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Communication Protocols for
N -way All-Cast Relay Networks
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Abstract—We consider communication protocols for N -way
all-cast relay networks, which comprise N source terminals such
that each source terminal demands messages from all other
source terminals with the help of a relay. The derived protocols
are characterized by the fact that physical layer network coding
is employed at the relay, where each source has side information
about the signals it has sent. Amplify-and-forward (AF) and
decode-and-forward (DF) protocols are applied to the N -way
relay network setting, where the achievable rate regions for those
protocols are derived and compared with outer capacity bounds.
We propose several practical space-time coding schemes for AF
and DF, and introduce two new protocols denoted as denoise-
and-forward (DNF) and estimate-and-forward (EF). Further, for
AF and DF the fundamental diversity-multiplexing trade-off is
characterized.

Index Terms—Relay channels, N -way traffic, cooperation,
wireless relay networks.

I. INTRODUCTION

THE N -way relay network (NWRN) is a promising wire-
less network architecture for applications such as wireless

teleconferencing, gossip and sensor networks, where there are
N source terminals in the network, and each source terminal
demands messages from all the other source terminals with the
help of a relay node. When N = 2, the N -way relay network
degenerates to a two-way relay network. Recently, the two-
way relay channel (TWRC) has drawn renewed interest from
both academic and industrial communities (see, e.g., [1]–[5]).
In [1], AF and DF protocols for one-way relay channels are
extended to the half duplex Gaussian TWRC. In [2], network
coding [6] is used to increase the sum-rate of two users.
With network coding, each node in a network is allowed to
perform algebraic operations on received packets instead of
only forwarding or replicating received packets. The work in

Paper approved by R. K. Mallik, the Editor for Diversity and Fading
Channels of the IEEE Communications Society. Manuscript received June
20, 2011; revised April 2, 2012.

T. Cui and T. Ho are with the Department of Electrical Engineering,
California Institute of Technology, M/C 136-93, Pasadena, CA 91125, USA
(e-mail: {taocui, tho}@caltech.edu).

J. Kliewer is with the Klipsch School of Electrical and Computer Engi-
neering, New Mexico State University, MSC 3-O, Las Cruces, NM 88003,
USA (e-mail: jkliewer@nmsu.edu).

This work has been supported in part by subcontract #069144 issued by
BAE Systems National Security Solutions, Inc. and supported by the Defense
Advanced Research Projects Agency (DARPA), and the Space and Naval
Warfare System Center (SPAWARSYSCEN), San Diego, under Contract Nos.
N66001-08-C-2013 and W911NF-07-1-0029, by NSF grants CCF-0830666
and CCF-1017632, and by Caltech’s Lee Center for Advanced Networking.
This paper has been presented in part at the IEEE Global Communications
Conference, Dec. 2008, New Orleans, LA, USA.

Digital Object Identifier 10.1109/TCOMM.2012.080212.110395

[3], [4] addresses physical layer network coding at the relay
in which network coding is generalized from an operation
over a finite field to a mapping over the real numbers. In
particular, for TWRCs with a single memoryless relay the
performance analysis and the design of the relay function are
discussed in [3]. Further, in [4], distributed space time coding
for TWRC is proposed with multiple relays where amplify-
and-forward (AF) decode-and-forward (DF) and denoise and
forward protocols are considered. The work in [5] focuses on
the broadcast phase of a half duplex TWRC and proves an
achievable rate region for a decode and forward scenario at
the relay. Further, the capacity region of a broadcast channel
where some messages are known a priori has been studied in
[7]. Another related work is the multiple access relay channel
(MARC) [8], [9], where multiple sources communicate with a
single destination in the presence of a relay node. Relay strate-
gies for MARC and related capacity theorems are discussed
in [8], [9]. On the contrary, all source terminals also serve
as destinations in NWRNs. In this sense, we also consider an
NWRN as an all-cast relay network.

In this paper, we first consider AF and DF protocols,
where, in contrast to previous work in [3], [4], achievable
rate regions for these schemes are derived. Further, we pro-
pose several practical space-time coding protocols for both
non-regenerative and regenerative relays, where we address
protocols using K + 1 time slots. All the source terminals
transmit to the relay simultaneously in the first time slot, and
after processing the received signal the relay transmits to the
source terminals in the remaining K time slots. Different from
[4], [10], where coding is performed over symbols received
at different time, in the proposed strategies space time coding
is carried out over symbols received by different antennas at
the relay. We employ linear dispersion codes [11] for coding
which can be optimized by maximizing the sum capacity and
which provide a general framework that subsumes most of the
existing linear space-time codes. Since each source terminal
already knows the signal it has transmitted to the relay, the
received signal at the relay can be compressed by using
physical layer network coding to reduce bandwidth usage and
power consumption. A simple space time code is presented
where at any one out of the K time slots at most one antenna
is active to transmit the signal.

Further, we characterize the fundamental diversity-
multiplexing tradeoff (DMT) [12], [13] of AF and DF in
the NWRN setting, while DMTs for MIMO, multiple access
and cooperative systems are characterized in [12], [13]. In
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particular, we show that the diversity-multiplexing tradeoff
performance can be divided into a lightly loaded and a heavily
loaded regime. It is observed that AF performs better than
DF in a heavily loaded system while DF is preferable in a
lightly loaded system. Similar observations have been made
for the MARC in [14], [15]. By maximizing the diversity-
multiplexing tradeoff we find that for DF the optimal uplink
and downlink time sharing ratio is 1/(N − 1).

II. SYSTEM MODEL

We consider an N -way relay network with N source
terminals and a single relay node. There are M antennas on
the relay node while each source terminal only has a single
antenna. Each source terminal wishes to broadcast its data
to all other source terminals and also wishes to decode all
other terminals’ signals. We consider a half duplex system
where nodes cannot simultaneously transmit and receive. We
further assume that there does not exist a direct transmission
between source terminals, which may be the case e.g. if the
source terminals are far away from each other. Thus, the source
terminals can only exchange data through the relay node.

We denote by α the fraction of time in which the relay
is receiving. Thus, for a transmission scheme operating over
a time interval T , period αT is used for uplink transmission
from the source terminals to the relay and (1−α)T is spent for
downlink transmission from the relay to the source terminals.

Let xi,t and yi,t be the signal sent and received by source
terminal i at time t, respectively, and let xmr,t and ymr,t be the
signal sent and received by the m-th antenna of the relay node
at time t, respectively. We thus have the following model:

ymr,t =

N∑
i=1

hmi xi,t + wm
r,t, t = 1, . . . , �αT �,

∀m = 1, . . . ,M,

yi,t =

M∑
m=1

hmi x
m
r,t + wi,t, t = �αT �+ 1, . . . , T,

∀i = 1, . . . , N,

(1)

where hmi is the channel gain between source i and the m-th
antenna of the relay, and wm

r,t and wi,t are complex addi-
tive white Gaussian noise (AWGN) samples with distribution
CN (0, 1). Note that due to the half duplex assumption, the
second equation in (1) does not contain signals from other
source terminals. In addition, xi,t and xr,t are subject to the
average power constraints

1

T

�αT�∑
t=1

|xi,t|2 ≤ Pi, ∀i = 1, . . . , N,

and
1

T

M∑
m=1

T∑
t=�αT�+1

|xmr,t|2 ≤ Pr.

(2)

We assume reciprocal channels for simplicity. By replacing
hmi in the second equation in (1) by a different variable gmi ,
most of the results in this paper can be extended to the general
case when uplink and downlink channels are different, e.g.,
when frequency division multiplexing is used. Throughout this

paper, we assume that the hmi ’s are independent and are known
perfectly at all nodes for simplicity and that they do not change
during the interval T . The channel can be estimated via pilot
symbols.

III. BASIC PROTOCOLS AND ACHIEVABLE RATE REGIONS

In this section, we consider several relay strategies for the
N -way relay channel and study their achievable rate regions.
In the following, we denote the transmission rate of source
terminal i by Ri. The key feature of N -way relay channels
is that each source terminal already knows its transmitted
signal as side information, which may potentially improve the
transmission rate.

A. Amplify-and-Forward

The AF strategy is simple and only requires minimal
processing at the relay.

i) We first consider the simple case where α = 1
2 . The relay

precodes the received signals from all the antennas using a
precoding matrix Ψ = [ψm,n]. The transmitted signal from
antenna m is

xm
r,t+T

2
=

M∑
n=1

ψm,nynr,t, m = 1, . . . ,M,

N∑
i=1

M∑
m=1

⎛
⎝2

∣∣∣∣∣
M∑
n=1

ψm,nhni

∣∣∣∣∣
2

Pi +

M∑
n=1

|ψm,n|2
⎞
⎠ ≤ 2Pr.

(3)

The received signal at source node i at time t+ T
2 is

yi,t+T
2
=

M∑
m=1

hmi x
m
r,t+T

2
+ wi,t+ T

2
=

N∑
j=1

(
M∑

m=1

M∑
n=1

ψm,nhmi h
n
j

)
xj,t+

M∑
m=1

hmi

M∑
n=1

ψm,nwn
r,t + wi,t+T

2
. (4)

By canceling the contribution of xi,t from yi,t+T
2

we obtain
a multiple access channel with N − 1 users. By applying [16,
Theorem 15.3.6] to (4), the achievable rate region is given by
the following proposition.

Proposition 1: The achievable rate region for the half du-
plex N -way relay network by using AF strategy i) is the
convex hull of

N⋂
i=1

⋂
S⊆Si

⎧⎨
⎩(R1, . . . , RN )

∣∣∣ N∑
j∈S

Rj ≤

1

2
log

⎛
⎜⎝1 +

2
∑

j∈S
∣∣∣∑M

m=1

∑M
n=1 ψ

m,nhmi h
n
j

∣∣∣2 Pj∑M
n=1

∣∣∣∑M
m=1 h

m
i ψ

m,n
∣∣∣2 + 1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

(5)

where Si = {1, . . . , N}/i and / denotes set difference.
ii) We next consider the general case where α is an opti-

mization parameter. After receiving signals from the source
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terminals in the interval αT , the relay transmits on its m-th
antenna at any time during the interval (1 − α)T the linear
combination of all the signals received during time αT , i.e.,
at time τ > �αT � the transmitted signal through the m-th
antenna of the relay is

xmr,τ =

�αT�∑
t=1

N∑
n=1

ψm,n
τ,t y

n
r,t, m = 1, . . . ,M,

�αT�∑
t=1

N∑
i=1

M∑
m=1

⎛
⎜⎝
∣∣∣∑M

n=1 ψ
m,n
τ,t h

n
i

∣∣∣2 Pi

α
+

M∑
n=1

|ψm,n
τ,t |2

⎞
⎟⎠

≤ Pr

1− α
.

(6)

The received signal at source node i at time τ becomes

yi,τ =

M∑
m=1

hmi x
m
r,τ + wi,τ =

�αT�∑
t=1

N∑
j=1

(
M∑

m=1

M∑
n=1

ψm,n
τ,t h

m
i h

n
j

)
xj,t+

�αT�∑
t=1

M∑
m=1

hmi

M∑
n=1

ψm,n
τ,t w

n
r,t + wi,τ . (7)

Therefore, the system is now equivalent to a multiple access
MIMO system with N − 1 users, where each user has
�αT � transmit antennas and the receiver has T − �αT �
receive antennas. Let yi = [yi,�αT�+1, . . . , yi,T ]

T , xj =

[xj,1, . . . , xj,�αT�]T , Hj =
[(∑M

m=1

∑M
n=1 ψ

m,n
τ,t h

m
i h

n
j

)]
,

Ai =
[∑M

m=1 h
m
i ψ

m,n
τ,t

]
, wr =

[w1
r,1, . . . , w

M
r,1, w

1
r,2, . . . , w

M
r,2, . . . , w

1
r,�αT�, . . . , w

M
r,�αT�]

T ,
and wi = [wi,1, . . . , wi,�αT�]T . We can rewrite (7) in vector
form as

yi =

N∑
j=1

Hjxj +Aiwr +wi. (8)

By subtracting Hixi and applying [16, Theorem 15.3.6], we
obtain the following proposition.

Proposition 2: The achievable rate region for the half du-
plex N -way relay network by using AF strategy ii) is the
convex hull of

⋂
S⊆Si

⎧⎨
⎩(R1, . . . , RN )

∣∣∣∣∣∣
N∑

j∈S
Rj ≤ 1

T
log det

⎛
⎝I(1−α)T +

∑
j∈S

Pj

α
HjH

H
j

(
AiA

H
i + I(1−α)T

)−1

⎞
⎠
⎫⎬
⎭ .

(9)

We note that the AF strategy in i) is a special case of the
one in ii) by choosing α = 1

2 and ψm,n
τ,t = 0, ∀τ �= t + T

2
and ψm,n

t+T
2 ,t

�= 0 in (7), however, the general strategy in ii)
provides more freedom for performance improvements.

B. Decode-and-Forward

By using decode-and-forward, the relay first decodes the
signals from the source terminals during time interval αT . It
then re-encodes the resulting signal and broadcasts the coded
signal to all the source terminals in the remaining interval
(1 − α)T . As we show experimentally in Section VI, the
DF strategy is useful when the total transmission power is
moderate. DF achieves a higher throughput than AF in this
regime.

The uplink channel from the source terminals to the relay
is a Gaussian multiple access channel. To decode the signals
from the source terminals correctly at the relay, by using the
capacity region in [16, Section 15.3.6] the source rates should
satisfy

∑
j∈S

Rj ≤ α log det

⎛
⎝IM +

∑
j∈S

Pj

α
hjh

H
j

⎞
⎠ ,

∀S ⊆ {1, . . . , N}, (10)

where hj = [h1j , . . . , h
M
j ]T .

The downlink channel from the relay to the source terminals
can be considered to be a broadcast channel with side
information, where each source already knows the signal it
has sent. We consider a general scenario where a source needs
to communicate messages W1, . . . ,WN to N receivers and
receiver i already knows Wi. The messages W1, . . . ,WN are
encoded using a channel codebook with 2T

∑N
i=1 Ri codewords

according to a Gaussian distribution with zero mean and
variance Pr, i.e., X�(1−α)T� = x�(1−α)T�(w1, . . . , wN ),
where X�(1−α)T� denotes the corresponding vector
random variable. Let Yi denote the received signal
at receiver i. Each source terminal i then finds the
codeword X�(1−α)T�(ŵ1, . . . , ŵi−1, wi, ŵi+1, . . . , ŵN )
that is jointly typical with the received signal
Y

�(1−α)T�
i . At source i, the probability that a random

codeword X�(1−α)T�(w̃1, . . . , w̃i−1, wi, w̃i+1, . . . , w̃N ) �=
X�(1−α)T�(w1, . . . , wi−1, wi, wi+1, . . . , wN ) is jointly typical
with Yi is [16]

Pr
(
(X�(1−α)T�(w̃1, . . . , w̃i−1, wi, w̃i+1, . . . , w̃N ), Yi)

∈ A(�(1−α)T�)
ε

)
≤ 2−�(1−α)T�(I(Yi;Xr)−3ε), (11)

where A(�(1−α)T�)
ε denotes the set of jointly typical

sequences of length �(1−α)T �. To find the error probability,
let P (E0) denote the probability that the average power
constraint is not satisfied, P (Ec

s) denote the probability
that (X�(1−α)T�(w1, . . . , wi−1, wi, wi+1, . . . , wN ), Yi) /∈
A(�(1−α)T�)

ε , and P (Ev−i) denote the probability that
(X�(1−α)T�(w̃1, . . . , w̃i−1, wi, w̃i+1, . . . , w̃N ), Yi) ∈
A(�(1−α)T�)

ε for all v−i = {w̃1, . . . , w̃i−1, wi, w̃i+1, . . . , w̃N}
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with w̃j �= wj , j �= i. The average probability of error is

P (T )
e ≤ P (E0) + P (Ec

S−i
) +

∑
v−i

P (Ev−i)

≤ 2ε+
(
2�(1−α)T�∑N

j=1,j �=i Rj − 1
)
·

2−�(1−α)T�(I(Yi;Xr)−3ε)

≤ 2ε+ 2�(1−α)T�(∑N
j=1,j �=i Rj−I(Yi;Xr)) 2�(1−α)T�3ε.

(12)

Therefore, if

N∑
j=1,j �=i

Rj < I(Yi;X), (13)

we can choose ε and T such that P (T )
e ≤ 3ε, and the

probability of error can be made arbitrarily small as T → ∞.
Note that the above approach is identical to generating the
codewords x�(1−α)T�(w1, . . . , wN ) at the relay which can be
seen as the generalization of a finite field operation in network
coding [6].

Note that similar results for discrete memoryless channels
have been obtained in [17] for a general broadcast scenario and
in [5] for the broadcast phase of the half duplex TWRC, where
in contrast here we consider power constrained continuous
memoryless channels. Nevertheless, the Slepian-Wolf coding
approach in [17] is similar to a layered scheme consisting of
decoding and subsequent network coding at the relay [18].

In NWRN, at the relay, the signal after re-encoding is
precoded with a matrix Φ = [ψm,n] before transmitting over
different antennas, i.e.,

∑M
n=1 ψ

m,nxnr,t where {xnr,t}’s are
codewords with unit average power and independent entries.
By imposing the average power constraint at the relay, we
require that

M∑
m=1

M∑
n=1

|ψm,n|2 =
Pr

1− α
. (14)

At time t, the received signal at the source terminal i is

yi,t =
M∑

m=1

hmi

M∑
n=1

ψm,nxnr,t + wi,t, (15)

and we can compute

I(Yi;X) = (1− α) log

⎛
⎝1 +

M∑
n=1

∣∣∣∣∣
M∑

m=1

hmi ψ
m,n

∣∣∣∣∣
2
⎞
⎠ . (16)

Therefore, using (13) the achievable rate region can be stated
as follows.

Proposition 3: The achievable rate region for the half du-
plex N -way relay networks by using DF is the convex hull of

the intersection of the following two regions

∑
j∈S

Rj ≤ α log det

⎛
⎝IM +

∑
j∈S

Pj

α
hjh

H
j

⎞
⎠ ,

∀S ⊆ {1, . . . , N},
N∑

j=1,j �=i

Rj ≤ (1− α) log

⎛
⎝1 +

M∑
n=1

∣∣∣∣∣
M∑

m=1

hmi ψ
m,n

∣∣∣∣∣
2
⎞
⎠ ,

i = 1, . . . , N.
(17)

C. Outer Bound

In this section we give two outer bounds on capacity under
half duplex operation, which are functions of the fraction of
time α in which the relay receives. The first is a bound on
half duplex capacity under any coding scheme. The second
is a bound on half duplex capacity in the classical restricted
case as in Shannon’s restricted two way relay channel [19],
where the encoding at the terminals does not depend on
their received signals. In this case cooperation among source
terminals cannot be induced by means of communication
via the relay, which is in line with the achievable schemes
considered in this paper.

When half duplex networks are considered, a general cut-set
outer bound is given by [20, Theorem 1]. In general networks,
an exact application of [20, Theorem 1] needs to consider all
possible configurations of transmitting and receiving nodes.
However, in the N -way relay scenario where the only links are
between the terminals and the relay, we only need to consider
two configurations, one in which the terminals transmits and
the relay receives, and the other in which the relay transmits
and the terminals receive.

We have the following proposition on the region of infor-
mation rates {Ri}.

Proposition 4: Consider a half duplex N -way relay Gaus-
sian network defined in (1). Let {xi} and {yi} be the trans-
mitted and received signals by the N source terminals, and
x and y be the transmitted and received signals by the relay,
respectively.
a) If there are no restrictions on the coding scheme, the rate
region is contained in

⋃
C=[E{XiXj}]

{
(R1, . . . , RN )

∣∣∣∣∑
j∈S

Rj ≤

α log det

⎛
⎝IM +

∑
i,j∈S

Ci,jhjh
H
j −WZ,ScC−1

Sc W
T
Z,Sc

⎞
⎠ ,

∀S � {1, . . . , N},
N∑

j=1,j �=i

Rj ≤ (1− α) log

⎛
⎝1 +

M∑
n=1

∣∣∣∣∣
M∑

m=1

hmi ψ
m,n

∣∣∣∣∣
2
⎞
⎠ ,

i = 1, . . . , N

}
, (18)
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where C = [E{XiXj}] is the correlation matrix of
X1, . . . , XN , CSc contains the entries of C corresponding
to Sc, and

WZ,Sc =

[∑
i∈S

hiCi,j

]
j∈Sc

(19)

with A = [aj ]jS denoting each column of A is from aj ,
j ∈ S.
b) In the restricted case where encoding at the terminals
does not depend on their received signals, the rate region is
contained in

{
(R1, . . . , RN )

∣∣∣∣∑
j∈S

Rj ≤ α log det

⎛
⎝IM +

∑
j∈S

Pj

α
hjh

H
j

⎞
⎠ ,

∀S � {1, . . . , N},
N∑

j=1,j �=i

Rj ≤ (1 − α) log

⎛
⎝1 +

M∑
n=1

∣∣∣∣∣
M∑

m=1

hmi ψ
m,n

∣∣∣∣∣
2
⎞
⎠ ,

i = 1, . . . , N

}
, (20)

Proof: a) In half duplex transmission, YSc = 0 when
the sources transmit (uplink) and XSc = 0 when the relay
transmits (downlink) which means that Y is only a function
of X1, . . . , XN , and Yi is only a function of X . Thus, for
the α-fraction of time in which the terminals transmit and the
relay receives, we have an outer bound given by [16, Theorem
15.10.1]∑

j∈S
Rj ≤ αI (Y ;XS |XSc) , ∀S � {1, . . . , N} (21)

for some joint distribution p(x1, x2, · · · , xN )p(y|x1, . . . , xN ).
The joint distribution is due to the possible cooperation
among source terminals by the reception of signals from the
relay [21]. For the downlink, where the relay broadcasts to all
receivers for an (1 − α)-fraction of time, we have according
to (13)

N∑
j=1,j �=i

Rj ≤ (1− α)I(Yi;X), i = 1, . . . , N (22)

for some probability distribution p(x).
For Gaussian networks as in (1), I (Y ;XS |XSc) in (21) is

maximized when each Xi is Gaussian with zero mean and
variance Pi [21], and we can compute (21) as

I (Y ;XS |XSc) = h (Y |XSc)− h (Y |XS , XSc) , (23)

where h (Y |XS , XSc) = M log 2πeσ2, with σ2 = 1 be
the relay noise variance. To compute h (Y |XSc), let ZS =∑

i∈S hiXi and the correlation matrix of X be R, i.e.,
[C]i,j = E{Xi, Xj}. The conditional variance of ZS given
XSc is no greater than the variance of ZS around the linear
estimate [22]

ẐS = V TXSc , with V = C−1
Sc W

T
Z,Sc , (24)

and CSc and WZ,Sc are defined in (18). Therefore, we have

h (Y |XSc) ≤ log(2πe)M

det

(
IM +

((
ZS − E

(
ẐS
))(

ZS − ẐS
)T))

= log(2πe)M

det

(
IM +

∑
i,j∈S

Ci,jhjh
H
j −

WZ,ScC−1
Sc W

T
Z,Sc

)
.

(25)

Finally, we get

I (Y ;XS |XSc) ≤

log det

⎛
⎝IM +

∑
i,j∈S

Ci,jhjh
H
j −WZ,ScC−1

Sc W
T
Z,Sc

⎞
⎠ .

(26)

For (22) we note that∑
j∈S

Rj ≤ (1 − α)I (YSc ;X) =

(1 − α)
(
I(Yi;X) + I

(
YSc\i;X |Yi

)) ≤
(1− α)I(Yi;X), ∀i ∈ Sc, (27)

which is included in

N∑
j=1,j �=i

Rj ≤ (1− α)I(Yi;X) =

(1 − α) log

⎛
⎝1 +

M∑
n=1

∣∣∣∣∣
M∑

m=1

hmi ψ
m,n

∣∣∣∣∣
2
⎞
⎠ , i = 1, . . . , N,

(28)

where I(Yi;X) is computed similar to the DF case in (17).
Note that X and X1, . . . , XN may be correlated. But I(Yi;X)
is maximized when X is Gaussian in (28) regardless of this
correlation.
b) In this case, E{Xi, Xj} = 0, ∀i �= j and WZ,Sc = 0 in
(19). The outer bound in this case is thus given by (20).

Note that by comparing the restricted half duplex outer
bound (20) and the achievable rate of DF (17), we can see that
the only difference is that there is no total sum rate constraint
at the relay, which is equivalent to S �= {1, . . . , N} in (20)
while DF has this constraint due to the decoding requirement.

IV. DIVERSITY-MULTIPLEXING TRADEOFF

In this section, we characterize the fundamental tradeoff
between the diversity and multiplexing gain [12], [13] in N -
way relay networks using AF and DF, which suggests the
scenarios when one strategy is preferred than the other. In the
following, we assume that

∑N
i=1 Pi + Pr = P and that all

channel gains are complex Gaussian. As there are N sources
in the network, we consider the symmetric case as in [13],
where all the sources transmit at the same rate, and they have
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a common diversity requirement. Let Ri(P ) be the achievable
rate and P i

e(P ) be the average error probability of source i in
a strategy. The strategy is said to achieve spatial multiplexing
gain r and diversity gain d if

lim
P→+∞

Ri(P )

logP
≥ r, lim

P→+∞
logP i

e(P )

logP
≤ −d, ∀i = 1, . . . , N.

(29)

A. Amplify-and-Forward

Theorem 5: Let P1 = · · · = PN = Ps and NPs = Pr, i.e.,
Ps = P

2N and Pr = P
2 . Each antenna’s transmit signal at the

relay is its received signal scaled by
√

P
M(P+1) . By assuming

that all channel gains are i.i.d. complex Gaussian, the diversity
gain of AF is

dAF =

{
M(1− 2(N − 1)r), if r ≥ M−1

2(M(N−1)−1) ,

1− 2r, if r < M−1
2(M(N−1)−1) .

(30)
Proof: In this case, the achievable rate region of AF can

be readily obtained from (5) as

N∑
j∈S

Rj ≤ 1

2
log

⎛
⎜⎝1 +

P 2

N

∑
j∈S

∣∣∣∑M
m=1 h

m
i h

m
j

∣∣∣2
P
∑M

m=1 |hmi |2 +M(P + 1)

⎞
⎟⎠ ,

∀S ⊆ Si. (31)

Given hmi ,
∑M

m=1 h
m
i h

m
j is a complex Gaussian random

variable with zero mean and variance ‖hi‖2. We can thus
write

∑M
m=1 h

m
i h

m
j = ‖hi‖xj , where xj is a Gaussian

random variable with zero mean and unit variance. Therefore,∑
j∈S

∣∣∣∑M
m=1 h

m
i h

m
j

∣∣∣2 = ‖hi‖2
∑

j∈S |xj |2 = g1g2, where

g1 and g2 are chi-square random variables with 2M and 2|S|
degrees of freedom, respectively.

Let g be a chi-square random variable with 2n degrees of
freedom. If v is the exponential order of 1/g, i.e.,

v = − lim
P→+∞

log g

logP
, (32)

the probability density function of v can be obtained as [23]

pv = lim
P→+∞

logPP−nv exp
(−P−v

)
. (33)

For independent random variables g1, . . . , gL where gi is chi-
square distributed with 2ni degrees of freedom, let vi be the
exponential order of gi. The probability that {vi} belongs to
any set D is dominated by [23]

P−d∗
, d∗ = inf

{vi}∈D

L∑
i=1

nivi. (34)

By using (34), the outage probability

1

2
log

⎛
⎜⎝1 +

P 2

N

∑
j∈S

∣∣∣∑M
m=1 h

m
i h

m
j

∣∣∣2
P
∑M

m=1 |hmi |2 +M(P + 1)

⎞
⎟⎠ =

1

2
log

(
1 +

P 2

N g1g2

Pg1 +M(P + 1)

)
≤ |S|r logP

⇒ lim
P→+∞

1

logP
log

(
1 +

P 2

N g1g2

Pg1 +M(P + 1)

)
=

1 + lim
P→+∞

log(g1) + log(g2)

logP
= 1− v1 − v2 ≤ 2|S|r

(35)

is dominated by

max
v1,v2

P−(Mv1+|S|v2), subject to 1− v1 − v2 ≤ 2|S|r. (36)

When |S| > M , Mv1+ |S|v2 is minimized by choosing v1 =
1 − 2|S|r and v2 = 0. When |S| ≤ M , Mv1 + |S|v2 is
minimized by choosing v1 = 0 and v2 = 1−2|S|r. Therefore,
we obtain the diversity gain d as

d =

{
M(1− 2|S|r), if |S| ≥M,
|S|(1− 2|S|r), if |S| < M.

(37)

We then need to find the worst case d for all S. Note that the
second condition is concave in |S| and its minimum is attained
at its boundary |S| = 1 or |S| = M . The first condition is
a decreasing function in |S|. Therefore, the worst case d is
attained at |S| = 1 or |S| = N − 1 and we obtain (30).

From (30) we can see that when the system is lightly loaded,
e.g., if r < M−1

2(M(N−1)−1) , single user performance is achieved.

B. Decode-and-Forward

Theorem 6: Let P1 = · · · = PN = Ps and NPs = Pr, i.e.,
Ps = P

2N and Pr = P
2 . By assuming that all channel gains

are i.i.d. complex Gaussian, the diversity gain of DF is

dDF =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−Nr)(M −Nr),

if r < 1
N min

(
1, M

N+1

)
,

maxα min

(
N(1− r

α )(M − Nr
α ),(

1− (N − 1) r
1−α

)(
M − (N − 1) r

1−α

))
,

if r ≥ 1
N min

(
1, M

N+1

)
.

(38)
Proof: The uplink channel is a multiple access channel,

characterized in [13], with a diversity gain of

dup(α) =

⎧⎨
⎩

(
1− r

α

) (
M − r

α

)
, if r < αmin

(
1, M

N+1

)
,

N(1− r
α )(M − Nr

α ), if r ≥ αmin
(
1, M

N+1

)
,

(39)
where r

α is due to the half duplex operation. From (17), the
downlink channel can be considered to be a MISO channel
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whose diversity multiplexing tradeoff can be easily obtained
as in [12], i.e.,

ddown(α) =

(
1− (N − 1)

r

1− α

)(
M − (N − 1)

r

1− α

)
.

(40)
The diversity gain can now be obtained as dDF =
maxα min{dup(α), ddown(α)}, leading to (38). When r ≤
αmin

(
1, M

N+1

)
the diversity gain dDF is maximized for

α
1−α = 1

N−1 , or α = 1
N .

Note that for r > αmin
(
1, M

N+1

)
the optimal α depends

on M,N, r in a complicated way, which makes it hard to find
a closed form expression for α. However, α can be found via
a numerical optimization.

V. PRACTICAL SPACE TIME PROTOCOLS

The practical protocols in this section are in parallel to those
presented in Section III. Specifically, we consider a class of
strategies where the source terminals transmit one symbol si ∈
Q simultaneously in the first time slot and the relay transmits
in the following K (K = (1− α)T in Section III) time slots,
where Q is a finite constellation set. This assignment of time
slots is due to the fact that each of the N source terminals
only has one antenna, whereas the relay typically has M >
1 antennas. We assume that the channel remains unchanged
during K + 1 time slots in the following. At the relay, the
received signal from the m-th antenna at the end of the first
time slot is

ymr =

N∑
i=1

√
(K + 1)Pih

m
i si + wm

r , m = 1, . . . ,M. (41)

The protocols can be classified into two classes: compres-
sion based protocols, where the relay compresses its received
signal by reducing the alphabet size of the constellation seen
by the relay, and non-compression based protocols.

A. Non-Compression Based Protocols

1) Amplify-and-Forward: By using AF, at the relay the
transmitted signal over the m-th antenna at time slot k + 1
is given as

xmr,k =

M∑
n=1

ψm,n
k ynr =

N∑
i=1

√
(K + 1)Pi

(
M∑
n=1

ψm,n
k hni

)
si+

M∑
n=1

ψm,n
k wn

r , (42)

k = 1, . . . ,K , m = 1, . . . ,M , which represents a special
case of a linear dispersion code [11]. In (42), ynr can also be
replaced by its conjugate complex version (ynr )

∗. Let yi,k be
the received signal of source terminal i at time slot k+1. We

can write yi,k as

yi,k =
M∑

m=1

hmi x
m
r,k + wi,k

=

N∑
j=1

√
(K + 1)Pj

(
M∑

m=1

M∑
n=1

hmi ψ
m,n
k hnj

)
sj

+

M∑
m=1

M∑
n=1

hmi ψ
m,n
k wn

r + wi,k,

(43)

which can be expressed in matrix form as

yi,k = hT
i ΨkHΛs+ hT

i Ψkwr + wi,k, (44)

where s = [s1, . . . , sN ]T , hi = [h1i , . . . , h
M
i ]T , H =

[h1, . . . ,hN ], Ψk = [ψm,n
k ], Λ = diag{√(K + 1)P1,

· · · ,√(K + 1)PN}, and wr = [w1
r , . . . , w

M
r ]T . To meet the

relay average power constraint, we require⎛
⎝(K + 1)

N∑
j=1

Pj + 1

⎞
⎠ tr

(
ΨkΨ

H
k

)
=
K + 1

K
Pr. (45)

Note that (44) can be expressed as

yi = GiHΛs+Gwr +wi, (46)

where Gi = [ΨT
1 hi, · · · ,ΨT

Khi]
T , yi = [yi,1, . . . , yi,K ]T and

wi = [wi,1, . . . , wi,K ]T . The ML decoder of s can be easily
obtained as

ŝ = argmin
{s̃|s̃j∈Q, j �=i, s̃i=si}

∥∥∥(GiG
H
i + IK)−

1
2 (yi −GiHΛs)

∥∥∥2 ,
(47)

which can be solved by using sphere decoding [24].
2) Decode-and-Forward: In DF, after receiving the signals

from the source terminals, the relay jointly decodes all source
terminals’ messages as in Section III-B, i.e., s1, . . . , sN are
jointly decoded using an ML decoder

{ŝ1, . . . , ŝN} = argmin
s1,...,sN

M∑
m=1

∣∣∣∣∣ymr −
N∑
i=1

hmi si

∣∣∣∣∣
2

, (48)

which again can be solved by using a sphere decoder [24].
After obtaining ŝ1, . . . , ŝN from (48) and assuming that

ŝ1, . . . , ŝN are decoded correctly, there are two ways to
communicate these symbols to the source terminals. We model
the downlink channel as a multiple input and single output
(MISO) channel and use a linear dispersion code [11] to en-
code s1, . . . , sN . The transmitted signal containing s1, . . . , sN
can be written as a K by M matrix given by

Xr =

N∑
i=1

(siCi + s∗iDi) , (49)

where Ci and Di are linear dispersion coding matrices. The
average power constraint requires that E{tr(XrX

H
r )} = (K+

1)Pr. The received signal at source i can be written as

yi = Xrhi =

N∑
j=1

(
sjCjhi + s∗jDjhi

)
+wi, (50)
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where hi yi, and wi are defined as in (46). Note that si is
already known at source i and its contribution in yi can be
subtracted. The ML decoder for sj , j �= i in (50) can be
readily obtained as in [11] due to the linearity of the code.
The design of Ci and Di is similar to that in [11].

3) Denoise-and-Forward: At the relay, s1, . . . , sN are
jointly decoded using the ML decoder (48). Different from
DF where ŝ1, . . . , ŝN are transmitted using a linear dispersion
code directly, DNF reconstructs zmr =

∑N
i=1 h

m
i ŝi. The relay

transmits zmr because even when the relay cannot decode
x1,t, . . . , xN,t correctly, the signal zmr is not far away from
the noise free signal

∑N
i=1 h

m
i si. Thus, the proposed approach

may remedy noise amplification in AF and hence the name
DNF. As in AF, the transmitted signal over the m-th antenna
at time slot k + 1 is

xmr,k =

M∑
n=1

ψm,n
k znr , k = 1, . . . ,K, m = 1, . . . ,M. (51)

The ML decoding and precoder design are also similar to AF.
4) Estimate-and-Forward: Different from AF and DF,

which are obtained intuitively, we consider using a relay
function gm(·) to process the received signal such that the
MSE between the transmitted signal without noise and the
processed signal is minimized, i.e.,

min
gm

Es

⎧⎨
⎩
∣∣∣∣∣
N∑
i=1

hmi si − gm (ymr )

∣∣∣∣∣
2
⎫⎬
⎭ . (52)

By expanding the expectation in (52) we obtain

Es

⎧⎨
⎩
∣∣∣∣∣
N∑
i=1

hmi si − gm (ymr )

∣∣∣∣∣
2
⎫⎬
⎭ =

1

2π|Q|N
∑

s∈QN

∫ ∣∣∣∣∣
N∑
i=1

hmi si − gm (ymr )

∣∣∣∣∣
2

e−|ym
r −∑N

i=1 hm
i si|2dymr . (53)

Minimizing (53) for each gm (ymr ) then yields

gm (ymr ) =

∑
s∈QN

∑N
i=1 h

m
i sie

−|ym
r −∑N

i=1 hm
i si|2∑

s∈QN e
−|ym

r −∑N
i=1 hm

i si|2 . (54)

Let zmr = βgm (ymr ), where β is a constant to maintain the
average power constraint at the relay. The rest of the protocol
follows AF by transmitting

∑M
n=1 ψ

m,n
k znr over antenna m at

time slot k+1. Note that when a Gaussian codebook is used,
we can rewrite (54) as

gm (ymr ) =

∫
xe−|ym

r −x|2f(x)dx∫
e−|ym

r −x|2f(x)dx

=
(K + 1)

∑N
i=1 Pi|hmi |2

(K + 1)
∑N

i=1 Pi|hmi |2 + 1
ymr ,

(55)

where x =
∑N

i=1 h
m
i si is a Gaussian random variable with

zero mean and variance (K + 1)
∑N

i=1 Pi|hmi |2 and f(x) is
the pdf of x. From (55), we can see that EF reduces to AF for
a Gaussian codebook. However, due to the use of a discrete

alphabet gm (ymr ), (54) is not equivalent to AF in the general
case.

B. Compression Based Protocols

We now consider a compression based DF (CDF) when all
terminals and the relay have a single antenna. Two important
components of CDF are the quantization codebook and the
transmission codebook at the relay. The first codebook deter-
mines how to project the received signals to a subspace of
the received signal space, and the second one provides the
actual transmit symbol by the relay. To use network coding to
simplify the mapping design at the relay, the relay can com-
press its received signals to reduce the power and bandwidth
consumption since source i already knows si. Intuitively,
each terminal only needs N − 1 signals as a function of the
transmitted signals si. One straightforward approach is letting
the relay transmit N − 1 superimposed signals directly, i.e,∑N

j=1 ψi,jsj , i = 1, . . . , N − 1, where the ψi,j’s are complex
numbers. However, this approach suffers from a power penalty
as each terminal only needs linear combinations of N − 1
signals rather thanN signals. When s1, . . . , sN is known at the
relay it becomes a multicast problem to transmit s1, . . . , sN
to all the sources.

We apply a modular operation to solve this multicast
problem. Let χi ∈ {0, 1, . . . , |Q|} correspond to the index
of si in Q. We can choose ηi = (χi + χi+1) mod |Q|,
i = 1, . . . , N−1. The relay transmits a signal x̃i from Q with
index corresponding to ηi by using a suitable mapping (e.g.,
a natural or a Gray mapping). At any terminal j, on knowing
χj , we can consecutively recover χi, i �= j using {ηi}N−1

i=1 .
This also shows that q = |Q| is sufficient and suggests that
using a modular group, which exists for all |Q|, is suitable for
solving the problem.

The x̃i’s obtained from the above mapping are encoded
using a linear dispersion code and the transmitted signal can
be written as a K by M matrix given by

X̃r =
N−1∑
i=1

(
x̃iC̃i + x̃∗i D̃i

)
. (56)

At the source terminals, we first decode x̃i in the same
way as in the non-compression DF, and we then find the
corresponding ηi in F. By the construction of ηi, the source
terminals can recover the signals correctly. The design of
the precoding matrices C̃i and D̃i also follows that in [11]
by maximizing the sum rate. By using network coding, the
number of symbols need to be transmitted is reduced by one
and the transmit symbols are superimposed in finite fields,
which saves both bandwidth and power.

VI. SIMULATION RESULTS

In this section, experimental results are shown to verify
the derived theoretical results. We consider a 3-way relay
network in all simulations, i.e., N = 3. The total power of
the network is P , among which γP is allocated to all the
source terminals and (1−γ)P is allocated to the relay. Unless
otherwise mentioned, all channel fadings have a complex
Gaussian distribution with zero mean and unit variance.
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Fig. 1. Achievable sum rate comparison of different protocols as a function of P in a 3-way symmetric relay network, where all channels have unit variance,
γP denotes the overall source power and (1−γ)P the relay power, respectively. The relay has M = 2 antennas, and all channel gains are complex Gaussian
with zero mean and unit variance.
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(b) γ = 0.8

Fig. 2. Achievable sum rate comparison of different protocols as a function of P in a 3-way symmetric relay network, where the channel between source
1 and the relay has unit power gain, the other two channels have −3 dB power gain, γP denotes the overall source power and (1 − γ)P the relay power,
respectively. The relay has M = 2 antennas, and all channel gains are complex Gaussian with zero mean and unit variance.

We consider maximizing the sum rate
∑N

i=1Ri, which is
given by

max
Ψ

N − 1

2N

N∑
i=1

log

(
1 +

2
∑N

j=1,j �=i |hT
i Ψhj|2Pj

‖hT
i Ψ‖2 + 1

)
,

subject to 2
N∑
i=1

‖Ψhi‖2Pi + tr
(
ΨΨH

) ≤ 2Pr.

(57)

The average achievable rates of AF and DF are compared by
averaging over 1000 channel realizations. The AF strategy 1
in (4) and DF using diagonal precoding matrices are denoted
as “AF 1 Diagonal” and “DF Diagonal.” “AF 1 Opt” and “DF

Opt” denote AF and DF using optimal precoding matrices
obtained via multi-dimensional search, resp., and “AF 2 Opt”
denotes the AF strategy 2 in (7). Due to the complexity
of the high dimensional optimization in AF strategy 2, we
only consider the case T = 4 and α = 0.5 and start
the multidimensional optimization from the solution for AF
strategy 1. We also compare with the sum rate obtained from
the outer bound (20) and a full duplex cut-set outer bound
denoted as “Restricted Half Duplex Outer Bound” and “Full
Duplex Cut-set Bound,” respectively.

Fig. 1 compares the achievable sum rate of different proto-
cols as a function of P in a 3-way relay network with γ = 0.2
and γ = 0.8, respectively. All channels between the source
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Fig. 3. Achievable sum rate comparison of different protocols as a function of P in a 3-way symmetric relay network, where the channel between source
1 and the relay has -3 dB power gain, the other two channels have unit power gain, γP denotes the overall source power and (1 − γ)P the relay power,
respectively. The relay has M = 2 antennas, and all channel gains are complex Gaussian with zero mean and unit variance.

and the relay have unit average power. The relay has M = 2
antennas. We find that in both cases, when P is small, DF
achieves a higher sum rate than AF. When γ = 0.2, the
sum rate is limited by the uplink channel. In this case, as
(20) does not contain a sum rate constraint, the outer bound
is greater than the achievable rate of DF. But when P is
large, the downlink channel becomes the bottleneck, and the
achievable rate of DF converges to the outer bound (20). When
γ = 0.8, the downlink channel is always the bottleneck and
DF performs very close to (20). In addition, the achievable rate
difference between AF strategy 1 and AF strategy 2 is very
small; as γ increases, their difference diminishes. We also find
that the performance loss due to the use of diagonal precoding
matrices is small when P is large for both AF strategy 1 and
DF, which is advantageous since diagonal matrices are easier
to find and to implement in practice.

To consider the impact of network asymmetry, Figs. 2 and
3 compare the achievable sum rate of different protocols when
the channels between the sources and the relay have different
average power. In particular, in Fig. 2 the channel between
source 1 and the relay has unit power gain, while the other
two channels have -3 dB power gain. On the other hand, in
Fig. 3, the channel between source 1 and the relay has -3
dB power gain, the other two channels have unit power gain.
From these figures, we can see that by changing the symmetry
of the network the relative performance of different protocols
remains the same as in a symmetric network in Fig. 1, though
the achievable rates are affected.

Fig. 4 compares the achievable sum rate of different proto-
cols with different γ when the relay has M = 2 antennas.
We choose P = 10. It is seen that DF performs better
than AF for all values of γ. Similar observations can be
obtained from Fig. 5 where the relay is equipped with M = 1
antenna. Here, only the curves for “AF Opt” and “DF Opt”
are displayed, the results for diagonal precoding matrices
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Fig. 4. Achievable sum rate comparison for different protocols as a function
of γ in a 3-way symmetric relay network with P = 10 and all channels
have unit variance. The relay has M = 2 antennas, and all channel gains are
complex Gaussian with zero mean and unit variance.

are virtually indistinguishable from the corresponding optimal
curves and therefore not shown. From these two figures, we
can see that DF achieves a higher sum rate as AF and performs
very close to the outer bound (20). Therefore, if we neglect the
required processing complexity at the relay, DF is a preferable
choice, when the downlink channel is the bottleneck or when
the number of users in the network is large, while AF is
recommended in low SNR.

Fig. 6 shows the diversity-multiplexing tradeoff for both AF
and DF protocols in a 10-way relay network where the relay
has M = 1 and M = 3 antennas, respectively. In Fig. 6(a),
the degree of freedom of the whole network is limited by the
single antenna at the relay. Therefore, the maximum DMT
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Fig. 6. Diversity-multiplexing tradeoff comparison between AF and DF protocols in a 10-way relay network for different number of antennas M .
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Fig. 5. Achievable sum rate comparison for different protocols as a function
of γ in a 3-way relay network with P = 10. The relay has M = 1 antennas,
and all channel gains are complex Gaussian with zero mean and unit variance.

achievable by both DF and AF is at most one. In Fig. 6(b)
the maximum degree of freedom achievable by DF is at most
three. Since each source has a single antenna and the relay
needs to combine all the signals at the relay, the degree of
freedom in AF is limited by the number of antennas at the
source, which is one. Fig. 6 suggests that AF is useful only
whenM = 1, while DF is preferable in a lightly loaded system
with more than one antenna where the signals can be decoded
reliably at the relay.

We now provide simulation results for the practical pro-
tocols proposed in Section V. Fig. 7 compares the average
symbol error probability of different protocols as a function of
P in a 3-way relay network. The relay has M = 2 antennas
in the simulations. We further choose K = M because the
diversity order is determined by min(K,M). We do not want
to choose K ≥ M which would imply a smaller rate for the
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Fig. 7. Average symbol error probability comparison for different protocols
as a function of P in a 3-way relay network. The relay has M = 2 antennas.
All channel gains are complex Gaussian with zero mean and unit variance.

same diversity order, while we do not want to choose K < M
to sacrifice diversity order for rate. The power allocation is
chosen such that γ = 1.

We employ the AF protocol by using an Alamouti type
space time code [25] (denoted as “AF Alamouti”). For com-
parison purposes we also employ a diagonal space time code
at the relay which corresponds to the case that only the k-th
antenna at the relay is active in time slot k, k = 1, 2 (denoted
as “AF Diagonal”). The DF protocol comprises a concatena-
tion of a linear dispersion code with an Alamouti code, where
the linear dispersion code is optimized by maximizing the sum
rate of all 3 terminals at P = 20. After optimization, we find
that the coding matrix in (49) is shown in (58) at the top of the
next page which is denoted as “DF Sum Opt.” DF by using
the Toeplitz network coding in Section V-A2 with an Alamouti
code is denoted as “DF Network Coding.” The DNF protocols
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[ −0.1314s1 + 0.7687s2 + 0.6260s3 0.7880s1 − 0.1830s2 + 0.5878s3
−0.7880s∗1 + 0.1830s∗2 − 0.5878s∗3 −0.1314s∗1 + 0.7687s∗2 + 0.6260s∗3

]
(58)
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Fig. 8. Average symbol error probability comparison for different protocols
as a function of P in a 3-way relay network. The relay has M = 1 antennas.
All channel gains are complex Gaussian with zero mean and unit variance.

are defined similarly as their AF counterparts. From Fig. 7,
we can see that the performance of EF is very close to DNF.
Further, it can be observed that the DF protocols achieve a
much better performance than both AF and DNF protocols
when P is large. It seems that both DNF and AF attain a
smaller diversity order than DF in the observed region. The
DNF protocols perform better than their AF counterparts but
are still inferior to DF protocols. For the DF protocols we find
that by employing network coding a performance gain can be
achieved which is due to the power savings of exploiting the
inherent compression in network coding. On the other hand,
the complexity of AF is much lower than the DF protocols as
AF does not need decoding and signal processing at the relay.

Fig. 8 compares the average symbol error probability of
different protocols when the relay has M = 1 antenna. We also
include the performance of CDF with physical layer network
coding in Section V-B. For each realization of channel fading
we choose the best quantization and transmission codebooks
according to the procedure in Section V-B. It is observed
that optimized CDF attains the best performance in high SNR
while AF has a good performance in low SNR, which agrees
with the observations in [3]. In high SNR DF outperforms
DNF and EF since it uses a linear dispersion code for the
downlink, compared to precoding as in DNF and EF. In
particular, this can be seen from Fig. 8 where there is a
crossover between DF and DNF at an SNR of approximately
17 dB. Below this SNR, DNF (and also EF) perform better
than DF since the estimation error for the signal at the m-
th receive antenna of the relay, m = 1, . . . ,M , becomes
smaller compared to DF, which offsets the coding gain for
linear dispersion coding versus precoding on the downlink in
this regime.

Thus, Fig. 8 suggests that when a single antenna system is
considered CDF is the preferable choice. Note that in Figs. 7
and 8 no additional forward error correction is employed, and
therefore the corresponding rates in the simulations are given
as (1 − symbol error probability) · (space time code rate).
Thus, an SER improvement translates into a throughput im-
provement.

VII. CONCLUSION

We have studied theoretical and practical properties of
several communication protocols for N -way all-cast relay
networks. In particular, besides AF and DF we introduce
new variants, denoted as estimate-and-forward, denoise-and-
forward, and compression-based DF, respectively. As an im-
portant theoretical property we have derived the achievable
rate regions for these protocols. Here, we show that network
coding can be used to improve the rate regions for the DF-
based protocols. Further, outer capacity bounds for the rate
regions of the considered protocols were established. As an
additional criterion for comparing AF and DF we have also
characterized the achievable diversity-multiplexing tradeoff for
both schemes. On the practical side, several space-time coding
protocols based on AF and DF strategies at the relay were
developed. Here, we have focused on linear dispersion space-
time codes, which can be optimized by maximizing the sum
rate.

In general, AF-based protocols lead to a lower signal
processing complexity at the relay compared to DF-based
strategies. In contrast, DF-based protocols are advantageous
in lightly loaded systems with multiple transmit antennas at
the relay and generally in the high-SNR regime. In particular,
for a single-antenna relay, CDF is preferable, which uses an
implicit compression by physical layer network coding and
outperforms DF in high SNR.
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