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Memoryless Relay Strategies for
Two-Way Relay Channels
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Abstract—We propose relaying strategies for uncoded two-way
relay channels, where two terminals transmit simultaneously to
each other with the help of a relay. In particular, we consider a
memoryless system, where the signal transmitted by the relay
is obtained by applying an instantaneous relay function to
the previously received signal. For binary antipodal signaling,
a class of so called absolute (abs)-based schemes is proposed
in which the processing at the relay is solely based on the
absolute value of the received signal. We analyze and optimize
the symbol-error performance of existing and new abs-based
and non-abs-based strategies under an average power constraint,
including abs-based and non-abs-based versions of amplify and
forward (AF), detect and forward (DF), and estimate and forward
(EF). Additionally, we optimize the relay function via functional
analysis such that the average probability of error is minimized at
the high signal-to-noise ratio (SNR) regime. The optimized relay
function is shown to be a Lambert W function parameterized
on the noise power and the transmission energy. The optimized
function behaves like abs-AF at low SNR and like abs-DF at high
SNR, respectively; EF behaves similarly to the optimized function
over the whole SNR range. We find the conditions under which
each class of strategies is preferred. Finally, we show that all these
results can also be generalized to higher order constellations.

Index Terms—Two-way channel, wireless relay networks, func-
tional analysis.

I. INTRODUCTION

TWO-WAY communication is a common scenario where
two parties simultaneously transmit information to each

other. The two-way channel was first considered by Shannon
[3], who derived inner and outer bounds on the capacity
region. Recently, the two-way relay channel (TWRC) has
drawn renewed interest from both academic and industrial
communities [4]–[10] due to its potential application to cellu-
lar networks and peer-to-peer networks. AF and DF protocols
for one-way relay channels are extended to the half-duplex
Gaussian TWRC in [6] and the general full-duplex discrete
TWRC in [5]. In [7], network coding is used to increase the
sum-rate of two users. With network coding, each node in a
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network is allowed to perform algebraic operations on received
packets instead of only forwarding or replicating received
packets. Most of these works [5]–[7] focus on capacity bounds
for strategies similar to those for one-way relay channels
[11]. Furthermore, physical layer network coding (PNC) is
considered in [8] for two-way AWGN relay channels. Also,
two partial detect and forward (PDF) schemes are proposed
in [10] for distributed space time coding to achieve diversity
in two-way relay fading channels with multiple relays. These
two works [8], [10] propose new relaying strategies without
addressing their optimality.

In this paper we consider an uncoded scenario with mem-
oryless relays, which is beneficial in those situations when
the relay is under a strict complexity or latency constraint.
The former case applies, e.g., if the relay is part of a sensor
network with battery powered nodes, where the complexity
for relaying the partner nodes’ data must be kept small. Also,
minimizing the end-to-end delay in networked communication
is important in real-time applications with feedback, where
typically a bidirectional unicast session is established.

In particular, in the following work we analyze and op-
timize the symbol error probability at each receiver without
considering the effect of any end-to-end channel coding that
may be applied. We first derive the symbol error probabilities
for existing amplify and forward (AF) and detect and forward
(DF) schemes for TWRCs using binary antipodal signaling.
Noting the performance limitations of these existing schemes,
we develop a number of new schemes. We classify both
existing and new schemes into two categories: absolute (abs)-
based schemes, where the relay transmits an instantaneous
function of the absolute value of the received signal, and non-
abs-based schemes where the sign of the received signal is
preserved by the instantaneous relay function. The advantage
of abs-based schemes is that for binary antipodal signaling at
the terminals the relay performs a constellation compression
such that the transmitted signal from the relay is again an
antipodal signal with only two constellation points. In fact,
the abs-based scheme bears resemblance to network coding
where the relay performs an XOR on the decoded data from
the terminals [12]. However, in an abs-based scheme the relay
receives the real-valued sum of the data from the two terminals
plus noise on the physical layer, whereas in network coding
the addition is performed over a finite field on the network
layer. In contrast to abs-based schemes, in the case of binary
antipodal signaling non-abs-based schemes require the relay to
transmit four constellation points, which may lead to a larger
transmit power and higher decoding complexity. However, as
we will see, the relative performance of abs- and non-abs-
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Fig. 1. Two-way relay channel.

based schemes depends on the characteristics of the channels
between terminals and relay.

Specifically, the abs-based schemes include an abs-based
AF (AAF) scheme, an abs-based DF (ADF) scheme and a
novel estimate and forward (EF) strategy by extending the
EF scheme in [13] for the one-way relay channel to TWRCs,
all of which can substantially outperform existing schemes.
Besides characterizing the performance of different schemes,
we also optimize the relay strategy within the class of abs-
based strategies via functional analysis, where the solution
minimizes the average probability of error at the terminals1

over all possible relay functions at high SNR, and generally
outperforms all other strategies we consider. This approach
can be seen as a generalization of the result from [14] for the
one-way case. The optimized relay function is shown to be
a Lambert W function parameterized on the noise power and
the transmission energy. Interestingly, the optimized function
looks like the AAF scheme at low SNR and like the ADF
scheme at high SNR. The EF strategy leads to a relay function
which is similar in shape compared to the optimized function
in all SNRs. We also prove that DF performs better than ADF
if the two-way channel is very asymmetric or the relay has
greater power than the two terminals, while ADF performs
better than DF in less asymmetric channels or when the relay
has roughly the same power as the terminals. These results
will also be generalized to higher order constellations at the
terminals such as quadrature amplitude modulation (QAM).

This paper is an expanded version of work presented in [1],
[2].

Notation: In the following, 𝑝𝑋(𝑥) denotes the probability
density function (pdf) of a random variable𝑋 , and 𝒢(𝑥, 𝜎2) ≜

1√
2𝜋𝜎2

exp
(
− 𝑥2

2𝜎2

)
denotes the pdf of a normal random

variable 𝑋 with mean 0 and variance 𝜎2. 𝑄(⋅) represents the
Q-function.

II. SYSTEM MODEL

The system model is illustrated in Fig. 1, where the 𝑋𝑖

are the transmitted symbols from some given constellation
at terminal 𝑖, 𝑖 = 1, 2, 𝑌𝑖 are the received symbols at the
terminals, and 𝑌𝑅 is the transmitted symbol at the relay.
Communication takes place in two phases. In the multiple-
access (MAC) phase, both terminals simultaneously send a
block of data symbols to the relay which generates 𝑌𝑅 =

1An alternative objective would be to minimize the maximum of the two
terminals’ error probabilities, which gives the same result in high SNR, but
is in general more complicated to work with mathematically.

𝑓(ℎ1𝑋1 + ℎ2𝑋2 + 𝑁) with the relay function 𝑓(⋅). Here,
ℎ1 and ℎ2 represent deterministic attenuation factors for the
terminal-to-relay and relay-to-terminal channels, which could
for example represent a single realization of a fading process.
Throughout this paper, we assume that ℎ1 ≥ ℎ2 ≥ 0 without
loss of generality. The quantity𝑁 represents the additive white
Gaussian noise (AWGN) at the relay with mean zero and
variance 𝜎2

𝑟 . In the broadcast phase, the relay transmits 𝑌𝑅
to both terminals 1 and 2, where 𝑍𝑖 is the AWGN at terminal
𝑖 with mean zero and variance 𝜎2

𝑠𝑖 . The discrete-time model
for the TWRC can therefore be written as

𝑌𝑖 = ℎ𝑖 𝑓(ℎ1𝑋1 + ℎ2𝑋2 +𝑁) + 𝑍𝑖, 𝑖 = 1, 2. (1)

For the sake of brevity we also define the received signal at the
relay as 𝑈 = ℎ1𝑋1+ ℎ2𝑋2 +𝑁 . Since each terminal knows
what it has sent to the relay in the MAC phase, it can recover
the information from the other terminal based on the received
𝑌𝑖 and its own a priori symbols 𝑋𝑖. In addition, we impose an
average power constraint on 𝑋𝑖: 𝐸{∣𝑋𝑖∣2} ≤ 𝑃𝑠, 𝑖 = 1, 2,
as well as on the output of the relay: 𝐸{∣𝑓(ℎ1𝑋1 + ℎ2𝑋2 +
𝑁)∣2} ≤ 𝑃𝑟.

We assume for notational simplicity that the noise variance
at the two terminals is the same, i.e., 𝜎2

𝑠1 = 𝜎2
𝑠2 = 𝜎2

𝑠 ;
extensions to the more general case are straightforward. Also,
it is assumed that the terminals and the relay know ℎ1 and
ℎ2, which may be obtained by using channel estimation at
the relay or the feedback channel from the two terminals,
see e.g., [15]. Further, we assume that the two terminals are
perfectly synchronized and compensate for channel rotation
prior to transmission. Under these assumptions, the channel
coefficients ℎ1 and ℎ2 are used as real-valued attenuation
factors. Alternatively, the synchronization approach from [16]
could be applied at the terminals where pilot symbols are used
to estimate the phase differences between the two terminal
signals in the signal received from the relay.

We focus on symbol error probability as a performance
metric: each terminal is assumed to perform a hypothesis test
to decide which symbol was transmitted by the other terminal;
we do not consider the effect of any end to end channel coding
that may be applied. Note that (1) both applies to a half duplex
system with two time slots, where the transmission from one
terminal to the other takes place in a multiple-access and a
broadcast time slot, or a full duplex system.

III. RELAY STRATEGIES FOR THE BPSK CASE

We begin by considering BPSK; an extension to higher
order constellations is given in Section V. Each terminal
transmits 𝑋𝑖 = ±√

𝑃𝑠. We consider two classes of relay
strategies: absolute value strategies, where the relay transmits
a non-decreasing function of ∣𝑈 ∣, and non-absolute value
strategies, where the relay transmits an odd non-decreasing
function of 𝑈 .

We first show that the error probability is minimized if the
terminals employ threshold detection as follows.

∙ For non-abs-based strategies: If 𝑥𝑖 =
√
𝑃𝑠 has been sent

in the MAC phase then terminal 𝑖 decides on
√
𝑃𝑠 if

𝑦𝑖 ≥ 𝑣𝑖 and on −√
𝑃𝑠 otherwise, where 𝑣𝑖 is its detection

threshold and 𝑦𝑖 is the value of its received symbol 𝑌𝑖.
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𝑃 (1)
𝑒 =

1

2
+

1

2

∫ 𝑤

0

𝐴(𝑢)𝑑𝑢

[∫ 𝑣1

−∞
𝒢 (𝑦 − ℎ1𝑏, 𝜎

2
𝑠

)
𝑑𝑦

]
︸ ︷︷ ︸

𝐶(𝑣1,𝑏)

+
1

2

∫ +∞

𝑤

𝐴(𝑢)𝑑𝑢

[∫ 𝑣1

−∞
𝒢 (𝑦 − ℎ1𝑎, 𝜎

2
𝑠

)
𝑑𝑦

]
︸ ︷︷ ︸

𝐷(𝑣1,𝑎)

+
1

2

∫ 𝑤

0

𝐵(𝑢)𝑑𝑢

[∫ 𝑣1

−∞
𝒢 (𝑦 + ℎ1𝑏, 𝜎

2
𝑠

)
𝑑𝑦

]
︸ ︷︷ ︸

𝐸(𝑣1,𝑏)

+
1

2

∫ +∞

𝑤

𝐵(𝑢)𝑑𝑢

[∫ 𝑣1

−∞
𝒢 (𝑦 + ℎ1𝑎, 𝜎

2
𝑠

)
𝑑𝑦

]
︸ ︷︷ ︸

𝐹 (𝑣1,𝑎)

.

(2)

Likewise, if 𝑥𝑖 = −√
𝑃𝑠 has been sent, then terminal 𝑖

decides on
√
𝑃𝑠 if 𝑦𝑖 ≥ −𝑣𝑖 and on −√

𝑃𝑠 otherwise.
∙ For abs-based strategies: each terminal decides for either

(𝑋1 =
√
𝑃𝑠, 𝑋2 =

√
𝑃𝑠) or (𝑋1 = −√

𝑃𝑠, 𝑋2 =
−√

𝑃𝑠) depending on what the terminal has previously
sent to the relay, if the received signal exceeds a threshold
value 𝑣𝑖. Otherwise, if the received signal is smaller
than the threshold 𝑣𝑖 it decides for either (𝑋1 =

√
𝑃𝑠,

𝑋2 = −√
𝑃𝑠) or (𝑋1 = −√

𝑃𝑠, 𝑋2 =
√
𝑃𝑠).

Theorem 1: When each terminal transmits
√
𝑃𝑠 and −√

𝑃𝑠
with equal probability, for any given non-abs-based relay
function 𝑓(𝑈) or abs-based relay function 𝑓(∣𝑈 ∣) where 𝑓 is
a non-decreasing function of 𝑈 or ∣𝑈 ∣, respectively, threshold
detection at the terminals minimizes the probability of error.

The proof is given in the Appendix.

A. Non-Abs-Based Strategies

The average probability of error at terminal 1 is

𝑃 (1)
𝑒 =

1

4

(
Pr(𝑦1 < 𝑣1∣𝑥1 = 𝑥2 =

√
𝑃𝑟)

+ Pr(𝑦1 > 𝑣1∣𝑥1 =
√
𝑃𝑟, 𝑥2 = −

√
𝑃𝑟)

+ Pr(𝑦1 < −𝑣1∣𝑥1 = −
√
𝑃𝑟, 𝑥2 =

√
𝑃𝑟)

+ Pr(𝑦1 > −𝑣1∣𝑥1 = 𝑥2 = −
√
𝑃𝑟)

)

=
1

2
+

1

2

∫ +∞

−∞

(
𝒢
(
𝑢− (ℎ1 + ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
− 𝒢

(
𝑢− (ℎ1 − ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

))
×
[∫ 𝑣1

−∞
𝒢 (𝑦 − ℎ1𝑓(𝑢), 𝜎

2
𝑠

)
𝑑𝑦

]
𝑑𝑢.

(3)

The average probability of error at terminal 2 is given by
interchanging subscripts 1 and 2.

1) Amplify-and-Forward: We analyze the performance of
amplify and forward [6], where a linear function 𝑓(⋅) is used.
To satisfy the average power constraint at the relay, 𝑓(⋅) is
equal to 𝑓(𝑢) =

√
𝑃𝑟

(ℎ2
1+ℎ2

2)𝑃𝑠+𝜎2
𝑟
𝑢, which yields an output at

terminal 𝑖 according to

𝑌𝑖 = ℎ𝑖

√
𝑃𝑟

(ℎ21 + ℎ22)𝑃𝑠 + 𝜎2
𝑟

(𝑋1 +𝑋2)

+

(
ℎ𝑖

√
𝑃𝑟

(ℎ21 + ℎ22)𝑃𝑠 + 𝜎2
𝑟

𝑁 + 𝑍𝑖

)
, 𝑖 = 1, 2. (4)

Therefore, given 𝑥1 and 𝑥2 were transmitted, the conditional
pdf of the output 𝑌𝑖 is

𝑝𝑌𝑖∣𝑋1,𝑋2
(𝑦𝑖∣𝑥1, 𝑥2) = (5)

𝒢
(
𝑦𝑖−ℎ𝑖

√
𝑃𝑟

(ℎ21+ℎ
2
2)𝑃𝑠+𝜎

2
𝑟

(𝑥1+𝑥2),
ℎ2𝑖𝑃𝑟𝜎

2
𝑟

(ℎ21+ℎ
2
2)𝑃𝑠+𝜎

2
𝑟

+𝜎2
𝑠

)
,

where 𝒢(𝑥, 𝜎2) is defined at the end of Section I. Given 𝑥𝑖,
we observe from (5) that terminal 𝑖’s decoding threshold is
𝑣𝑖 = ℎ𝑖

√
𝑃𝑟

(ℎ2
1+ℎ2

2)𝑃𝑠+𝜎2
𝑟
𝑥𝑖. Therefore, the average probability

of error at terminal 𝑖, 𝑖 = 1, 2 is

𝑃 (𝑖)
𝑒 = 𝑄

(√
ℎ2𝑖𝑃𝑟𝑃𝑠

ℎ2𝑖𝑃𝑟𝜎
2
𝑟 + (ℎ21 + ℎ22)𝑃𝑠𝜎

2
𝑠 + 𝜎2

𝑟𝜎
2
𝑠

)
. (6)

2) Detect-and-Forward: In DF the relay performs hard
decisions and maps each decision region to a fixed value that
it transmits, i.e.,

𝑓(𝑢) =

⎧⎨
⎩

𝑎, if 𝑢 ≥ 𝑤,
𝑏, if 𝑤 > 𝑢 ≥ 0,

−𝑓(−𝑢), otherwise,
(9)

The error probability at the terminals is optimized over the
relay threshold 𝑤, relay transmit values 𝑎 and 𝑏, and the
terminal detection thresholds 𝑣1 and 𝑣2, subject to the average
power constraint at the relay. Substituting (9) into (3), the
average probability of error at terminal 1 can be written as (2)
at the top of this page, where

𝐴(𝑢)≜𝒢
(
𝑢−(ℎ1+ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
−𝒢
(
𝑢−(ℎ1−ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
,

𝐵(𝑢)≜𝒢
(
𝑢+(ℎ1+ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
−𝒢
(
𝑢+(ℎ1−ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
.

(10)

Taking the partial derivative of 𝑃 (1)
𝑒 +𝑃

(2)
𝑒 with respect to

𝑤 and setting this to zero, we obtain

∂(𝑃
(1)
𝑒 + 𝑃

(2)
𝑒 )

∂𝑤
= 𝐴(𝑤) (𝐶(𝑣1, 𝑏)−𝐷(𝑣1, 𝑎))

+𝐵(𝑤) (𝐸(𝑣1, 𝑏)− 𝐹 (𝑣1, 𝑎)) +
∂𝑃

(2)
𝑒

∂𝑤
= 0. (11)

As the optimal solution of 𝑤 in (11) depends on 𝑎, 𝑏, 𝑣1, 𝑣2 in
a complicated way, it is hard to solve (11) directly. One way to
approximate the optimal solution is to use an iterative method.
At the beginning of the 𝑘-th iteration, assuming that 𝑤(𝑘) is
given (𝑤(0) = ℎ1

√
𝑃𝑠), we can optimize 𝑎(𝑘), 𝑏(𝑘), 𝑣(𝑘)1 , 𝑣

(𝑘)
2

as follows. When 𝑤(𝑘), 𝑎(𝑘), 𝑏(𝑘) are given, 𝑣(𝑘)1 , 𝑣
(𝑘)
2 can be

written as a function of 𝑎(𝑘), 𝑏(𝑘) by minimizing the average
error probability. Finally, we perform a two dimensional
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𝑔(𝑢) = 𝐸{ℎ1𝑥1 + ℎ2𝑥2∣𝑢}

=
sinh

(
(ℎ1+ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
𝑒
− (ℎ1+ℎ2)2𝑃𝑠

2𝜎2
𝑟 (ℎ1 + ℎ2) + sinh

(
(ℎ1−ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
𝑒
− (ℎ1−ℎ2)2𝑃𝑠

2𝜎2
𝑟 (ℎ1 − ℎ2)

cosh
(

(ℎ1+ℎ2)
√
𝑃𝑠𝑢

𝜎2
𝑟

)
𝑒
− (ℎ1+ℎ2)2𝑃𝑠

2𝜎2
𝑟 + cosh

(
(ℎ1−ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
𝑒
− (ℎ1−ℎ2)2𝑃𝑠

2𝜎2
𝑟

√
𝑃𝑠 (7)

𝐺(𝑓) = 𝑃 (1)
𝑒 + 𝑃 (2)

𝑒

=1 +
1

2

∫ +∞

−∞

(
𝒢
(
𝑢− (ℎ1 + ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
− 𝒢

(
𝑢− (ℎ1 − ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)) [∫ 𝑣1

−∞
𝒢 (𝑦 − ℎ1𝑓(𝑢), 𝜎

2
𝑠

)
𝑑𝑦

]
𝑑𝑢

+
1

2

∫ +∞

−∞

(
𝒢
(
𝑢− (ℎ2 + ℎ1)

√
𝑃𝑠, 𝜎

2
𝑟

)
− 𝒢

(
𝑢− (ℎ2 − ℎ1)

√
𝑃𝑠, 𝜎

2
𝑟

))[∫ 𝑣2

−∞
𝒢 (𝑦 − ℎ2𝑓(𝑢), 𝜎

2
𝑠

)
𝑑𝑦

]
𝑑𝑢.

(8)

search over 𝑎(𝑘), 𝑏(𝑘). Then, 𝑤(𝑘+1) can be obtained from
(11) by using 𝑎(𝑘), 𝑏(𝑘), 𝑣

(𝑘)
1 , 𝑣

(𝑘)
2 . The process repeats until

convergence or the maximum number of iterations is achieved.
From our experiments we find that less than five iterations are
required before convergence. Even though this process does
not guarantee convergence to the global minimum, we find
that it works well in our experiments.

Alternatively, at high SNR, when 𝑤 = ℎ1
√
𝑃 𝑠, we have

𝐴(𝑤) = 0 and the other Q function and Gaussian terms in (11)
tend to 0. A suboptimal solution to (11) can be approximated
with this 𝑤. By substituting 𝑤 = ℎ1

√
𝑃𝑠 into (2), taking the

partial derivative of (2) with respect to 𝑣1, and setting the
resulting equation to zero we obtain the thresholds

𝑣1 =
ℎ1(𝑎+ 𝑏)

2
, 𝑣2 =

ℎ2(𝑎− 𝑏)

2
. (12)

We can then derive the optimal 𝑎 and 𝑏 subject to the power
constraint at the relay by substituting (12) into (2). From the
resulting expression, by discarding small terms at high SNR
we can then show that 𝑃 (1)

𝑒 + 𝑃
(2)
𝑒 can be approximated2 as

𝑃 (1)
𝑒 + 𝑃 (2)

𝑒 ≈ 𝑄

(
ℎ1(𝑎− 𝑏)

2𝜎𝑠

)
+𝑄

(
ℎ2(𝑎+ 𝑏)

2𝜎𝑠

)

+𝑄

(
ℎ2

√
𝑃𝑠

𝜎𝑟

)(
1 +

1

2
𝑄

(
ℎ2(3𝑏− 𝑎)

2𝜎𝑠

))
. (13)

To find the optimal 𝑎, 𝑏, we need to minimize (13) subject to
𝑎2 + 𝑏2 = 2𝑃𝑟. Whether the first two terms or the third term
dominates depends on the relative values of 𝑃𝑟, 𝑃𝑠, 𝜎𝑟, 𝜎𝑠, ℎ1
and ℎ2. If we optimize the first two terms of (13), we find
that

𝑏

𝑎
=
ℎ1 − ℎ2
ℎ1 + ℎ2

, 𝑎2 + 𝑏2 = 2𝑃𝑟. (14)

Substituting (14) back into (13), we obtain

𝑃 (1)
𝑒 + 𝑃 (2)

𝑒 ≈ 2𝑄

(√
𝑃𝑟

ℎ21 + ℎ22

ℎ1ℎ2
𝜎𝑠

)
+𝑄

(
ℎ2

√
𝑃𝑠

𝜎𝑟

)

×
(
1 +

1

2
𝑄

(√
𝑃𝑟

ℎ21 + ℎ22

ℎ2(ℎ1 − 2ℎ2)

𝜎𝑠

))
. (15)

2Actually max(𝑃 1
𝑒 , 𝑃 2

𝑒 ) dominates, which means that at high SNR opti-
mizing 𝑃

(1)
𝑒 + 𝑃

(2)
𝑒 yields the same function as optimizing max(𝑃 1

𝑒 , 𝑃 2
𝑒 ).

Note that (14) agrees with the straightforward DF,
where the relay first finds a point from the set
{−ℎ1 − ℎ2,−ℎ1 + ℎ2, ℎ1 − ℎ2, ℎ1 + ℎ2} with the minimum
Euclidean distance from the received signal and then transmits
a scaled version of this point.

If we optimize the third term of (13), we find that

𝑎 =

√
9𝑃𝑟
5
, 𝑏 =

√
𝑃𝑟
5
. (16)

Substituting (16) back into (13), we obtain

𝑃 (1)
𝑒 +𝑃 (2)

𝑒 ≈𝑄

(√
𝑃𝑟
5

ℎ1
𝜎𝑠

)
+𝑄

(√
4𝑃𝑟
5

ℎ2
𝜎𝑠

)
+
5

4
𝑄

(
ℎ2

√
𝑃𝑠

𝜎𝑟

)
.

(17)
Note that (16) corresponds to the uniform constellation where
the distances between any two adjacent constellation points
are identical. Comparing (15) with (17), we find that when√

5𝑃𝑠𝜎2
𝑠

𝑃𝑟𝜎2
𝑟
< ℎ1

ℎ2
< 2 we should choose (16), which means

that the first two terms in (13) dominate; otherwise, (14) is
preferred which means the third term in (13) dominates.

When ℎ1 = ℎ2, (14) leads to

𝑎 =
√
2𝑃𝑟, 𝑏 = 0, (18)

where the relay decodes only three points as ℎ1 − ℎ2 = 0.
Numerical simulations reveal that when ℎ1/ℎ2 is close to

one, (18) performs better than both (14) and (16) where a
performance close to the optimal solution is obtained. As
ℎ1/ℎ2 increases, (14) and (16) outperform (18) at high SNR.
But (18) still performs better than (14) and (16) at low SNR,
where removing a constellation point results in power savings
and performance improvements.

3) Estimate-and-Forward: In this strategy the relay trans-
mits a scaled version of the MMSE estimate of ℎ1𝑋1+ℎ2𝑋2

given its observation 𝑢, i.e., we consider a function 𝑔(𝑢) in (7)
shown at the top of this page, and set the relay function 𝑓(𝑢)
to be a scaled version of 𝑔(𝑢) to satisfy the power constraint.
We find that 𝑔(𝑢) in (7) is close to the straightforward DF
(14) at high SNR.

4) Optimized Relay Function: The optimal relay function
minimizes the sum of average probabilities of both terminals
subject to the average power constraint, i.e., (8) at the top of
this page. The optimal relay function is the solution of the
problem (19) shown at the top of next page.
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min
𝑓,𝑣1,𝑣2

𝐺(𝑓)

subject to
∫ +∞

0

𝒢
(
𝑢− (ℎ1 + ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
𝑓2(𝑢)𝑑𝑢+

∫ +∞

0

𝒢
(
𝑢− (ℎ1 − ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
𝑓2(𝑢)𝑑𝑢

+

∫ +∞

0

𝒢
(
𝑢+ (ℎ1 + ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
𝑓2(𝑢)𝑑𝑢+

∫ +∞

0

𝒢
(
𝑢+ (ℎ1 − ℎ2)

√
𝑃𝑠, 𝜎

2
𝑟

)
𝑓2(𝑢)𝑑𝑢 = 2𝑃𝑟.

(19)

𝑃𝑒 =
1

2
+

1

2

∫ +∞

0

(
𝒢
(
𝑢− 2

√
𝑃𝑠, 𝜎

2
𝑟

)
+ 𝒢

(
𝑢+ 2

√
𝑃𝑠, 𝜎

2
𝑟

)
− 2𝒢 (𝑢, 𝜎2

𝑟

)) [∫ 𝑣

−∞
𝒢 (𝑦 − 𝛽 (𝑢− 𝐶) , 𝜎2

𝑠

)
𝑑𝑦

]
𝑑𝑢. (20)

𝑃𝑒 =
1

2
+

1

4

∫ +∞

−∞

(
𝒢
(
𝑢− 2

√
𝑃𝑠, 𝜎

2
𝑟

)
+ 𝒢

(
𝑢+ 2

√
𝑃𝑠, 𝜎

2
𝑟

)
− 2𝒢 (𝑢, 𝜎2

𝑟

))∫ 𝑣

−∞
𝒢 (𝑦 − 𝑓(𝑢), 𝜎2

𝑠

)
𝑑𝑢 𝑑𝑦

=
1

2
+

1

2

∫ 𝑤

0

(
𝒢
(
𝑢− 2

√
𝑃𝑠, 𝜎

2
𝑟

)
+ 𝒢

(
𝑢+ 2

√
𝑃𝑠, 𝜎

2
𝑟

)
− 2𝒢 (𝑢, 𝜎2

𝑟

))
𝑑𝑢

×
∫ 𝑣

−∞

(
𝒢
(
𝑦 +
√
𝑃𝑟, 𝜎

2
𝑠

)
− 𝒢

(
𝑦 −
√
𝑃𝑟, 𝜎

2
𝑠

))
𝑑𝑦.

(21)

To solve the functional optimization problem (19), we first
fix 𝑣1 and 𝑣2 and derive the relay function as a function of
𝑣1 and 𝑣2 via the Lagrange dual. Then the relay function
is substituted into the objective function and the resulting
equation is minimized over 𝑣1 and 𝑣2 by performing a line
search around 𝑣1 and 𝑣2 in the optimal DF strategy. Since
we do not have a convex optimization problem, the obtained
solution may be a local optimum. The closed-form solution of
(19) is hard to obtain. Nevertheless, we plot the optimized non-
abs-based relay function at different SNRs and with different
ℎ1 and ℎ2 in Fig. 2.

B. Abs-Based Strategies

In this subsection, we consider abs-based strategies, where
in particular, we will provide detailed derivations for the
special case ℎ1 = ℎ2 = 1. The derivations for the general
case ℎ1 > ℎ2 are analogous and will only be briefly discussed
due to space limitations. As starting point for the following
discussions, we note that generally for abs-based schemes the
average error probability at each terminal 𝑖 can be written as

𝑃𝑒 =
1

2
Pr(𝑦 > 𝑣𝑖∣𝑥1 ∕= 𝑥2) +

1

2
Pr(𝑦 < 𝑣𝑖∣𝑥1 = 𝑥2). (22)

For ℎ1 = ℎ2, we have 𝑣1 = 𝑣2 = 𝑣.
1) Abs-Based Amplify-and-Forward: In this scheme, the

relay first takes the absolute value of the received signal and
then subtracts a positive constant 𝐶 from the resulting signal,
i.e.,

𝑓(𝑢) = 𝛽 (∣𝑢∣ − 𝐶) , (23)

where 𝛽 is a coefficient to maintain the average power
constraint at the relay. From (22), the average error probability
at terminal 1 for ℎ1 = ℎ2 = 1 can be written as (20) at the
top of this page. The optimal solution is given by minimizing
(20) with respect to both 𝑣 and 𝐶, which is done numerically
since an analytical solution is hard to obtain. The optimal
solution depends on the SNR values, but we have observed
experimentally that the optimal threshold is very close to
zero. So, a simple solution, in particular if the SNR is not

accurately known, is to set 𝑣 = 0 and 𝐶 = ℎ1
√
𝑃𝑠 or

𝐶 = ℎ1
√
𝑃𝑠 + 𝜎𝑟/

√
2.

2) Abs-Based Detect-and-Forward: In ADF, the relay per-
forms hard decisions, based on the absolute value of the
received signal, to decide whether 2

√
𝑃𝑠, 0, or −2

√
𝑃𝑠 is

received. The relay does not actually detect 𝑥1 and 𝑥2, but
only the mixture ℎ1𝑥1 + ℎ2𝑥2. To satisfy the relay’s average
power constraint,

√
𝑃𝑟 and −√

𝑃𝑟 are transmitted, i.e.,

𝑓(𝑢) =

{ √
𝑃𝑟, if ∣𝑢∣ ≥ 𝑤,

−√
𝑃𝑟, otherwise,

(24)

where 𝑤 is a threshold which will be determined below.
Note that a related detect-and-forward scheme for the TWRC
is already proposed in [8] as physical layer network cod-
ing. In the following, we extend this work by providing a
detailed analysis of the end-to-end error probability.

For the case ℎ1 = ℎ2 = 1 the average error probability
at each terminal (22) can be written as (21) at the top of this
page. Eq. (21) has the nice property that the optimization with
respect to 𝑤 and 𝑣 is separated. By minimizing (21) over 𝑤
and 𝑣 we obtain the optimal 𝑤 as

𝑤 =
√
𝑃𝑠

(
1 +

𝜎2
𝑟

2𝑃𝑠
log
(
1 +
√
1− 𝑒−4𝑃𝑠/𝜎2

𝑟

))
, (25)

and the optimal 𝑣 as 𝑣 = 0, which gives

𝑃𝑒 =
1

2
+

1

2

(
𝑄

(
2
√
𝑃𝑠 − 𝑤

𝜎𝑟

)
+ 2𝑄

(
𝑤

𝜎𝑟

)

−𝑄

(
2
√
𝑃𝑠 + 𝑤

𝜎𝑟

)
− 1

)(
1− 2𝑄

(√
𝑃𝑟
𝜎𝑠

))
. (26)

When 𝜎2
𝑟 → 0 the optimal 𝑤 converges to

√
𝑃𝑠. Note that

due to the separation of 𝑤 and 𝑣 in (21), the optimal 𝑤 also
minimizes the error probability of detection at the relay. When
ℎ1 > ℎ2, we obtain 𝑤=ℎ1

√
𝑃𝑠 at high SNR.

3) Abs-Based Estimate-and-Forward: In this strategy the
relay transmits its minimum mean squared error (MMSE) es-
timate of ∣ℎ1𝑥1+ℎ2𝑥2∣. We first address the case ℎ1 = ℎ2 = 1



6 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 10, OCTOBER 2009

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u

f(
u)

SNR=15 dB 

SNR=0 dB 

SNR=8 dB 

(a) ℎ1 = 1 and ℎ2 = 0.5

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u

f(
u)

SNR=15 dB 

SNR=0 dB 

SNR=8 dB 

(b) ℎ1 = 1 and ℎ2 = 0.8

Fig. 2. The optimized non-abs-based relay function at different SNRs and
with different ℎ1 and ℎ2.

and derive the MMSE estimator

𝑔(𝑢) = 𝐸
{∣𝑥1 + 𝑥2∣

∣∣𝑢} =
2
√
𝑃𝑠 cosh

(
2
√
𝑃𝑠𝑢
𝜎2
𝑟

)
𝑒2𝑃𝑠/𝜎2

𝑟 + cosh
(

2
√
𝑃𝑠𝑢
𝜎2
𝑟

) . (27)

The relay function 𝑓(𝑢) is then a scaled version of 𝑔(𝑢)−𝐶,
i.e.,

𝑓(𝑢) =

{
𝛽 (𝑔(𝑢)− 𝐶) , if 𝑢 ≥ 0,

𝑓(−𝑢), otherwise,
(28)

where 𝐶 is a constant as in AAF and 𝛽 ≥ 0 is a scaling
factor to satisfy the average power constraint 𝐸{𝑓2(𝑢)} = 𝑃𝑟.
Optimization of the terminal decoding thresholds is similar to
that for AAF. Analogous to the above derivation, for ℎ1 > ℎ2
we obtain 𝑔(𝑢) as (29) at the top of next page.

4) Optimized Relay Strategy: In this section, we optimize
the average probability of error over even functions 𝑓(⋅) at the
relay. Our approach generalizes the result from [14] for the
one-way case. For ℎ1 = ℎ2 the average probability of error

can be obtained from (22) as (30) at the top of next page,
which holds since 𝐵(𝑢) is an even function in 𝑢. Let

𝐷(𝑢) ≜ 𝒢
(
𝑢+ 2

√
𝑃𝑠, 𝜎

2
𝑟

)
+𝒢
(
𝑢− 2

√
𝑃𝑠, 𝜎

2
𝑟

)
+2𝒢 (𝑢, 𝜎2

𝑟

)
.

(31)
Our optimization problem is

min
𝑓,𝑣

𝐻(𝑓)=

∫ +∞

0

𝐵(𝑢)𝐴(𝑓)𝑑𝑢, s.t.
1

2

∫ +∞

0

𝐷(𝑢)𝑓2(𝑢)𝑑𝑢≤𝑃𝑟,
(32)

which can be solved by considering the Lagrangian

𝜙(𝜆, 𝑓) = 𝐻(𝑓) +
𝜆

2

(∫ +∞

0

𝐷(𝑢)𝑓2(𝑢)𝑑𝑢 − 2𝑃𝑟

)
, (33)

where 𝜆 ≥ 0 is the Lagrange multiplier of the average
power constraint. Differentiating 𝜙(𝜆, 𝑓) with respect to 𝑓(𝑢)
for each 𝑢 and setting the result to zero, we obtain after
rearranging

𝒢 (𝑓(𝑢)− 𝑣, 𝜎2
𝑠

)
𝑓(𝑢)

= 𝜆
𝐷(𝑢)

𝐵(𝑢)
. (34)

Since 𝜆 > 0, 𝐷(𝑢) > 0, and if ∣𝑢∣ ≥ 𝑤 we have 𝐵(𝑢) ≥ 0
(and 𝐵(𝑢) < 0 otherwise), we obtain{

𝑓(𝑢) ≥ 0, if ∣𝑢∣ ≥ 𝑤,
𝑓(𝑢) < 0, otherwise,

(35)

where 𝑤 is the relay hard decision threshold defined in (25).
Lemma 1: For 𝑓(𝑢) satisfying{

𝑓(𝑢) ≥ 𝑣, if ∣𝑢∣ ≥ 𝑤,
𝑓(𝑢) < 𝑣, otherwise,

(36)

𝑃𝑒(𝑓) in (30) is a strictly convex function in 𝑓 (when
considering functions that differ on a set of non-zero measure).

Proof: Let 𝑓 and 𝑔 be two functions satisfying (36), and
let 𝜆 ∈ [0, 1] and 𝛾 = 1 − 𝜆. Clearly, 𝜆𝑓 + 𝛾𝑔 also satisfies
(36). Then,

∂2𝐴(𝑓)

∂𝑓2
=

1

2𝜎2
𝑠

(𝑓(𝑢)− 𝑣)𝒢 (𝑣 − 𝑓(𝑢), 𝜎2
𝑠

)
, (37)

is nonnegative if 𝑓(𝑢) ≥ 𝑣 and negative otherwise. Since
𝐵(𝑢)∂

2𝐴(𝑓)
∂𝑓2 is nonnegative for ∣𝑢∣ ≥ 𝑤 and positive otherwise,

we have

𝑃𝑒(𝜆𝑓 + 𝛾𝑔) =
1

2
+

1

2

∫ +∞

0

𝐵(𝑢)𝐴(𝜆𝑓 + 𝛾𝑔)𝑑𝑢

≤𝜆𝑃𝑒(𝑓) + 𝛾𝑃𝑒(𝑔).

If 𝑣 = 0, then (34) can be further simplified to be

𝑒
−
(
𝑓(𝑢)/

√
2𝜎2

𝑠

)2

𝑓(𝑢)/
√
2𝜎2

𝑠

= 𝜆2
√
𝜋𝜎2

𝑠

cosh
(

2
√
𝑃𝑠𝑢
𝜎2
𝑟

)
+ 𝑒2𝑃𝑠/𝜎

2
𝑟

cosh
(

2
√
𝑃𝑠𝑢
𝜎2
𝑟

)
− 𝑒2𝑃𝑠/𝜎2

𝑟

,

(39)
which can be solved to obtain the following expression for
𝑓(𝑢) in (38) at the top of next page. Here, 𝑊 (⋅) denotes the
Lambert W function, defined by 𝑊 (𝑥)𝑒𝑊 (𝑥) = 𝑥, and 𝜆 is
such that the power constraint is satisfied with equality.

Note that 𝑓(𝑢) in (38) is derived from the Lagrange dual
without any assumption on the convexity of the problem,
which may not be a true optimal solution. However, (38)
indeed satisfies (35), which means that it is optimal within
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𝑔(𝑢) =
∣ℎ1 + ℎ2∣

√
𝑃𝑠𝑒

− (ℎ1+ℎ2)2𝑃𝑠

2𝜎2
𝑟 cosh

(
(ℎ1+ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
𝑒
− (ℎ1+ℎ2)2𝑃𝑠

2𝜎2
𝑟 cosh

(
(ℎ1+ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
+ 𝑒

− (ℎ1−ℎ2)2𝑃𝑠

2𝜎2
𝑟 cosh

(
(ℎ1−ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)

+
∣ℎ1 − ℎ2∣

√
𝑃𝑠𝑒

− (ℎ1−ℎ2)2𝑃𝑠

2𝜎2
𝑟 cosh

(
(ℎ1−ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
𝑒
− (ℎ1+ℎ2)2𝑃𝑠

2𝜎2
𝑟 cosh

(
(ℎ1+ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
+ 𝑒

− (ℎ1−ℎ2)2𝑃𝑠

2𝜎2
𝑟 cosh

(
(ℎ1−ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

) .
(29)

𝑃𝑒(𝑓) =
1

2
+

1

2

∫ +∞

0

(
𝒢
(
𝑢+ 2

√
𝑃𝑠, 𝜎

2
𝑟

)
+ 𝒢

(
𝑢− 2

√
𝑃𝑠, 𝜎

2
𝑟

)
− 2𝒢 (𝑢, 𝜎2

𝑟

))
︸ ︷︷ ︸

≜𝐵(𝑢)

[∫ 𝑣

−∞
𝒢 (𝑦 − 𝑓(𝑢), 𝜎2

𝑠

)
𝑑𝑦

]
︸ ︷︷ ︸

≜𝐴(𝑓)

𝑑𝑢,
(30)

𝑓(𝑢) =

⎧⎨
⎩

√√√√√⎷𝜎2
𝑠𝑊

⎛
⎜⎝ 1

2𝜋𝜆2𝜎4
𝑠

⎡
⎣ cosh

(
2
√

𝑃𝑠𝑢

𝜎2
𝑟

)
−𝑒2𝑃𝑠/𝜎2

𝑟

cosh

(
2
√

𝑃𝑠𝑢

𝜎2
𝑟

)
+𝑒2𝑃𝑠/𝜎2

𝑟

⎤
⎦2
⎞
⎟⎠, if 𝑢 ≥ 𝑤,

−

√√√√√⎷𝜎2
𝑠𝑊

⎛
⎜⎝ 1

2𝜋𝜆2𝜎4
𝑠

⎡
⎣ cosh

(
2
√

𝑃𝑠𝑢

𝜎2
𝑟

)
−𝑒2𝑃𝑠/𝜎2

𝑟

cosh

(
2
√

𝑃𝑠𝑢

𝜎2
𝑟

)
+𝑒2𝑃𝑠/𝜎2

𝑟

⎤
⎦2
⎞
⎟⎠, if 𝑤 > 𝑢 ≥ 0,

𝑓(−𝑢), if 𝑢 < 0.

(38)

the class of functions satisfying (35). By Lemma 1 and 𝑓2(𝑢)
being convex in 𝑓(𝑢), the set of functions satisfying (35) and
the power constraint of (32) is a convex function set. The
optimization under the constraint (35) is thus convex and there
is no duality gap. Therefore, (38) is the optimal solution when
𝑣 = 0, which can be achieved in the high SNR regime as
shown in the following.

At high SNR, since

lim
𝜎2
𝑟→0

𝒢 (𝑢+ 2
√
𝑃𝑠, 𝜎

2
𝑟

)
+ 𝒢 (𝑢− 2

√
𝑃𝑠, 𝜎

2
𝑟

)− 2𝒢 (𝑢, 𝜎2
𝑟

)
𝒢 (𝑢+ 2

√
𝑃𝑠, 𝜎2

𝑟

)
+ 𝒢 (𝑢− 2

√
𝑃𝑠, 𝜎2

𝑟

)
+ 2𝒢 (𝑢, 𝜎2

𝑟)

=

{
1, if ∣𝑢∣ > 𝑤,
−1, if 𝑤 > ∣𝑢∣, (40)

from (34) we obtain

𝑓(𝑢) =

{
𝐶1, if ∣𝑢∣ > 𝑤,
−𝐶2, if 𝑤 > ∣𝑢∣, (41)

where 𝐶1, 𝐶2 > 0 are constants. Substituting (41) back into
(34), we find that

𝒢 (𝐶1 − 𝑣, 𝜎2
𝑠

)
𝐶1

= 𝜆 =
𝒢 (𝐶2 + 𝑣, 𝜎2

𝑠

)
𝐶2

, (42)

which gives

𝑣 =
log𝐶1 − log𝐶2

𝐶1 + 𝐶2
𝜎2
𝑠 +

𝐶1 − 𝐶2

2
−−−−→
𝜎2
𝑠→0

𝐶1 − 𝐶2

2
. (43)

Substituting (43) into (42), we obtain 𝐶1 = 𝐶2 = 𝐶, which
corresponds to ADF. Hence, 𝜆 can be approximated as

𝜆 =
𝒢 (𝐶, 𝜎2

𝑠

)
𝐶

. (44)

Substituting (41)-(44) into (33) and using (26), the dual
problem then becomes

min
𝐶,𝑣

𝑄

(
𝐶

𝜎𝑠

)
+

𝒢 (𝐶, 𝜎2
𝑠

)
𝐶

(
𝐶2 − 𝑃𝑟

)
. (45)

Note that at high SNR 𝑄
(

𝐶
𝜎𝑠

)
can be approximated

as 𝜎𝑠√
2𝜋𝐶

𝑒
− 𝐶2

2𝜎2
𝑠 , which decreases faster than 𝒢 (𝐶, 𝜎2

𝑠

)
=

1√
2𝜋𝜎𝑠

𝑒
− 𝐶2

2𝜎2
𝑠 . Therefore, the minimum of (45) is attained at

𝑣 = 0, 𝐶1 = 𝐶2 = 𝐶 =
√
𝑃𝑟 when 𝜎2

𝑠 → 0 and 𝜎2
𝑟 → 0.

By substituting 𝑣 = 0 and 𝐶1 = 𝐶2 = 𝐶 =
√
𝑃𝑟 into (41)

and (44), we obtain 𝑓∗ and 𝜆∗, which gives min𝑓 𝜙(𝜆
∗, 𝑓) =

𝐺(𝑓∗) at high SNR. Therefore, there is no duality gap at high
SNR and the optimal solution converges to (41), which is
equivalent to the ADF strategy. In general, the optimal 𝑣 varies
with SNR.

For the case ℎ1 > ℎ2, minimizing the sum of error proba-
bilities of both terminals can be approximated by minimizing
the error probability of terminal 2 at high SNR, which gives
(46) at the top of next page.

Remarks:
∙ As seen above, 𝑓(𝑢) in (38) is optimal when the two

terminals’ detection thresholds are set to zero. Our ex-
periments show that this relay function outperforms the
other strategies in both high and low SNR regimes. A
way to optimize jointly over 𝑓(𝑢) and 𝑣 is to solve
(34) for 𝑓(𝑢) which depends on both 𝑣 and 𝜆. For a
given 𝑣, we can find 𝜆 by satisfying the average power
constraint. Finally, 𝑣 can be found by substituting the
resulting function into 𝐻(𝑓) and optimizing over 𝑣. The
optimized function using this approach performs better
than (38) but is more difficult to implement.
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𝑓(𝑢) =

⎧⎨
⎩

√√√√√√⎷𝜎2
𝑠𝑊

⎛
⎜⎜⎝ 1

2𝜋𝜆2ℎ2
1𝜎

4
𝑠

⎡
⎢⎣ 𝑒

− (ℎ1+ℎ2)2𝑃𝑠
2𝜎2

𝑟 cosh

(
(ℎ1+ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
−𝑒

− (ℎ1−ℎ2)2𝑃𝑠
2𝜎2

𝑟 cosh

(
(ℎ1−ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)

𝑒
− (ℎ1+ℎ2)2𝑃𝑠

2𝜎2
𝑟 cosh

(
(ℎ1+ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
+𝑒

− (ℎ1−ℎ2)2𝑃𝑠
2𝜎2

𝑟 cosh

(
(ℎ1−ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)

⎤
⎥⎦
2
⎞
⎟⎟⎠, if 𝑢 ≥ 𝑤,

−

√√√√√√⎷𝜎2
𝑠𝑊

⎛
⎜⎜⎝ 1

2𝜋𝜆2ℎ2
1𝜎

4
𝑠

⎡
⎢⎣ 𝑒

− (ℎ1+ℎ2)2𝑃𝑠
2𝜎2

𝑟 cosh

(
(ℎ1+ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
−𝑒

− (ℎ1−ℎ2)2𝑃𝑠
2𝜎2

𝑟 cosh

(
(ℎ1−ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)

𝑒
− (ℎ1+ℎ2)2𝑃𝑠

2𝜎2
𝑟 cosh

(
(ℎ1+ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)
+𝑒

− (ℎ1−ℎ2)2𝑃𝑠
2𝜎2

𝑟 cosh

(
(ℎ1−ℎ2)

√
𝑃𝑠𝑢

𝜎2
𝑟

)

⎤
⎥⎦
2
⎞
⎟⎟⎠, if 𝑤 > 𝑢 ≥ 0,

𝑓(−𝑢), if 𝑢 < 0.
(46)

∙ The optimized relay function can be considered as the
solution of instantaneous waterfilling in the signal space
in contrast to waterfilling in the spectral or time domain
[17].

∙ Above, we have derived the error probabilities for various
strategies with fixed ℎ1 and ℎ2. To obtain the perfor-
mance in fading channels, we integrate the obtained error
probabilities over the joint pdf of ℎ1 and ℎ2. Except for
the optimized relay function for non-abs strategies, we
give closed-form expression for the other cases at least
in high SNR, which do not have to be re-optimized for
different ℎ1 and ℎ2.

IV. COMPARISON BETWEEN TWO CLASSES OF

STRATEGIES

The average error probability of non-abs DF can be approxi-
mated by applying Chernoff bound-type arguments to (15) and
(17), which gives

𝑃 (1)
𝑒 +𝑃 (2)

𝑒 ≈

⎧⎨
⎩

5
8𝑒

−ℎ2
2𝑃𝑠

2𝜎2
𝑟 , if 2> ℎ1

ℎ2
>
√

5𝑃𝑠𝜎2
𝑠

𝑃𝑟𝜎2
𝑟
,

𝑒
− ℎ2

1ℎ2
2𝑃𝑟

2(ℎ2
1+ℎ2

2)𝜎2
𝑠 + 1

2𝑒
−ℎ2

2𝑃𝑠

2𝜎2
𝑟 , otherwise.

(47)
Likewise, we can approximate the average error probability of
ADF for ℎ1 > ℎ2 by using Chernoff bounds on (21) (and the
corresponding expression for terminal 2) according to

𝑃 (1)
𝑒 + 𝑃 (2)

𝑒 ≈ 1

2

(
𝑒
−ℎ2

1𝑃𝑟

2𝜎2
𝑠 + 𝑒

−ℎ2
2𝑃𝑟

2𝜎2
𝑠

)
+ 𝑒

−ℎ2
2𝑃𝑠

2𝜎2
𝑟 . (48)

In the following, we consider several cases at high SNR.
Let SNR𝑟 ∼ 𝑃𝑠

𝜎2
𝑟

and SNR𝑠 ∼ 𝑃𝑟

𝜎2
𝑠

.

∙ If SNR𝑠 < SNR𝑟, (48) is dominated by 1
2𝑒

−ℎ2
2𝑃𝑟

2𝜎2
𝑠 , while

(47) is dominated by 𝑒
− ℎ2

1ℎ2
2𝑃𝑟

2(ℎ2
1+ℎ2

2)𝜎2
𝑟 . Therefore, the average

error probability for ADF is at most 1/2 of the one for
DF.

∙ If SNR𝑠 > SNR𝑟 and 1 +
ℎ2
2

ℎ2
1
>

𝑃𝑟𝜎
2
𝑟

𝑃𝑠𝜎2
𝑠

and ℎ1 > 2ℎ2,

(48) is dominated by 𝑒
−ℎ2

2𝑃𝑠

2𝜎2
𝑟 , and (47) is dominated by

1
2𝑒

−ℎ2
2𝑃𝑠

2𝜎2
𝑟 . In this case, the average error probability for

DF is 1/2 of the one for ADF.

∙ If SNR𝑠 > SNR𝑟 and 1+
ℎ2
2

ℎ2
1
<

𝑃𝑟𝜎
2
𝑟

𝑃𝑠𝜎2
𝑠

and ℎ1

ℎ2
<
√

5𝑃𝑠𝜎2
𝑠

𝑃𝑟𝜎2
𝑟

,

(48) is dominated by 𝑒
−ℎ2

2𝑃𝑠

2𝜎2
𝑟 , and (47) by 3

4𝑒
−ℎ2

2𝑃𝑠

2𝜎2
𝑟 .

Hence, the average error probability for DF is 3/4 of
the one for ADF.

∙ If SNR𝑠 > SNR𝑟 and 1 +
ℎ2
2

ℎ2
1
<

𝑃𝑟𝜎
2
𝑟

𝑃𝑠𝜎2
𝑠

and 2 >

ℎ1

ℎ2
>
√

5𝑃𝑠𝜎2
𝑠

𝑃𝑟𝜎2
𝑟

, (48) is dominated by 𝑒
−ℎ2

2𝑃𝑠

2𝜎2
𝑟 , and (47)

is dominated by 5
8𝑒

−ℎ2
2𝑃𝑠

2𝜎2
𝑟 . This leads to an average error

probability for DF which is 5/8 of the one for ADF.
These results suggest that when the channel is very asym-

metric or the relay has greater power than the terminals we
should use DF. When relay has almost the same power as
the terminals we prefer ADF where the power savings by
using the abs-based operation has a big impact on the overall
performance. Note that from Section III-A2 we know that if
ℎ1/ℎ2 is close to one DF with (18) performs better than DF
with (14) or (16). Therefore, when the channel is symmetric
and the relay has greater power than the terminals we should
use DF with (18).

V. HIGHER ORDER CONSTELLATIONS

In industry standards such as the IEEE 802.11 series,
usually higher order QAM constellations are employed to
achieve high spectral efficiency. In the following, we assume
ℎ1 = ℎ2 = 1 for simplicity. We first define a mapping function
ℎ(𝑢) at the relay such that in the noise free case, each terminal
can detect the other terminal’s signal given its transmitted
signal. This is equivalent to

ℎ(𝑢1 + 𝑢2) ∕= ℎ(𝑢′1 + 𝑢2), ∀𝑢1 ∕= 𝑢′1 and

ℎ(𝑢1 + 𝑢2) ∕= ℎ(𝑢1 + 𝑢′2), ∀𝑢2 ∕= 𝑢′2, 𝑢𝑖, 𝑢
′
𝑖 ∈ 𝒬, (49)

𝑖 = 1, 2, where 𝒬 is the constellation set used by the two
terminals. The classification of BPSK strategies into absolute
and non-absolute value strategies can be generalized to a clas-
sification based on underlying relay mappings ℎ(𝑢) satisfying
the above condition. Condition (49) defines an undirected
graph 𝒢, where each node corresponds to a different value of
𝑢1+𝑢2 and there is an edge between the node corresponding
to 𝑢1 + 𝑢2 and the node corresponding to 𝑢′1 + 𝑢2, 𝑢′1 ∕= 𝑢1.
Therefore, the relay function ℎ(𝑢) corresponds to a valid
vertex coloring of 𝒢 such that any pair of adjacent nodes
does not have the same color. To find the optimal relay
function, we need to consider all possible colorings of graph
𝒢. For each coloring, the strategies discussed for BPSK in
Section III-A and Section III-B4 can be generalized using the
underlying mapping ℎ(𝑢) as described below, and the one
achieving the minimum error rate is chosen. The minimum
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possible constellation size of the relay function is equal to the
chromatic number of 𝒢.

Another way of finding a feasible relay mapping ℎ(𝑢) is, as
above, to consider the sum 𝑢1 + 𝑢2 = 𝑐𝑖, 𝑖 = 1, . . . , 2∣𝒱∣− 1,
for all 𝑢1, 𝑢2 ∈ 𝒱 , where 𝒱 denotes the constellation set at
the two terminals3. The quantity 𝑐𝑖 takes elements from the
set 𝒲 , where ∣𝒲∣ = 2∣𝒱∣ − 1. The underlying (noise free)
relay mapping ℎ(𝑢) which maps the set 𝒲 to a set 𝒱 ′ of
size 𝑀 ≥ ∣𝒱∣ containing the constellation set to be received
at the terminals, can now be found for every 𝑖 by assigning
the 𝑘 = (𝑖 mod 𝑀)-th element of 𝒱 ′ to the values 𝑐𝑖. In
principle, the 𝑀 elements can be picked from 𝒱 ′ in arbitrary
order.

Note that rectangular QAM constellations can be easily
transmitted as two PAM signals on quadrature carriers. In
the following, we only consider PAM constellations, and we
take 4-PAM as an example. The approach can be generalized
to higher PAM constellations. For simplicity, we assume
that the transmit signal by the terminals is chosen from
the constellation set 𝒱 = {−3,−1, 1, 3}. In the absence
of noise, the received signal at the relay is from the set
𝒲 = {−6,−4,−2, 0, 2, 4, 6}. We first consider the class of
mapping functions such that they map 𝒲 to 𝒱 ′ = 𝒱 . For
example, we can choose

ℎ(−6) = −3, ℎ(−4) = −1, ℎ(−2) = 3,

ℎ(0) = 1, ℎ(2) = −3, ℎ(4) = −1, ℎ(6) = 3, (50)

or

ℎ(−6) = −3, ℎ(−4) = −1, ℎ(−2) = 1,

ℎ(0) = 3, ℎ(2) = −3, ℎ(4) = −1, ℎ(6) = 1. (51)

It is easy to verify that both (50) and (51) satisfy the
condition in (49). Note that (51) is the physical network coding
operation given in [8] using DF.

AAF can be readily generalized by setting the relay function
to be a piecewise linear function based on ℎ(𝑢) such as

𝑓(𝑢) =

⎧⎨
⎩

𝛽(𝑢 + 3), if 𝑢 < −3,
𝛽(𝑢 + 5), if − 2 > 𝑢 ≥ −3,
𝛽(1 − 𝑢), if 1 > 𝑢 ≥ −2,
𝛽(−1− 𝑢), if 2 > 𝑢 ≥ 1,
𝛽(𝑢 − 5), if 5 > 𝑢 ≥ 2,
𝛽(𝑢 − 3), if 𝑢 ≥ 5,

(52)

where 𝛽 is a coefficient to maintain the average power
constraint at the relay. The detection at each terminal is similar
to the traditional 4-PAM demodulation by comparing with
some thresholds. ADF can be adapted similarly. The relay
defines hard decision regions for 𝑢, and sends a scaled/shifted
version of ℎ(𝑢). At high SNR, the ADF relay function based
on (50) can be obtained as

𝑓(𝑢) =

⎧⎨
⎩

−3𝛽, if 𝑢 < −5,
−𝛽, if − 3 > 𝑢 ≥ −5,
3𝛽, if − 1 > 𝑢 ≥ −3,
𝛽, if 1 > 𝑢 ≥ −1,

−3𝛽, if 3 > 𝑢 ≥ 1,
−𝛽, if 5 > 𝑢 ≥ 3,
3𝛽, if 𝑢 ≥ 5.

(53)

3For the sake of simplicity we assume that the two terminals employ the
same constellation set.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

−1

0

1

2
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4

f(
u)

u

AAF 

ADF 

Optimized −5 dB Optimized 0 dB  

Optimized 5 dB  

EF −5 dB  

EF 5 dB  

Fig. 3. Comparison of function 𝑓(𝑢) in different abs-based schemes with
𝜎2
𝑟 = 𝜎2

𝑠 , ℎ1 = ℎ2 = 1 and 𝑃𝑟 = 𝑃𝑠 = 1.

For EF, we first consider the function 𝑔(𝑢) such that

𝑔(𝑢) = argmin
𝑔′(𝑢)

𝐸
{
∣ℎ(𝑥1 + 𝑥2)− 𝑔′(𝑢)∣2

∣∣∣ 𝑢} . (54)

𝑓(𝑢) is then a scaled version of 𝑔(𝑢), i.e., 𝑓(𝑢) = 𝛽 𝑔(𝑢),
where 𝛽 ≥ 0 is a scalar to satisfy the average power constraint.
At the two terminals, there also exists an optimal decision
threshold 𝑣. We can optimize 𝑣 using the same approach
as in AAF or just choose the conventional 4-PAM detection
threshold. In all strategies, we can also apply a maximum
likelihood detector at each terminal, i.e.,

�̂�2 = argmin
�̃�2∈𝒬

∣𝑦1 − 𝑓 (𝑥1 + 𝑥2)∣2 . (55)

The relay mapping function can also perform a redundant
mapping such that 𝒲 = {−6,−4,−2, 0, 2, 4, 6} is mapped
to a set 𝒱 ′ with 5, 6, or 7 elements. For example, when 𝒱 ′ =
{−4,−2, 0, 2, 4}, we can choose

ℎ(−6) = −4, ℎ(−4) = −2, ℎ(−2) = 0,

ℎ(0) = 2, ℎ(2) = 4, ℎ(4) = −2, ℎ(6) = −4, (56)

or, when 𝒱 ′ = {−5,−3,−1, 1, 3, 5}, we can choose

ℎ(−6) = −5, ℎ(−4) = −3, ℎ(−2) = −1,

ℎ(0) = 1, ℎ(2) = 3, ℎ(4) = 5, ℎ(6) = −5. (57)

When 𝒱 ′ = 𝒲 , we can simply choose ℎ(𝑢) = 𝑢. It is easy to
verify that (56) and (57) satisfy the condition in (49).

VI. SIMULATION RESULTS

In this section, we compare the performance of different
strategies with 𝜎2

𝑟 = 𝜎2
𝑠 and 𝑃𝑟 = 𝑃𝑠 = 1 in all cases.

Fig. 2 shows the optimized non-abs-based relay function
for different SNRs and different values of ℎ1 and ℎ2. At low
SNR, the relay operation behaves like the AF strategy, while
it looks like the DF strategy (14) at high SNR. Different abs-
based relay functions 𝑓(𝑢) are compared in Fig. 3, where for
AAF we choose 𝐶 =

√
𝑃𝑠+𝜎𝑟/

√
2. Unlike ADF with a hard

limiter, the optimized relay adapts its transmit power according
to the signal strength it receives which is the benefit of the
average power constraint. If only a peak power constraint is
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Fig. 4. Performance comparison between different abs-based and non-abs-
based strategies when ℎ1 = 1 and ℎ2 = 0.8, 𝑃𝑟 = 𝑃𝑠 = 1. The subfigure
shows the crossover between the abs-based and non-abs-based strategies.
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shows the crossover between the abs-based and non-abs-based strategies.

imposed at the relay, the optimal ADF achieves the minimum
average probability of error. From Fig. 3, we can also see that
when the SNR is small, the optimized relay function has a
similar “V” shape-like behavior as the AAF strategy. As the
SNR increases, the behavior of the optimized relay function
is more related to the one for the ADF strategy. This suggests
that ADF performs well at high SNR while AAF is effective
at low SNR. Interestingly, the relay function of EF has almost
the same shape as the optimized relay function in all SNRs.

Fig. 4 compares the bit error rate (BER) performance of
different abs-based and non-abs-based strategies for BPSK
when ℎ1 = 1 and ℎ2 = 0.8. We observe that at low SNR, the
optimized non-abs-based (abs-based) relay performs according
to the AF (AAF) strategy, while it behaves like the DF (ADF)
strategy at high SNR. Also, EF performs close to the optimized
strategy for all SNR values. It can also be seen that non-abs-
based strategies perform better than abs-based strategies at low
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Fig. 7. Performance comparison of ADF with DF under different scenarios.

SNR in this scenario while the former performs worse than the
latter at high SNR. The reason for this is that non-abs-based
strategies do not exploit the fact that a priori information about
the signal it has just transmitted is available at each terminal
providing extra redundancy which is useful particularly at low
SNR. A similar behavior is observed in Fig. 5 where the
case ℎ1 = 1 and ℎ2 = 0.5 is considered. Compared to the
results for ℎ1 = 1 and ℎ2 = 0.8 in Fig. 4 the threshold SNR
below which non-abs-based strategies perform better than abs-
based strategies is increased. Thus, non-abs-based strategies
are beneficial for asymmetric channels.

In Fig. 6 we compare the BER for the AF, AAF, and
ADF strategies on the two-way relay channel in the high
SNR regime, where we assume that 𝜎2

𝑟 = 𝜎2
𝑠 , ℎ1 = ℎ2 and

𝑃𝑟 = 𝑃𝑠 = 1. For the AAF strategy we set 𝐶 = 1. Also,
we do not include the optimized relay and EF strategies as
their performances are very close to ADF at high SNR. We
observe from Fig. 6 that AAF has a 2 dB gain over AF at
a BER of 10−8. Finally, we can see from Fig. 6 that ADF



CUI et al.: MEMORYLESS RELAY STRATEGIES FOR TWO-WAY RELAY CHANNELS 11

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

u

f(
u)

EF SNR=5 dB 

EF SNR=15 dB 

AAF

ADF

Fig. 8. Comparison of relay functions for AAF, ADF, and EF with 𝜎2
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𝑠
where both terminals use 4-PAM.

performs best, where a 2.7 dB gain over AAF at a BER of
10−8 can be observed.

In Fig. 7 the average error probability of ADF and DF
is compared for three different cases, which agrees with our
analysis in Section IV very well. Fig. 8 compares the behavior
of 𝑓(𝑢) for AAF, ADF, and EF strategies for 𝜎2

𝑟 = 𝜎2
𝑠 , where

both terminals use 4-PAM, i.e., 𝑀 = ∣𝒱 ′∣ = 4, 5, 6, 7, and the
SNR is chosen to be 5/𝜎2

𝑟 . The behavior of the relay function
in Fig. 8 resembles the one in Fig. 3 for different strategies. In
particular, when the SNR is small, EF has a similar behavior as
AAF. As the SNR increases, we can observe that the EF relay
function resembles the behavior of the ADF relay function.

In Fig. 9 the symbol error rate (SER) of different relay
functions using ADF and AAF is compared, where the same
parameters as in Fig. 8 are used. We can see that the
performance degrades as 𝑀 increases. Also, we can observe
from Fig. 9 that a comparison between the mappings in (50)
and (51) shows almost identical performance. There are two
factors that affect the performance of relay functions with
different 𝑀 . First, a small 𝑀 indicates a higher compression
at the relay, which results in power savings. Second, when 𝑀
is small, a detection error at the relay may affect the overall
performance. At high SNR, it is clear that the power savings
dominate the performance of ADF. At low SNR, we find
that the performance degrades as 𝑀 decreases, which means
that 𝑀 = 7 achieves the best performance. For example, at
SNR= 0 dB, the SERs for 𝑀 = 4, 5, 6, 7 are 0.6904, 0.6472,
0.6428, and 0.6146, respectively. This observation generalizes
the one for the BPSK case, where the reason for this behavior
is again that the redundancy in the constellation set increases
for larger 𝑀 .

VII. CONCLUSION

We have analyzed and optimized relaying strategies for
memoryless TWRCs. In particular, we propose abs-based
strategies where the relay processes the absolute value of
the received signal. These techniques generally outperform
non-abs-based strategies in the moderate to high SNR regime

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

ADF, M=4, (50)
ADF, M=4, (51)
ADF, M=5
ADF, M=6
DF
AAF, M=4, (52)
AAF, M=5
AAF, M=6
AF

2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

Fig. 9. SER comparison of ADF and AAF relay functions for 4-PAM with
𝑀 = ∣𝒱 ′∣ = 4, 5, 6, 7 and 𝜎2
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𝑠 . The subfigure shows the crossover

between different strategies.

since they take into account that side information is available
at the terminals which allows for additional power savings.
Specifically, we have considered abs- and non-abs-based AF,
DF and EF schemes, and also the optimization of the nonlinear
processing function at the relay. We found that the non-abs-
based DF performs better than the abs-based DF when the two-
way channel is very asymmetric or the relay has greater power
than the two terminals, while ADF performs better than DF
when the relay has roughly the same power as the terminals.
Although this work does not consider channel coding, the
obtained expressions for the error probability allow for a rough
determination of the required rate for an end-to-end channel
code. Extensions of these results to higher order constellations
such as QAM and PAM have also been presented, where
similar observations can be made.

APPENDIX

In this appendix, we prove Theorem 1. We first give the
following lemma.

Lemma 2: Let 𝑍 be a normal random variable with mean
0, and let 𝑝𝑈 (𝜇), 𝑝𝑉 (𝜇) denote two arbitrary probability
density functions associated with the random variables 𝑈
and 𝑉 , respectively. If 𝑝𝑈 (𝜇) − 𝑝𝑉 (𝜇) is nonnegative for
𝜇 ≥ 𝑡 and negative otherwise for some threshold 𝑡, then
𝑝𝑈+𝑍(𝜈) − 𝑝𝑉+𝑍(𝜈) is nonnegative for 𝜈 ≥ 𝑡′ and negative
otherwise for some threshold 𝑡′.

Proof: Denote by 𝜎2 the variance of 𝑍 . The re-
sult follows since (58) at the top of next page, where

1
𝜎
√

2
exp −

2 - 2
2𝜎2

}
> 0, and both integral terms are

nondecreasing functions of 𝜈.
Proof of Theorem 1: For brevity let 𝑎 ≜ ℎ1

√
𝑃𝑠 + ℎ2

√
𝑃𝑠

and 𝑏 ≜ ℎ1
√
𝑃𝑠 − ℎ2

√
𝑃𝑠.

Case 1: Non-abs strategies. When 𝑥1 =
√
𝑃𝑠, terminal

1’s error-minimizing detection rule is to decide 𝑥2 =
√
𝑃𝑠

if 𝑝𝑓(𝑎+𝑁)+𝑍1
(𝑦1) − 𝑝𝑓(𝑏+𝑁)+𝑍1

(𝑦1) ≥ 0 and 𝑥2 = −√
𝑃𝑠

otherwise. Since 𝑓(𝑈) is an increasing function of 𝑈 , we can
apply Lemma 2 with 𝑈 = 𝑓(𝑎 + 𝑁), 𝑉 = 𝑓(𝑏 + 𝑁) and
𝑍 = 𝑍1 to give the result.



12 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 10, OCTOBER 2009

𝑝𝑈+𝑍(𝜈)− 𝑝𝑉+𝑍(𝜈) =

∫ ∞

−∞
𝑝𝑍(𝜈 − 𝜇)𝑝𝑈 (𝜇)𝑑𝜇 −

∫ ∞

−∞
𝑝𝑍(𝜈 − 𝜇)𝑝𝑉 (𝜇)𝑑𝜇

=

∫ ∞

−∞

1

𝜎
√
2𝜋

exp

{
− (𝜈 − 𝜇)2

2𝜎2

}
(𝑝𝑈 (𝜇)− 𝑝𝑉 (𝜇)) 𝑑𝜇

=
1

𝜎
√
2

exp
− 2 + 2

2𝜎2

}(∫ 𝑡

−∞
exp

{
2𝜈(𝜇− 𝑡)− 𝜇2

2𝜎2

}
(𝑝𝑈 (𝜇)− 𝑝𝑉 (𝜇)) 𝑑𝜇

+

∫ ∞

𝑡

exp

{
2𝜈(𝜇− 𝑡)− 𝜇2

2𝜎2

}
(𝑝𝑈 (𝜇)− 𝑝𝑉 (𝜇)) 𝑑𝜇

)
(58)

Case 2: Abs strategies. When 𝑥1 =
√
𝑃𝑠, terminal 1’s

error-minimizing detection rule is to decide 𝑥2 =
√
𝑃𝑠 if

𝑝𝑓(∣𝑎+𝑁 ∣)+𝑍1
(𝑦1) − 𝑝𝑓(∣𝑏+𝑁 ∣)+𝑍1

(𝑦1) ≥ 0 and 𝑥2 = −√
𝑃𝑠

otherwise. Note that

𝑝∣𝑎+𝑁 ∣(𝜇)− 𝑝∣𝑏+𝑁 ∣(𝜇)
=𝑝𝑎+𝑁(𝜇) + 𝑝𝑎+𝑁 (−𝜇)− 𝑝𝑏+𝑁 (𝜇)− 𝑝𝑏+𝑁 (−𝜇)
=𝐶(𝜇) (𝐷(𝜇)− 1)

where 𝐶(𝜇)=
(
exp{−(𝜇− 𝑏)2/2𝜎2}+exp{−(−𝜇− 𝑏)2/2𝜎2})

/𝜎
√
2𝜋 > 0 and

𝐷(𝜇) =
exp{−(𝜇− 𝑎)2/2𝜎2}+ exp{−(−𝜇− 𝑎)2/2𝜎2}
exp{−(𝜇− 𝑏)2/2𝜎2}+ exp{−(−𝜇− 𝑏)2/2𝜎2}

= exp

{−𝑎2 + 𝑏2

2𝜎2

}
exp{𝜇𝑎/𝜎2}+ exp{−𝜇𝑎/𝜎2}
exp{𝜇𝑏/𝜎2}+ exp{−𝜇𝑏/𝜎2}

is an increasing function for 𝜇 ≥ 0. Thus, 𝑝∣𝑎+𝑁 ∣(𝜇) −
𝑝∣𝑏+𝑁 ∣(𝜇) is nonnegative for 𝜇 ≥ 𝑡 and negative otherwise for
some threshold 𝑡. Since 𝑓(∣𝑈 ∣) is a non-decreasing function
of ∣𝑈 ∣, we can apply Lemma 2 with 𝑈 = 𝑓(∣𝑎 + 𝑁 ∣),
𝑉 = 𝑓(∣𝑏+𝑁 ∣) and 𝑍 = 𝑍1 to give the result.

In both cases, by symmetry, threshold detection is also
optimal when 𝑥1 = −√

𝑃𝑠. The same proof with all subscripts
1 and 2 interchanged applies for terminal 2. ■
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