
Abstract

We propose relaying strategies for uncoded two-way relay channels, where two terminals transmit simultaneously to each other with the help of a relay. In particular, we consider a memoryless system, where the signal transmitted by the relay is obtained by applying an instantaneous relay function to the previously received signal. For binary antipodal signaling, a class of so called absolute (abs)-based schemes is proposed in which the processing at the relay is solely based on the absolute value of the received signal. We analyze and optimize the symbol-error performance of existing and new abs-based and non-abs-based strategies under an average power constraint, including abs-based and non-abs-based versions of amplify and forward (AF), detect and forward (DF), and estimate and forward (EF). Additionally, we optimize the relay function via functional analysis such that the average probability of error is minimized at the high signal-to-noise ratio (SNR) regime. The optimized relay function is shown to be a Lambert W function parameterized on the noise power and the transmission energy. The optimized function behaves like abs-AF at low SNR and like abs-DF at high SNR, respectively; EF behaves similarly to the optimized function over the whole SNR range. We find the conditions under which each class of strategies is preferred. Finally, we show that all these results can also be generalized to higher order constellations.

Index Terms-Two-way channel, wireless relay networks, functional analysis.

$$
\text { fi } \quad h_{1} \quad h_{2}
$$

Notation
$\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)$
$p_{X}(x)$

$$
\begin{aligned}
& X \quad \mathcal{G}\left(x, \sigma^{2}\right) \triangleq \\
& \sigma^{2} Q(\cdot)
\end{aligned}
$$

$f\left(h_{1} X_{1}+h_{2} X_{2}+N\right)$
$h_{1} \quad h_{2}$
Y_{R}

$$
Y_{i}=h_{i} f\left(h_{1} X_{1}+h_{2} X_{2}+N\right)+Z_{i}, \quad i=1,2
$$

$$
U=h_{1} X_{1}+h_{2} X_{2}+N^{n}
$$

h_{2}

$$
\begin{aligned}
& X_{i} \\
& X_{i}= \pm \sqrt{P_{s}} \\
& i \quad i=1,2 \quad Y_{i} \\
& Y_{R} \\
& \text { fi } \\
& Y_{R}=\quad \text { • } \\
& y_{i} \geq v_{i} \\
& -\sqrt{P_{s}} \\
& \begin{array}{c}
x_{i}=\sqrt{P_{s}} \\
i
\end{array} \\
& \sqrt{P_{s}}
\end{aligned}
$$

$$
\begin{aligned}
P_{e}^{(1)}= & \frac{1}{2}+\frac{1}{2} \int_{0}^{w} A(u) d u \underbrace{\left[\int_{-\infty}^{v_{1}} \mathcal{G}\left(y-h_{1} b, \sigma_{s}^{2}\right) d y\right]}_{C\left(v_{1}, b\right)}+\frac{1}{2} \int_{w}^{+\infty} A(u) d u \underbrace{\left[\int_{-\infty}^{v_{1}} \mathcal{G}\left(y-h_{1} a, \sigma_{s}^{2}\right) d y\right]}_{E\left(v_{1}, b\right)} \\
& +\frac{1}{2} \int_{0}^{w} B(u) d u \underbrace{\left[\int_{-\infty}^{v_{1}} \mathcal{G}\left(y+h_{1} b, \sigma_{s}^{2}\right) d y\right]}_{D\left(v_{1}, a\right)}+\frac{1}{2} \int_{w}^{+\infty} B(u) d u \underbrace{\left[\int_{-\infty}^{v_{1}} \mathcal{G}\left(y+h_{1} a, \sigma_{s}^{2}\right) d y\right]}_{F\left(v_{1}, a\right)} .
\end{aligned}
$$

$$
\begin{array}{cccrc}
x_{i}=-\sqrt{P_{s}} & i & x_{1} & x_{2} \\
\sqrt{P_{s}} y_{i} \geq-v_{i} & -\sqrt{P_{s}} & & Y_{i} &
\end{array}
$$

$$
\begin{align*}
& X_{1}=\sqrt{P_{s}} \quad X_{2}=\sqrt{P_{s}} \quad X_{1}=-\sqrt{P_{s}} \quad X_{2}= \\
& -\sqrt{P_{s}} \\
& \quad v_{i} \\
& X_{2}=-\sqrt{P_{s}} \quad v_{i} \quad X_{1}=-\sqrt{P_{s}} \quad X_{2}=\sqrt{P_{s}} \quad X_{1}=\sqrt{P_{s}}
\end{align*}
$$

Theorem 1:
$f(U) \quad U \quad|U| \quad f(|U|) \quad f$

$$
\begin{aligned}
& p_{Y_{i} \mid X_{1}, X_{2}}\left(y_{i} \mid x_{1}, x_{2}\right)= \\
& \mathcal{G}\left(y_{i}-h_{i} \sqrt{\frac{P_{r}}{\left(h_{1}^{2}+h_{2}^{2}\right) P_{s}+\sigma_{r}^{2}}}\left(x_{1}+x_{2}\right), \frac{h_{i}^{2} P_{r} \sigma_{r}^{2}}{\left(h_{1}^{2}+h_{2}^{2}\right) P_{s}+\sigma_{r}^{2}}+\sigma_{s}^{2}\right), \\
& \mathcal{G}\left(x, \sigma^{2}\right) \quad \text { fi }
\end{aligned}
$$

$$
U \quad|U|
$$

$$
P_{e}^{(i)}=Q\left(\sqrt{\frac{h_{i}^{2} P_{r} P_{s}}{h_{i}^{2} P_{r} \sigma_{r}^{2}+\left(h_{1}^{2}+h_{2}^{2}\right) P_{s} \sigma_{s}^{2}+\sigma_{r}^{2} \sigma_{s}^{2}}}\right)
$$

2) Detect-and-Forward:

fi

A. Non-Abs-Based Strategies

$$
1
$$

$$
\begin{aligned}
& P_{e}^{(1)}=\frac{1}{4}(\operatorname{Pr}\left(y_{1}<v_{1} \mid x_{1}=x_{2}=\sqrt{P_{r}}\right) \\
&+\operatorname{Pr}\left(y_{1}>v_{1} \mid x_{1}=\sqrt{P_{r}}, x_{2}=-\sqrt{P_{r}}\right) \\
&+\operatorname{Pr}\left(y_{1}<-v_{1} \mid x_{1}=-\sqrt{P_{r}}, x_{2}=\sqrt{P_{r}}\right) \\
&\left.+\operatorname{Pr}\left(y_{1}>-v_{1} \mid x_{1}=x_{2}=-\sqrt{P_{r}}\right)\right) \\
&=\frac{1}{2}+\frac{1}{2} \int_{-\infty}^{+\infty}\left(\mathcal{G}\left(u-\left(h_{1}+h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right)\right. \\
&\left.-\mathcal{G}\left(u-\left(h_{1}-h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right)\right) \\
& \times {\left[\int_{-\infty}^{v_{1}} \mathcal{G}\left(y-h_{1} f(u), \sigma_{s}^{2}\right) d y\right] d u }
\end{aligned}
$$

$$
f(u)=\left\{\begin{array}{cc}
a, & u \geq w \\
b, & w>u \geq 0 \\
-f(-u), &
\end{array}\right.
$$

$$
w
$$

$$
a \quad b
$$

$$
v_{1} \quad v_{2}
$$

$$
A(u) \triangleq \mathcal{G}\left(u-\left(h_{1}+h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right)-\mathcal{G}\left(u-\left(h_{1}-h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right)
$$

$$
B(u) \triangleq \mathcal{G}\left(u+\left(h_{1}+h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right)-\mathcal{G}\left(u+\left(h_{1}-h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right) .
$$

$$
P_{e}^{(1)}+P_{e}^{(2)}
$$

1) Amplify-and-Forward:

$$
\begin{gathered}
f(u)=\sqrt{\frac{P_{r}}{\left(h_{1}^{2}+h_{2}^{2}\right) P_{s}+\sigma_{r}^{2}}} u \\
Y_{i}= \\
h_{i} \sqrt{\frac{P_{r}}{\left(h_{1}^{2}+h_{2}^{2}\right) P_{s}+\sigma_{r}^{2}}}\left(X_{1}+X_{2}\right) \\
\\
+\left(h_{i} \sqrt{\frac{P_{r}}{\left(h_{1}^{2}+h_{2}^{2}\right) P_{s}+\sigma_{r}^{2}}} N+Z_{i}\right), i=1,2 .
\end{gathered}
$$

$f(\cdot)$
w

$$
\frac{\partial\left(P_{e}^{(1)}+P_{e}^{(2)}\right)}{\partial w}=A(w)\left(C\left(v_{1}, b\right)-D\left(v_{1}, a\right)\right)
$$

$$
+B(w)\left(E\left(v_{1}, b\right)-F\left(v_{1}, a\right)\right)+\frac{\partial P_{e}^{(2)}}{\partial w}=0
$$

$$
w \quad a, b, v_{1}, v_{2}
$$

$$
\begin{aligned}
& w^{(0)}=h_{1} \sqrt{P_{s}} k \\
& w^{(k)}, a^{(k)}, b^{(k)} \\
& a^{(k)}, b^{(k)} a^{(k)}, b^{(k)}, v^{(k)}, v_{2}^{(k)} \\
& w_{1}^{(k)}, v_{2}^{(k)}
\end{aligned}
$$

$$
\begin{aligned}
g(u) & =E\left\{h_{1} x_{1}+h_{2} x_{2} \mid u\right\} \\
& =\frac{\sinh \left(\frac{\left(h_{1}+h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right) e^{-\frac{\left(h_{1}+h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}}\left(h_{1}+h_{2}\right)+\sinh \left(\frac{\left(h_{1}-h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right) e^{-\frac{\left(h_{1}-h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}}\left(h_{1}-h_{2}\right)}{\cosh \left(\frac{\left(h_{1}+h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right) e^{-\frac{\left(h_{1}+h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}}+\cosh \left(\frac{\left(h_{1}-h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right) e^{-\frac{\left(h_{1}-h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}}} \sqrt{P_{s}}
\end{aligned}
$$

$$
\begin{aligned}
& G(f)=P_{e}^{(1)}+P_{e}^{(2)} \\
& =1+\frac{1}{2} \int_{-\infty}^{+\infty}\left(\mathcal{G}\left(u-\left(h_{1}+h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right)-\mathcal{G}\left(u-\left(h_{1}-h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right)\right)\left[\int_{-\infty}^{v_{1}} \mathcal{G}\left(y-h_{1} f(u), \sigma_{s}^{2}\right) d y\right] d u \\
& \quad+\frac{1}{2} \int_{-\infty}^{+\infty}\left(\mathcal{G}\left(u-\left(h_{2}+h_{1}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right)-\mathcal{G}\left(u-\left(h_{2}-h_{1}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right)\right)\left[\int_{-\infty}^{v_{2}} \mathcal{G}\left(y-h_{2} f(u), \sigma_{s}^{2}\right) d y\right] d u
\end{aligned}
$$

$$
\begin{aligned}
& a^{(k)}, b^{(k)} \\
& a^{(k)}, b^{(k)}, v_{1}^{(k)}, v_{2}^{w^{(k)}}
\end{aligned}
$$

fi

$$
\begin{gathered}
\text { fi } \\
\left\{-h_{1}-h_{2},-h_{1}+h_{2}, h_{1}-h_{2}, h_{1}+h_{2}\right\}
\end{gathered}
$$

fi
fi
$A(w)=0$
fi

$$
w=h_{1} \sqrt{P}_{s}
$$

$$
a=\sqrt{\frac{9 P_{r}}{5}}, \quad b=\sqrt{\frac{P_{r}}{5}}
$$

w

$$
w=h_{1} \sqrt{P_{s}}
$$

v_{1}

$$
P_{e}^{(1)}+P_{e}^{(2)} \approx Q\left(\sqrt{\frac{P_{r}}{5}} \frac{h_{1}}{\sigma_{s}}\right)+Q\left(\sqrt{\frac{4 P_{r}}{5}} \frac{h_{2}}{\sigma_{s}}\right)+\frac{5}{4} Q\left(\frac{h_{2} \sqrt{P_{s}}}{\sigma_{r}}\right)
$$

$$
v_{1}=\frac{h_{1}(a+b)}{2}, \quad v_{2}=\frac{h_{2}(a-b)}{2}
$$

$a \quad b$

$$
\sqrt{\frac{5 P_{s} \sigma_{s}^{2}}{P_{r} \sigma_{r}^{2}}}<\frac{h_{1}}{h_{2}}<2
$$

$$
P_{e}^{(1)}+P_{e}^{(2)}
$$

$$
P_{e}^{(1)}+P_{e}^{(2)} \approx Q\left(\frac{h_{1}(a-b)}{2 \sigma_{s}}\right)+Q\left(\frac{h_{2}(a+b)}{2 \sigma_{s}}\right)
$$

$$
h_{1}=h_{2}
$$

$$
a=\sqrt{2 P_{r}}, \quad b=0
$$

$$
\begin{aligned}
& \quad h_{1}-h_{2}=0 \\
& h_{1} / h_{2}
\end{aligned}
$$

fi

$$
+Q\left(\frac{h_{2} \sqrt{P_{s}}}{\sigma_{r}}\right)\left(1+\frac{1}{2} Q\left(\frac{h_{2}(3 b-a)}{2 \sigma_{s}}\right)\right)
$$

fi

$$
\begin{array}{ccc}
a^{2}+b^{2}=2 P_{r} & \text { fi } & P_{r}, P_{s}, \sigma_{r}, \sigma_{s}, h_{1} \\
h_{2} & \text { fi } & h_{1} / h_{2}
\end{array}
$$

$$
\frac{b}{a}=\frac{h_{1}-h_{2}}{h_{1}+h_{2}}, \quad a^{2}+b^{2}=2 P_{r}
$$

3) Estimate-and-Forward:
u

$$
P_{e}^{(1)}+P_{e}^{(2)} \approx 2 Q\left(\sqrt{\frac{P_{r}}{h_{1}^{2}+h_{2}^{2}}} \frac{h_{1} h_{2}}{\sigma_{s}}\right)+Q\left(\frac{h_{2} \sqrt{P_{s}}}{\sigma_{r}}\right)
$$

$$
\text { fi } \quad g(u)
$$

$$
\times\left(1+\frac{1}{2} Q\left(\sqrt{\frac{P_{r}}{h_{1}^{2}+h_{2}^{2}}} \frac{h_{2}\left(h_{1}-2 h_{2}\right)}{\sigma_{s}}\right)\right)
$$

4) Optimized Relay Function:

$\min _{f, v_{1}, v_{2}} G(f)$

$$
\begin{aligned}
& \int_{0}^{+\infty} \mathcal{G}\left(u-\left(h_{1}+h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right) f^{2}(u) d u+\int_{0}^{+\infty} \mathcal{G}\left(u-\left(h_{1}-h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right) f^{2}(u) d u \\
& \quad+\int_{0}^{+\infty} \mathcal{G}\left(u+\left(h_{1}+h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right) f^{2}(u) d u+\int_{0}^{+\infty} \mathcal{G}\left(u+\left(h_{1}-h_{2}\right) \sqrt{P_{s}}, \sigma_{r}^{2}\right) f^{2}(u) d u=2 P_{r} .
\end{aligned}
$$

$$
\begin{array}{r}
P_{e}=\frac{1}{2}+\frac{1}{2} \int_{0}^{+\infty}\left(\mathcal{G}\left(u-2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)+\mathcal{G}\left(u+2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)-2 \mathcal{G}\left(u, \sigma_{r}^{2}\right)\right)\left[\int_{-\infty}^{v} \mathcal{G}\left(y-\beta(u-C), \sigma_{s}^{2}\right) d y\right] d u . \\
P_{e}=\frac{1}{2}+\frac{1}{4} \int_{-\infty}^{+\infty}\left(\mathcal{G}\left(u-2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)+\mathcal{G}\left(u+2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)-2 \mathcal{G}\left(u, \sigma_{r}^{2}\right)\right) \int_{-\infty}^{v} \mathcal{G}\left(y-f(u), \sigma_{s}^{2}\right) d u d y \\
=\frac{1}{2}+\frac{1}{2} \int_{0}^{w}\left(\mathcal{G}\left(u-2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)+\mathcal{G}\left(u+2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)-2 \mathcal{G}\left(u, \sigma_{r}^{2}\right)\right) d u \\
\times \int_{-\infty}^{v}\left(\mathcal{G}\left(y+\sqrt{P_{r}}, \sigma_{s}^{2}\right)-\mathcal{G}\left(y-\sqrt{P_{r}}, \sigma_{s}^{2}\right)\right) d y
\end{array}
$$

w
B. Abs-Based Strategies

$$
h_{1}>h_{2} h_{1}=h_{2}=1
$$

fl

$$
h_{1}=h_{2}=1
$$

v
w

$$
h_{1}=h_{2}
$$

$$
v_{1}=v_{2}=v
$$

$$
w=\sqrt{P_{s}}\left(1+\frac{\sigma_{r}^{2}}{2 P_{s}} \log \left(1+\sqrt{1-e^{-4 P_{s} / \sigma_{r}^{2}}}\right)\right)
$$

1) Abs-Based Amplify-and-Forward: fi

$$
\begin{gathered}
C \\
f(u)=\beta(|u|-C), \\
\text { fi }
\end{gathered}
$$

β

$$
\begin{equation*}
h_{1}=h_{2}=1 \tag{s}
\end{equation*}
$$

$v \quad C$

$$
v \quad v=0
$$

$$
\begin{aligned}
P_{e}= & \frac{1}{2}+\frac{1}{2}\left(Q\left(\frac{2 \sqrt{P_{s}}-w}{\sigma_{r}}\right)+2 Q\left(\frac{w}{\sigma_{r}}\right)\right. \\
& \left.-Q\left(\frac{2 \sqrt{P_{s}}+w}{\sigma_{r}}\right)-1\right)\left(1-2 Q\left(\frac{\sqrt{P_{r}}}{\sigma_{s}}\right)\right) . \\
& \sigma_{r}^{2} \rightarrow 0 \quad \sqrt{P_{s}}
\end{aligned}
$$

$$
h_{1}>h_{2} \quad w=h_{1} \sqrt{P_{s}}
$$

3) Abs-Based Estimate-and-Forward:

$$
\left|h_{1} x_{1}+h_{2} x_{2}\right| \quad \text { fi }
$$

$$
h_{1}=h_{2}=1
$$

$h_{1} \quad h_{2}$
$B(u)$
$D(u) \triangleq \mathcal{G}\left(u+2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)+\mathcal{G}\left(u-2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)+2 \mathcal{G}\left(u, \sigma_{r}^{2}\right)$.
$\min _{f, v} H(f)=\int_{0}^{+\infty} B(u) A(f) d u, \quad \frac{1}{2} \int_{0}^{+\infty} D(u) f^{2}(u) d u \leq P_{r}$,
$\phi(\lambda, f)=H(f)+\frac{\lambda}{2}\left(\int_{0}^{+\infty} D(u) f^{2}(u) d u-2 P_{r}\right)$,
$\lambda \geq 0$

$$
\begin{equation*}
\phi(\lambda, f) \tag{u}
\end{equation*}
$$

u

$$
\frac{\mathcal{G}\left(f(u)-v, \sigma_{s}^{2}\right)}{f(u)}=\lambda \frac{D(u)}{B(u)}
$$

$$
\begin{array}{cll}
\lambda>0, D(u)>0 & |u| \geq w & B(u) \geq 0 \\
B(u)<0 &
\end{array}
$$

$$
\left\{\begin{array}{l}
f(u) \geq 0, \quad|u| \geq w \\
f(u)<0
\end{array}\right.
$$

w
fi
Lemma 1: $\quad f(u)$

$$
\left\{\begin{array}{l}
f(u) \geq v, \quad|u| \geq w \\
f(u)<v
\end{array}\right.
$$

$P_{e}(f)$
Proof: $\quad f \quad g$ $\lambda \in[0,1] \quad \gamma=1-\lambda \quad \lambda f+\gamma g \quad$ fi

$$
\frac{\partial^{2} A(f)}{\partial f^{2}}=\frac{1}{2 \sigma_{s}^{2}}(f(u)-v) \mathcal{G}\left(v-f(u), \sigma_{s}^{2}\right)
$$

$B(u) \frac{\partial^{2} A(f)}{\partial f^{2}}$

$$
f(u) \geq v
$$

$$
\begin{aligned}
P_{e}(\lambda f+\gamma g) & =\frac{1}{2}+\frac{1}{2} \int_{0}^{+\infty} B(u) A(\lambda f+\gamma g) d u \\
& \leq \lambda P_{e}(f)+\gamma P_{e}(g)
\end{aligned}
$$

$g(u)-C$

$$
v=0
$$

$$
\mathrm{fi}
$$

$f(u)=\left\{\begin{array}{cc}\beta(g(u)-C), & u \geq 0, \\ f(-u),\end{array}\right.$,
C

$$
\beta \geq 0
$$

$$
\frac{e^{-\left(f(u) / \sqrt{2 \sigma_{s}^{2}}\right)^{2}}}{f(u) / \sqrt{2 \sigma_{s}^{2}}}=\lambda 2 \sqrt{\pi} \sigma_{s}^{2} \frac{\cosh \left(\frac{2 \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right)+e^{2 P_{s} / \sigma_{r}^{2}}}{\cosh \left(\frac{2 \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right)-e^{2 P_{s} / \sigma_{r}^{2}}}
$$

$$
E\left\{f^{2}(u)\right\}=P_{r}
$$

$$
\begin{equation*}
h_{1}>h_{2} \quad f(u) \tag{u}
\end{equation*}
$$

$\mathrm{fi} \quad W(x) e^{W(x)}=x \quad \lambda$ $g(u)$
4) Optimized Relay Strategy:
$f(u)$
$f(\cdot)$

$$
h_{1}=h_{2}
$$

$$
\begin{aligned}
g(u)= & \frac{\left|h_{1}+h_{2}\right| \sqrt{P_{s}} e^{-\frac{\left(h_{1}+h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}} \cosh \left(\frac{\left(h_{1}+h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right)}{e^{-\frac{\left(h_{1}+h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}} \cosh \left(\frac{\left(h_{1}+h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right)+e^{-\frac{\left(h_{1}-h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}} \cosh \left(\frac{\left(h_{1}-h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right)} \\
& +\frac{\left|h_{1}-h_{2}\right| \sqrt{P_{s}} e^{-\frac{\left(h_{1}-h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}} \cosh \left(\frac{\left(h_{1}-h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right)}{e^{-\frac{\left(h_{1}+h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}} \cosh \left(\frac{\left(h_{1}+h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right)+e^{-\frac{\left(h_{1}-h_{2}\right)^{2} P_{s}}{2 \sigma_{r}^{2}}} \cosh \left(\frac{\left(h_{1}-h_{2}\right) \sqrt{P_{s}} u}{\sigma_{r}^{2}}\right)} .
\end{aligned}
$$

$$
P_{e}(f)=\frac{1}{2}+\frac{1}{2} \int_{0}^{+\infty} \underbrace{\left(\mathcal{G}\left(u+2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)+\mathcal{G}\left(u-2 \sqrt{P_{s}}, \sigma_{r}^{2}\right)-2 \mathcal{G}\left(u, \sigma_{r}^{2}\right)\right)}_{\triangleq B(u)} \underbrace{\left[\int_{-\infty}^{v} \mathcal{G}\left(y-f(u), \sigma_{s}^{2}\right) d y\right]}_{\triangleq A(f)} d u
$$

$f(u)$

$f^{2}(u)$
$v=0$

$$
\begin{gathered}
\min _{C, v} Q\left(\frac{C}{\sigma_{s}}\right)+\frac{\mathcal{G}\left(C, \sigma_{s}^{2}\right)}{C}\left(C^{2}-P_{r}\right) \\
Q\left(\frac{C}{\sigma_{s}}\right)
\end{gathered}
$$

$$
\frac{\sigma_{s}}{\sqrt{2 \pi} C} e^{-\frac{\sigma^{2}}{2 \sigma_{s}^{z}}} \quad \mathcal{G}\left(C, \sigma_{s}^{2}\right)=
$$

$$
f(u)=\left\{\begin{array}{cl}
C_{1}, & |u|>w \\
-C_{2}, & w>|u|
\end{array}\right.
$$

$$
h_{1}>h_{2}
$$

$C_{1}, C_{2}>0$
fi

$$
\frac{\mathcal{G}\left(C_{1}-v, \sigma_{s}^{2}\right)}{C_{1}}=\lambda=\frac{\mathcal{G}\left(C_{2}+v, \sigma_{s}^{2}\right)}{C_{2}}
$$

Remarks:

- $\quad f(u)$

$$
\begin{gathered}
v=\frac{\log C_{1}-\log C_{2}}{C_{1}+C_{2}} \sigma_{s}^{2}+\frac{C_{1}-C_{2}}{2} \underset{\sigma_{s}^{2} \rightarrow 0}{ } \frac{C_{1}-C_{2}}{2} \\
C_{1}=C_{2}=C \\
\lambda=\frac{\mathcal{G}\left(C, \sigma_{s}^{2}\right)}{C}
\end{gathered}
$$

$h_{1} \quad h_{2}$

$$
h_{1} / h_{2}
$$

$$
\begin{gathered}
P_{e}^{(1)}+P_{e}^{(2)} \approx\left\{\begin{array}{clll}
\frac{5}{8} e^{-\frac{h_{2}^{2} P_{s}}{2 \sigma_{r}^{2}}}, & 2>\frac{h_{1}}{h_{2}}>\sqrt{\frac{5 P_{s} \sigma_{s}^{2}}{P_{r} \sigma_{r}^{2}}} & & \\
e^{-\frac{h_{2}^{2} 2_{2}^{2} P_{r}}{2\left(h_{1}^{2}+h_{2}^{2}\right) \sigma_{s}^{2}}}+\frac{1}{2} e^{-\frac{h_{2}^{2} P_{s}}{2 \sigma_{r}^{2}}}, & & \text { fi } & \\
& h_{1}=h_{2}=1 & \text { fi } & \text { fi }
\end{array}\right. \\
h_{1}>h_{2}
\end{gathered}
$$

$$
P_{e}^{(1)}+P_{e}^{(2)} \approx \frac{1}{2}\left(e^{-\frac{h_{1}^{2} P_{r}}{2 \sigma_{s}^{2}}}+e^{-\frac{h_{2}^{2} P_{r}}{2 \sigma_{s}^{2}}}\right)+e^{-\frac{h_{2}^{2} P_{s}}{2 \sigma_{r}^{2}}}
$$

$$
\begin{array}{rl}
h\left(u_{1}+u_{2}\right) \neq h\left(u_{1}^{\prime}+u_{2}\right), & \forall u_{1} \neq u_{1}^{\prime} \\
h\left(u_{1}+u_{2}\right) \neq h\left(u_{1}+u_{2}^{\prime}\right), & \forall u_{2} \neq u_{2}^{\prime}, u_{i}, u_{i}^{\prime} \in \mathcal{Q}, \\
i=1,2 & \mathcal{Q}
\end{array}
$$

$$
\mathrm{fi}
$$

\mathcal{G}

$$
u_{1}+u_{2}
$$

$$
\text { - } \quad s>\quad r^{r} \quad 1+\frac{h_{2}^{2}}{h_{1}^{2}}>\frac{P_{r} \sigma_{r}^{2}}{P_{s} \sigma_{s}^{2}} \quad h_{1}>2 h_{2}
$$

$$
e^{-\frac{h_{2}^{2} P_{s}}{2 \sigma_{T}^{2}}}
$$

$$
\frac{1}{2} e^{-\frac{h_{2}^{2} P_{s}}{2 \sigma_{\eta}^{2}}}
$$

$$
e^{-\frac{h_{2}^{2} P_{s}}{2 \sigma_{r}}} \quad \frac{3}{4} e^{-\frac{h_{2}^{2} P_{s}}{2 \sigma_{r}}}
$$

$$
h(u)
$$

fi

$$
u_{1}^{\prime}+u_{2} \quad u_{1}^{\prime} \neq u_{1}
$$

$$
h(u)
$$

$$
\mathcal{V}=\{-3,-1,1,3\}
$$

$$
\mathcal{W}=\{-6,-4,-2,0,2,4,6\} \quad \text { fi } \quad \mathcal{W} \quad \mathcal{V}^{\prime}=\mathcal{V}
$$

$$
\begin{aligned}
& h(-6)=-3, h(-4)=-1, h(-2)=3 \\
& h(0)=1, h(2)=-3, h(4)=-1, h(6)=3
\end{aligned}
$$

$$
h(-6)=-3, h(-4)=-1, h(-2)=1
$$

$$
h(0)=3, h(2)=-3, h(4)=-1, h(6)=1
$$

$$
h_{1}=1 \quad h_{2}=0.8 \quad P_{r}=P_{s}=1
$$

fi

$$
\begin{equation*}
h_{1}=1 \quad h_{2}=0.5 \quad P_{r}=P_{s}=1 \tag{fi}
\end{equation*}
$$

$$
\sigma_{r}^{2}=\sigma_{s}^{2} h_{1}=h_{2} \quad P_{r}=P_{s}=1
$$

a priori

$$
\begin{aligned}
& h_{1}=1 \quad h_{2}=0.5 \\
& h_{1}=1 \quad h_{2}=0.8
\end{aligned}
$$

fi

$$
h_{1}=1 \quad h_{2}=0.8
$$

$$
P_{r}=P_{s}=1
$$

et al.

$\sigma_{r}^{2}=\sigma_{s}^{2}$
2.7
10^{-8}
$f(u)$ $\begin{aligned} & \quad \sigma_{r}^{2}=\sigma_{s}^{2} \\ 5 / \sigma_{r}^{2} & \\ & \end{aligned}$

$$
M=\left|\mathcal{V}^{\prime}\right|=4,5,6,7 \quad \sigma_{r}^{2}=\sigma_{s}^{2}
$$

fi
$M=7$
$=0 \quad M=4,5,6,7 \quad 0.69040 .6472$ $0.6428 \quad 0.6146$

M

$$
\begin{array}{lc}
\quad V & p_{U}(\mu)-p_{V}(\mu) \\
\mu \geq t & \\
p_{U+Z}(\nu)-p_{V+Z}(\nu) & \nu \geq t^{\prime} \\
\quad \text { Proof: } & \sigma^{\prime} \\
\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{\nu^{2}-2 t \nu}{2 \sigma^{2}}\right\} & \begin{array}{l}
Z \\
\nu
\end{array}
\end{array}
$$

$$
\begin{array}{rcc}
\begin{aligned}
\text { Proof of Theorem 1: } & \\
b \triangleq h_{1} \sqrt{P_{s}}-h_{2} \sqrt{P_{s}} & \\
& x_{1}=\sqrt{P_{s}} \\
p_{f(a+N)+Z_{1}}\left(y_{1}\right)-p_{f(b+N)+Z_{1}}\left(y_{1}\right) \geq 0 & x_{2}=- \\
f(U) & U \\
U=f(a+N) & V=f(b+N)
\end{aligned}
\end{array}
$$

$$
\begin{aligned}
p_{U+Z}(\nu)-p_{V+Z}(\nu)= & \int_{-\infty}^{\infty} p_{Z}(\nu-\mu) p_{U}(\mu) d \mu-\int_{-\infty}^{\infty} p_{Z}(\nu-\mu) p_{V}(\mu) d \mu \\
= & \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(\nu-\mu)^{2}}{2 \sigma^{2}}\right\}\left(p_{U}(\mu)-p_{V}(\mu)\right) d \mu \\
= & \frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{\frac{-\nu^{2}+2 t \nu}{2 \sigma^{2}}\right\}\left(\int_{-\infty}^{t} \exp \left\{\frac{2 \nu(\mu-t)-\mu^{2}}{2 \sigma^{2}}\right\}\left(p_{U}(\mu)-p_{V}(\mu)\right) d \mu\right. \\
& \left.+\int_{t}^{\infty} \exp \left\{\frac{2 \nu(\mu-t)-\mu^{2}}{2 \sigma^{2}}\right\}\left(p_{U}(\mu)-p_{V}(\mu)\right) d \mu\right)
\end{aligned}
$$

$$
x_{1}=\sqrt{P_{s}}
$$

$$
x_{2}=\sqrt{P_{s}}
$$

$$
p_{f(|a+N|)+Z_{1}}\left(y_{1}\right)-p_{f(|b+N|)+Z_{1}}\left(y_{1}\right) \geq 0 \quad x_{2}=-\sqrt{P_{s}}
$$

$$
p_{|a+N|}(\mu)-p_{|b+N|}(\mu)
$$

$$
=p_{a+N}(\mu)+p_{a+N}(-\mu)-p_{b+N}(\mu)-p_{b+N}(-\mu)
$$

$$
=C(\mu)(D(\mu)-1)
$$

$$
/ \sigma \sqrt{2 \pi}>0
$$

$$
C(\mu)=\left(\exp \left\{-(\mu-b)^{2} / 2 \sigma^{2}\right\}+\exp \left\{-(-\mu-b)^{2} / 2 \sigma^{2}\right\}\right)
$$

$V=f(|b+N|) \quad Z=Z_{1}$

$$
x_{1}=-\sqrt{P_{s}}
$$

2

Proc. IEEE
ICC
Proc. Information Theory and Applications Workshop
Proc. ACM

$$
\begin{aligned}
D(\mu) & =\frac{\exp \left\{-(\mu-a)^{2} / 2 \sigma^{2}\right\}+\exp \left\{-(-\mu-a)^{2} / 2 \sigma^{2}\right\}}{\exp \left\{-(\mu-b)^{2} / 2 \sigma^{2}\right\}+\exp \left\{-(-\mu-b)^{2} / 2 \sigma^{2}\right\}} \\
& =\exp \left\{\frac{-a^{2}+b^{2}}{2 \sigma^{2}}\right\} \frac{\exp \left\{\mu a / \sigma^{2}\right\}+\exp \left\{-\mu a / \sigma^{2}\right\}}{\exp \left\{\mu b / \sigma^{2}\right\}+\exp \left\{-\mu b / \sigma^{2}\right\}}
\end{aligned}
$$

$$
\mu \geq 0 \quad p_{|a+N|}(\mu)-
$$

$$
p_{|b+N|}(\mu)
$$

$$
t
$$

$$
\mu \geq t
$$

$$
f(|U|)
$$

$$
|U|
$$

$$
U=f(|a+N|)
$$

Proc. IEEE ICC

Globecom
Proc. IEEE

Proc. ACM SIGCOMM
Elements of Information Theory

Tao Cui
 Tao Cui

IEEE J. Select. Areas
Commun.
SIGCOMM

Tracey Ho

Proc. IEEE ICC
Proc. 4th
Berkeley Symp. Math. Stat. Prob.
Proc. IEEE VTC-Spring
Proc. IEEE ISIT
fi
IEEE J. Select. Areas Commun.

Proc. ACM Mobicom
Proc. IEEE ICC
Proc. IEEE ICC

