrecy capacity. In particular, we have proposed achievable
strategies where random keys are canceled at intermediate
non-sink nodes, injected at intermediate non-source nodes, or
where a combination of these strategies is considered.
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