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Coding Schemes for Achieving Strong
Secrecy at Negligible Cost
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and Jörg Kliewer, Senior Member, IEEE

Abstract— We study the problem of achieving strong secrecy
over wiretap channels at negligible cost, in the sense of maintain-
ing the overall communication rate of the same channel without
secrecy constraints. Specifically, we propose and analyze two
source-channel coding architectures, in which secrecy is achieved
by multiplexing public and confidential messages. In both cases,
our main contribution is to show that secrecy can be achieved
without compromising communication rate and by requiring only
randomness of asymptotically vanishing rate. Our first source-
channel coding architecture relies on a modified wiretap channel
code, in which randomization is performed using the output of
a source code. In contrast, our second architecture relies on a
standard wiretap code combined with a modified source code
termed uniform compression code, in which a small shared secret
seed is used to enhance the uniformity of the source code output.
We carry out a detailed analysis of uniform compression codes
and characterize the optimal size of the shared seed.

Index Terms— Wiretap channel, physical-layer security,
multiplexing, source coding.

I. INTRODUCTION

WHILE cryptography is traditionally implemented at
the application layer, physical-layer security aims at

ensuring secrecy by taking advantage of the inherent noise
at the physical-layer of communication channels. The ben-
efits of physical-layer security are substantiated by numer-
ous theoretical results [4], [5], in particular those related to
the wiretap channel model [6], which suggest that one can
achieve information-theoretic secrecy without sharing secret
keys. Although early works on physical-layer security were
mostly restricted to eavesdropping attacks under optimistic
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Fig. 1. Multiplexing of confidential and public sources. The confidential
source, V n

c , must be reconstructible by the receiver and must be kept secret
from the eavesdropper. The public source, V n

p , should be reconstructible by
the receiver, and information may be leaked to the eavesdropper.

assumptions regarding channel knowledge, and only estab-
lished the existence of codes for physical-layer security by
means of non-constructive random coding arguments, there
has been much progress recently. In particular, attacker models
have been extended to situations with limited channel knowl-
edge, e.g., with compound channels [7]–[11], state-dependent
channels [12], [13], or arbitrarily varying channels [14]–[16];
several explicit low-complexity codes with strong information-
theoretic secrecy guarantees have also been designed, for
instance, based on low-density parity check codes [17], polar
codes [18]–[20] or invertible extractors [21], [22].

Despite these recent advances, physical-layer security
schemes are yet to be integrated into communication systems.
One factor that may have hindered their adoption is the limited
attention paid to the cost of physical-layer security, assessed
in terms of the decrease in achievable communication rates,
and the additional resources required for its implementation.
In fact, if one hopes to deploy physical-layer systems, it
is reasonable to ask that their operation: i) be transparent
or at least compatible with upper layer protocols, ii) not
affect communication rates, and iii) not require additional
resources. However, most studies of physical-layer security
focus on the characterization of secrecy capacity, which is
always less than the capacity, thereby suggesting that secrecy
can only be achieved at the cost of reducing communication
rates; furthermore, most existing models and coding schemes
implicitly assume the presence of an unlimited source of
uniform random numbers to realize a stochastic encoder.

The objective of this paper is to revisit these assump-
tions and to show that the cost of secrecy can be made
negligible, i.e., secrecy neither incurs a reduction in overall
communication rate nor requires extra randomness resources.
The crux of our approach is to analyze the wiretap chan-
nel model illustrated in Fig. 1, in which the encoder only
uses a random seed of vanishing rate. More specifically, the

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



CHOU et al.: CODING SCHEMES FOR ACHIEVING STRONG SECRECY AT NEGLIGIBLE COST 1859

Fig. 2. Proposed architectures to multiplex confidential source sequences V n
c

and public source sequences V n
p . Ud is a uniformly distributed seed, whose

length d is sub-linear in the code length n. (a) Architecture based on a
modified wiretap code. (b) Architecture based on a modified source encoder.

objective is to multiplex a confidential source with a public
source, while maximizing the sum-rate of secret and public
communication. The idea of multiplexing messages to achieve
secrecy already implicitly appears in the original work of
Csiszár and Körner [23], and is explicitly formalized
in [24]–[26]; however, our approach differs in that: (i) we
relax the common assumption that messages are exactly uni-
formly distributed, which is unrealistic even if messages are
compressed with optimal source codes [27], [28]; and (ii) we
consider a strong notion of secrecy.

The main contributions of this paper are two source-channel
coding architectures that achieve information-theoretic secrecy
over this channel model. The first one, illustrated in Fig. 2(a),
is based on wiretap codes and requires a random seed of
negligible rate to compress the public source. The second one,
illustrated in Fig. 2(b), combines a wiretap code designed to
operate with uniform randomization with a modified source
encoder, which compresses data while simultaneously ensuring
near-uniform outputs. This second architecture is slightly more
restrictive than the first simply because it requires the encoder
and the decoder to share in advance a small secret seed. For
both architectures the presence of a random seed at the encoder
is meant to obtain a nearly uniform source from the public
source, and is thus unnecessary if the public source is uniform.
Nevertheless, regardless of the architecture, a secret key for
authentication is required [29], [30]. While both architectures
achieve the same optimal performance, the former modifies
the physical layer of the protocol stack whereas the latter
modifies the application layer, which makes it much easier
to implement protocol changes. We also highlight that the
concept of uniform compression introduced and studied in
Section IV is of independent interest, as it can be used
in other security problems. For instance, in secure network
coding [31]–[34], security is typically obtained by injecting

uniformly distributed “packets” into the network, which the
destination nodes are able to decode along with the messages.
Similar to the compression of the public source with uniform
compression codes in Section IV, these uniformly distributed
“packets” in secure network coding could be replaced by
uniformly compressed public messages.

Our model initially presented in [1] is closely related to
the concurrent study [35] and the subsequent study [36],
with journal versions [37], [38]. However, our model is not
subsumed by any of the models considered in [35] and [37]
or in [36] and [38]. The main difference with [36] and [38] is
that we only allow a vanishing rate of randomness to be used at
the encoder to account for all the resources required to achieve
strong secrecy. This assumption results in an additional con-
straint on the rate of the public source, which is not accounted
for by the analysis of [36] and [38]. We provide additional
details on how our achievability schemes differ from [36], [38]
in Remark 1. Our model also differs from [35] and [37], as
we consider non-uniform sources instead of uniform messages,
so the analysis in [35], [37] does not apply. We further detail
in Remark 2 how our achievability schemes differ from those
in [35], [37]. Because of differences in the models considered,
the two achievability arguments we present are conceptually
different from those in [35] and [37], and shed a different light
on how to implement multiplexing.

Remark 1: In [36] and [38], the authors analyze the trans-
mission over a wiretap channel of a common message S0
and multiple confidential messages S1, . . . , ST that may not
be jointly independent. Moreover, the encoder is allowed to
encode these T + 1 messages using a randomized encoder.
In our approach, we have two independent sources, which
when compressed losslessly but separately, yield two separate
non-uniform messages. One of these sources is confidential,
while the other is public and can possibly be leaked to the
eavesdropper. However, in the two architectures considered
in our work, the encoding is only allowed to use a random
seed whose length grows sub-linearly in the code length n.
This introduces a new constraint on the minimum rate of the
public source that is absent in [36] and [38]. Furthermore,
the randomized encoding in [36] and [38] uses a commutative
group structure, while our two achievability schemes use
either (i) typicality-based compression arguments to show
that the Rényi entropy of order 2 of the compressed public
source approaches its entropy (see Section III); or (ii) lossless
compression codes with near uniform encoder output that
require a random seed whose length grows as O(

√
n), where

n is the code length (see Section IV).
Remark 2: In [35] and [37], the authors study the broad-

cast channel with confidential messages and precisely analyze
the trade-offs among the rates of uniform secret messages,
uniform public messages, and uniform local randomness.
In contrast, we study a source setting in which non-uniform
confidential and public sources are transmitted over a wire-
tap channel. We present two distinct achievability arguments
in Section III and Section IV for the proposed generaliza-
tion that do not naturally follow from the proof arguments
in [35] and [37]. Despite similarities with the converse for our
model, the converse in [35] and [37] does not directly apply
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to the setting considered in Section IV because of the presence
of a shared seed. Therefore, for completeness a converse for
our model is provided in Appendix A.

The remainder of the paper is organized as follows.
In Section II, we formally describe the communication model
under consideration. In Sections III and IV, we prove that
the two architectures shown in Fig. 2 achieve near-optimal
performance, i.e., offer the same rate trade-offs as the com-
munication problem without security constraints. More specif-
ically, we show in Section III the existence of wiretap codes
that ensure secrecy with non-uniform randomization, while in
Section IV, we show how to render the output of a source
code nearly uniform. Section V concludes the paper with some
perspectives for future work.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

Random variables, e.g., X , and their realizations, e.g., x , are
denoted by uppercase and lowercase serif font, respectively,
while alphabets, e.g., X , are denoted by calligraphic font.
Unless otherwise specified, random variables have finite alpha-
bets, and the generic probability mass function of X is denoted
by pX . Basic information-theoretic quantities, e.g., H (X),
I (X; Y ) are defined as in [39]. For two random variables X
and X ′ over the alphabet X , the variational distance between
X and X ′ is V (pX , pX ′) �

∑
x∈X |pX (x)− pX ′(x)| . For

any ε > 0, δ(ε) denotes a positive function of ε such that
limε↓0 δ(ε) = 0. We also define �a, b� � [�a�, �b	] ∩ N.

B. Wiretap Channel Model

Let X , Y and Z be finite alphabets. As illustrated in
Fig. 1, we consider a Discrete Memoryless Channel (DMC)(
X , pY Z |X ,Y × Z

)
. The channel

(
X , pY |X ,Y

)
is the main

channel while the channel
(
X , pZ |X ,Z

)
is the eavesdropper’s

channel. We assume that the transmitter Alice wishes to
transmit the realizations of two independent Discrete Memo-
ryless Sources (DMSs) (Vc, pVc) and (Vp, pVp). Both sources
are to be reconstructed without errors by the receiver Bob
observing Y n , while the source (Vc, pVc) should be kept secret
from the eavesdropper Eve observing Zn . Hence, we refer
to (Vc, pVc) as the confidential source and to (Vp, pVp) as the
public source.

Definition 1: A code for Cn the wiretap channel consists of
the following.

• A deterministic encoding function fn : Vn
c × Vn

p ×�
1, 2dn

� → X n, which maps n symbols of the confidential
source and n symbols of the public source to a codeword
of length n with the help of a uniformly distributed seed
of length dn bits;

• A decoding function gn : Yn → Vn
c × Vn

p, which maps a
sequence of n channel output observations to n symbols
of the confidential source and n symbols of the public
source.

The performance of Cn is measured in terms of the average
probability of error

Pe(Cn) � P

[
(V n

c , V n
p ) �= gn(Y

n)
]
,

and in terms of the secrecy metric

S(Cn) � max
vn

c ∈Vn
c

V
(

pZn|V n
c =vn

c
, pZn

)
.

Note that since we do not know the exact output distribution
of the source encoders, we impose a security constraint akin
to semantic security [22]. We also require the length of the
uniformly distributed seed to be sub-linear in n, i.e.,

lim
n→∞

dn

n
= 0.

Note that in our second architecture presented in Section IV
and depicted in Figure 2(b), we allow the seed to be shared
between the encoder and the decoder, in which case, the seed
is also an argument to the decoding function gn .

C. Source-Channel Coding Theorem

Theorem 1: Consider a confidential DMS (Vc, pVc) and
a public DMS (Vp, pVp) to be transmitted over a wiretap
channel

(
X , pY Z |X ,Y × Z

)
. For any random variable Q over

a finite alphabet Q such that Q − X − Y Z, if
⎧
⎪⎨

⎪⎩

H (Vc)+ H (Vp) < I (X; Y |Q)
H (Vc) < I (X; Y |Q) − I (X; Z |Q)
H (Vp) > I (X; Z |Q),

then there exists a sequence of codes {Cn}n�1 such that

lim
n→∞ Pe(Cn) = lim

n→∞ S(Cn) = 0. (1)

Conversely, if there exists a sequence of codes {Cn}n�1 such
that (1) holds, then there must exist a random variable Q over
Q with |Q| � 3 such that Q − X − Y Z and

⎧
⎪⎨

⎪⎩

H (Vc)+ H (Vp) � I (X; Y |Q)
H (Vc) � I (X; Y |Q) − I (X; Z |Q)
H (Vp) � I (X; Z |Q).

Although the result might seem intuitive, the achievability
proof does not follow from standard arguments and known
results because of the use of vanishing-rate randomness at
the encoder. The main contributions of this paper are the two
achievability proofs detailed next, the first one in Section III
using the architecture of Fig. 2(a), the second one in Section IV
using the architecture of Fig. 2(b). Note that the converse
in [37] does not directly apply to the setting of Section IV,
because of the presence of a pre-shared seed. We provide a
detailed proof for the converse of Theorem 1 in Appendix A.

Remark 3: Unlike the capacity region of the broadcast
channel with confidential messages, the information con-
straints in Theorem 1 do not include an auxiliary random
variable V such that Q − V − X − Y Z. This result is
not surprising, as this extra random variable accounts for
the addition of artificial noise (channel prefixing) in the
encoder, which is not allowed by our model, as we require
all encoder inputs to be decoded at the receiver. The random
variable Q is merely a time-sharing random variable [1], [37].
Similar to [40, Appendix C], it is sufficient to consider an
alphabet Q such that |Q| � 3 by Fenchel–Eggleston–
Carathéodory theorem.
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Fig. 3. Wiretap channel model with non-uniform randomization.

III. CODING ARCHITECTURE BASED ON WIRETAP CODES

WITH NON-UNIFORM RANDOMIZATION

If one were to rely on known wiretap codes [6], [23] to
transmit the confidential and public sources, and meet the
strong secrecy constraint for the confidential source, one would
have to ensure that the randomization of the encoder could be
performed with a nearly uniform source of random numbers,
measured at least in terms of total variation. If no reconstruc-
tion constraints were placed on the public source (Vp, pVp),
a natural approach would simply be to extract the intrinsic
randomness of the source [41] to generate nearly uniform
random numbers; this strategy happens to be optimal as shown
in [1, Proposition 1]. However, unlike the model in [1], the
present setting requires the reconstruction of the public source
at the receiver. Although lossless compression of the public
source might intuitively seem to solve the problem, it would
actually not lead to a uniform random number. As alluded to
earlier, [27] shows that lossless compression of a source at
the optimal rate does not necessarily ensure uniformity under
variational distance. In addition, for DMSs, [28, Th. 4] shows
that there exists a fundamental trade-off between reconstruc-
tion error probability and uniformity of the encoder output
measured in variational distance. To circumvent this limitation,
we design wiretap codes that operate with a non-uniform
randomization.

A. Wiretap Codes With Non-Uniform Randomization

We start by studying the wiretap channel model illustrated
in Fig. 3, in which the objective is to encode a secret
message Mc ∈ �1, 2nRc� by means of a public message
Mp ∈ �1, 2nRp �; we do not assume that messages are uniform,
but we assume that the statistics of the public message
Mp are known to the encoder. We call the corresponding
wiretap code a (2nRc , 2nRp , n) wiretap code. In this case, we
show that secrecy is still achievable, but at a rate 1

n H2(Mp),
where H2(Mp) denotes the Rényi entropy of order 2 and is
given by

H2(Mp) � − log

⎡

⎣
∑

m∈�1,2nRp �

pMp(m)
2

⎤

⎦.

Proposition 1: Let pQ XY Z be a joint distribution that
factorizes as pQ pX |Q pY Z |X . Then, if

Rc + Rp < I (X; Y |Q),
Rc < I (X; Y |Q) − I (X; Z |Q),

I (X; Z |Q) < lim
n→∞

1

n
H2(Mp),

there exists a sequence of wiretap codes {Cn}n�1 such that

lim
n→∞ max

m
P

[
M̂c �= Mc|Mc = m

]
= 0,

lim
n→∞ max

m
P

[
M̂p �= Mp |Mc = m

]
= 0,

lim
n→∞ max

m
V
(

pZn|Mc=m , pZn
) = 0.

Proof: See Appendix B.
As shown in [1, Proposition 1], if one did not

require the reconstruction of Mp , one could achieve secret
rates Rc as in Proposition 1, but with the constraint
I (X; Z |Q) < limn→∞ 1

n H (Mp) instead. In general,
1
n H2(Mp) � 1

n H (Mp), and the penalty paid by using the
Rényi entropy instead of the Shannon entropy may be signif-
icant. The following example highlights an extreme example
of such a situation.

Example 1: Consider Mp ∈ �1, 2nRp � such that

P[Mp = 1] � 2−nαRp , P[Mp = i ] � 1 − 2−nαRp

2nRp − 1
if i �= 1,

where α ∈]0, 1
2 [ is a parameter that controls the uniformity of

the distribution. Note that

lim
n→∞

1
n H2(Mp) = αRp whereas lim

n→∞
1
n H (Mp) = Rp.

Consequently, the achievable rates predicted in
Proposition 1 could be arbitrarily smaller than those
in [1, Proposition 1]. Fortunately, a combination of a source
code with a wiretap code identified in Proposition 1 is
sufficient to achieve the optimal rate of Theorem 1.

B. Achievability of Theorem 1 Based on Wiretap Codes
With Non-Uniform Randomization

We first refine a known result regarding the existence of
good source codes.

Lemma 1: Consider a DMS (V, pV ). Then, there exists a
sequence of source encoders fn : Vn × �

1, 2dn
� → �

1, 2nRn
�

and associated decoders gn such that

lim
n→∞ Rn = H (V ), lim

n→∞
1

n
H2( fn(V

n,Udn )) = H (V ),

lim
n→∞ P

[
V n �= gn( fn(V

n,Udn ))
] = 0, lim

n→∞
dn

n
= 0.

Proof: We consider a typical-sequence-based source
code. Specifically, let n ∈ N, let ε0 > 0 function of
n to be determined later, and let T n

ε0
(V ) be the set of

ε0-letter-typical sequences of length n with respect to
pV [39]. The typical sequences are labeled vn(m) with
m ∈ �

1, 2nRn
�

and Rn � 1
n log |T n

ε0
(V )|. The encoder fn

outputs m if the input sequence vn = vn(m) ∈ T n
ε0
(V ),

otherwise it generates m ∈ �
1, 2nRn

�
uniformly a

random. Note that this uniform selection when the
realization of V n is atypical can be done by a
random seed Udn of appropriate size dn . Decoding
is performed by returning the typical sequence vn(m)
corresponding to the received message m. By [39, Th. 1.1],
we know that P

[
V n �=gn( fn(V n,Udn ))

]
� δε0(n)

with δε0(n) � 2|V|e−nε2
0μV , μV � min

r∈supp(pV )
pV (r),
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where supp denotes the support of a distribution, and
Rn < (1 + ε0)H (V ). Hence, for any m ∈ �1, 2nRn �

p fn(V n ,Udn )(m)

= P

[
V n = vn(m) or

(
V n /∈ T n

ε0
(V )

and m is drawn uniformly from
�

1, 2nRn
�)]

� 2−n(1−ε0)H(V ) + δε0(n)

|T n
ε0
(V )|

� 2−n(1−ε0)H(V ) + δε0(n)

1 − δε0(n)
2−n(1−ε0)H(V )

= 2−n(1−ε0)H(V )

1 − δε0(n)
.

Hence, since H (X) � H2(X) � H∞(X) for any discrete
random variable X over X , we have

nH (V ) � H ( fn(V
n))

� H2( fn(V
n))

� H∞( fn(V
n))

= − log(max
m

p fn(V n)(m))

� n(1 − ε0)H (V )+ log(1 − δε0(n)).

We may choose ε0 = n−1/2+εb and εb > 0.
Note that the encoder requires Udn to encode the non-

typical sequences. To mitigate this requirement, we apply
the encoder to b(n) sequences of length a(n), where a(n)
and b(n) are any integers such that a(n)b(n) = n and
limn→∞ a(n) = +∞ = limn→∞ b(n).1 Hence, the amount
of required randomness is negligible compared to n since
P[V a(n) /∈ T a(n)

ε0 (V )] � δε0(a(n)).
In the remainder of the paper, we refer to the source codes

identified in Lemma 1 as “typical-sequence based” source
codes.

Going back to the setting of Section II-B, let us apply
Lemma 1 to both sources (Vc, pVc) and (Vp, pVp). Let ε > 0.
There exists N1 ∈ N and two source encoder-decoder pairs,
denoted ( f c

n , gc
n) and ( f p

n , g p
n ), respectively, such that for

n > N1, P

[
(V n

c , V n
p ) �=(gc

n( f c
n (V

n
c )), g p

n ( f p
n (V n

p ,Udn )))
]

� ε.

We set Mc � f c
n (V

n
c ) ∈ �

1, 2nRc
�

and Mp � f p
n (V n

p ,Udn ) ∈�
1, 2nRp

�
. Note that we only need randomness for the public

source. If there exists a distribution pQ XY Z that satisfies the
condition of Proposition 1, then, there exists N2 ∈ N and a
wiretap code with encoder-decoder pair ( fn, gn) such that for
n > N2,

max
m

P

[
M̂c �= Mc|Mc = m

]
< ε,

max
m

P

[
M̂p �= Mp |Mc = m

]
< ε,

max
m

V
(

pZn|Mc=m, pZn
)
< ε.

Encoding the sources into codewords as
fn( f c

n (V
n
c ), f p

n (V n
p ,Udn )), and forming estimates from

the channel output Y n as V̂ n
c = gc

n(gn(Y n)) and
V̂ n

p = g p
n (gn(Y n)), with the abuse of notation that gn(Y n)

1A possible choice is a(n) � n1−λ and b(n) � nλ with λ ∈]0, 1[.

Fig. 4. Source encoder and decoder with uniform outputs.

is in fact the concatenation of the encoded public and
confidential sources, we observe that for n > max(N1, N2),
P

[
(V n

c , V n
p ) �= (V̂ n

c , V̂ n
p )
]

� 3ε and, for any vn
c ∈ Vn

c ,

V
(

pZn|V n
c =vn

c
, pZn

)
� ε. By taking the limit ε → 0, we

conclude with Lemma 1 that a code for the wiretap channel
can be constructed provided

H (Vc)+ H (Vp) < I (X; Y |Q),
H (Vc) < I (X; Y |Q)− I (X; Z |Q),
H (Vp) > I (X; Z |Q).

IV. CODING ARCHITECTURE BASED ON

UNIFORM COMPRESSION CODES

In this section, we develop a second optimal architec-
ture. As before, our objective is to circumvent the impos-
sibility of generating uniform random numbers with source
codes [28, Th. 4], but this time by modifying the operation
of the source codes themselves. The approach to overcome
this impossibility is to introduce a small shared uniformly
distributed random seed. The benefit of this second architec-
ture is that it only requires a modification at the application
layer of the protocol stack. However, the price paid is that the
transmitter and the receiver must now share a seed whose rate
can be shown to be made vanishingly small. This contrasts
with our first architecture in Section III for which the seed is
not available at the decoder.

A. Uniform Compression Codes

Consider a DMS (X , pX ). Let n ∈ N, dn ∈ N, and let Udn

be a uniform random variable over Udn � �1, 2dn � independent
of Xn . In the following we refer to Udn as the seed and dn as
its length. As illustrated in Figure 4, our objective is to design
a source code to compress and reconstruct the DMS (X , pX )
with the assistance of a seed Udn .

Definition 2: A (2nR, n, 2dn ) uniform compression code Cn

for a DMS (X , pX ) consists of
• A message set Mn � �1,Mn�, with Mn � 2nR,
• A seed set Udn � �1, 2dn �,
• An encoding function φn : X n × Udn → Mn,
• A decoding function ψn : Mn × Udn → X n.
The performance of the code is measured in terms of the

average probability of error and the uniformity of its output
as

Pe(φn, ψn) � P[Xn �= ψn(φn(X
n,Udn ),Udn )],

Ue(φn) � V
(

pφn(Xn,Udn ), pUMn

)
,

where UMn has uniform distribution over Mn .
Remark 4: Uniformity could be measured with the stronger

metric U′
e(φn) � D(pφn(Xn,Udn )||pUMn

), where D(·||·) is the
Kullback-Leibler divergence; however, by [42, Lemma 2.7],
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Ue(φn) can be replaced by U′
e(φn), if lim

n→∞ nUe(φn) = 0,

which will be the case.
Definition 3: A rate R is achievable, if there exists a

sequence of (2nR, n, 2dn ) uniform compression codes {Cn}n�1
for the DMS (X , pX ), such that

lim
n→∞

1

n
log Mn � R, lim

n→∞
dn

n
= 0,

lim
n→∞ Pe(φn, ψn) = 0, lim

n→∞ Ue(φn) = 0.
Our main result in this section is the characterization of

the infimum of achievable rates with uniform compression
codes as well as the optimal scaling of the seed length dn .
In the following, we use the Landau notation to characterize
the limiting behavior of the seed scaling.

Proposition 2: Let (X , pX ) be a DMS. The infimum of
achievable rates with uniform compression codes is H (X).
This infimum is achievable with a seed length dn = O(υn

√
n),

for any {υn}n∈N s.t. limn→∞ υn = +∞. Moreover, a nec-
essary condition on dn for a (2nR, n, 2dn ) uniform com-
pression code to achieve H (X) is dn = 	(

√
n), i.e.,

limn→∞ dn√
n

= +∞.

Proof: See Appendix C.

B. Explicit Uniform Compression Codes

As a first attempt to develop a practical scheme for uniform
compression codes, we propose an achievability scheme for
Proposition 2 based on invertible extractors [43]. We start by
recalling known facts about extractors.

Definition 4 [43]: Let ε > 0. Let m, d, l ∈ N and let
t ∈ R

+. A polynomial time probabilistic function Ext :
{0, 1}m ×{0, 1}d �→ {0, 1}l is called a (m, d, l, t, ε)-extractor,
if for any binary source X satisfying H∞(X) � t , we have

V(pExt(X,Ud ), pUl ) � ε,

where Ud is a sequence of d uniformly distributed bits,
pUl is the uniform distribution over {0, 1}l . Moreover, a
(m, d, l, t, ε)-extractor is said to be invertible if the input can
be reconstructed from the output and Ud .

It can be shown [43], [44] that there exist explicit invertible
(m, d,m, t, ε)-extractors such that

d = m − t + 2 log m + 2 log
1

ε
+ O(1). (2)

The following proposition shows that one can establish optimal
uniform compression codes using such invertible extractors.

Proposition 3: Let (X , pX ) be a binary memoryless source.
For any R > H (X) and for any ε > 0, the rate R can be
achieved with a sequence of uniform compression codes such
that

• the seed length scales as dn = 
(n1/2+ε);
• the encoder φn : X n × Udn → Mn is composed of a

typical-sequence based source code combined with an
invertible extractor as described in Figure 5.

Proof: See Appendix D.
Unfortunately, this scheme is not fully practical because it

relies on a typical-sequence based compression. To provide
at least one explicit and low-complexity example, we finally
develop a uniform compression code based on polar codes

Fig. 5. Encoding/decoding scheme for Proposition 3. The encoder/decoder
is obtained from a typical-sequence based source code, and an invertible
extractor EXT0.

for a binary memoryless source (X , pX ), X � {0, 1}. Let

β∈]0, 1/2[, n ∈N, N �2n , and δN �2−Nβ
. Let GN �

[
1 0
1 1

]⊗n

be the source polarization transform defined in [45], and set
AN � X N GN . For any set A � {i j }|A|

j=1 of indices in �1, N�,

we define AN [A] �
[
Ai1 , Ai2 , . . . , Ai|A|

]
. In the following,

we denote the complement set operation by the superscript c.
We also define the sets

VX �
{

i ∈ �1, N� : H
(

Ai |Ai−1
)
> 1 − δN

}
,

HX �
{

i ∈ �1, N� : H
(

Ai |Ai−1
)
> δN

}
.

A polar-based uniform compression code is obtained by defin-
ing the encoding function φN as follows. Let U|HX \VX | denote
a sequence of uniformly distributed random bits with length
|HX\VX |. Then,

φN (X
N,U|HX \VX |) �

[
AN [VX ], AN [HX\VX ] ⊕ U|HX \VX |

]
.

Proposition 4: Let (X , pX ) be a binary memoryless source.
Any rate R > H (X) is achievable with a sequence of polar-
based uniform compression codes such that the seed length
|HX\VX | vanishes as the code length grows unbounded.
In addition, the complexity of the encoding and decoding
is O(N log N), where N denotes the code length.

Proof: See Appendix E.

C. Achievability of Theorem 1 Based on
Uniform Compression Codes

The uniform compression codes of Section IV-A may
now be combined with known wiretap codes (as depicted in
Figure 2(b)), whose properties we recall in the following
lemma.

Lemma 2 (Adapted From [1, Proposition 1]): Consider a
DMC (X , pY Z |X , Y×Z), in which a message Mc ∈ �

1, 2nRc
�

is encoded by means of a uniform auxiliary message Mp ∈�
1, 2nRp

�
. If there exists a joint distribution pQ XY Z that

factorizes as pQ pX |Q pY Z |X such that

Rc + Rp < I (X; Y |Q) (3)

Rc < I (X; Y |Q)− I (X; Z |Q) (4)

Rp > I (X; Z |Q), (5)

then there exists a sequence of wiretap codes {Cn}n�1 such
that

lim
n→∞ max

m
P

[
M̂c �= Mc|Mc = m

]
= 0,

lim
n→∞ max

m
P

[
M̂p �= Mp |Mc = m

]
= 0,

lim
n→∞ max

m
V
(

pZn|Mc=m , pZn
) = 0.
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Let ε > 0. Going back again to the setting of Section II-B,
we encode the confidential DMS using a traditional source
code as in Lemma 1, and the public DMS using a uni-
form compression code as in Proposition 2. The correspond-
ing source encoder-decoder pairs are denoted ( f c

n , gc
n) and

( f p
n , g p

n ), respectively, and we set Mc � f c
n (V

n
c ) ∈ �

1, 2nRc
�

and Mp � f p
n (V n

p ,Udn ) ∈ �
1, 2nRp

�
. We assume n large

enough so that

P

[
(V n

c , V n
p ) �= (gc

n(Mc), g p
n (Mp,Udn ))

]
� ε, (6)

V

(
pMp , pUnRp

)
< ε. (7)

Under the conditions (3)-(5) of Lemma 2, which are met
whenever

H (Vc)+ H (Vp) < I (X; Y |Q),
H (Vc) < I (X; Y |Q)− I (X; Z |Q),
H (Vp) > I (X; Z |Q),

for n sufficiently large there exists a wiretap code Cn with
encoder/decoder pair ( fn, gn) so that for any mc, and for
M̃p distributed according to pUnRp

, the uniform distribution
over �1, 2nRp �,

P

[ ˆ̃Mp �= M̃p |Mc = mc

]
< ε, (8)

P

[ ˆ̃Mc �= Mc|Mc = mc

]
< ε, (9)

V
(

p̃Zn|Mc=mc , p̃Zn
)

� ε, (10)

where ( ˆ̃Mp,
ˆ̃Mc) is the estimate of (M̃p,Mc) by the decoder

of Cn , and for any zn , mc, m p ,

p̃Zn Mc MP (z
n,mc,m p)

� pZn|Mc=mc,Mp=m p (z
n)pMc(mc)pUnRp

(m p).

Note that (8)-(10) holds by Lemma 2 because we have
assumed M̃p uniformly distributed. We now study the con-
sequences of using the wiretap code Cn with Mp (not exactly
uniformly distributed) instead of M̃p . Specifically, we note
(M̂p, M̂c) the resulting estimate of (Mp,Mc) by the decoder
of Cn , and define for any zn , mc, m p ,

pZn Mc MP (z
n,mc,m p)

� pZn|Mc=mc,Mp=m p (z
n)pMc(mc)pMp(m p).

We then have for any mc,

V
(

pZn|Mc=mc , pZn
)

(a)
� V

(
pZn|Mc=mc , p̃Zn|Mc=mc

)+ V
(

p̃Zn|Mc=mc , p̃Zn
)

+ V ( p̃Zn , pZn)
(b)
� ε + V

(
pZn|Mc=mc , p̃Zn|Mc=mc

)+ V ( p̃Zn , pZn )

(c)
� ε +

∑

zn

∑

m p

(
pZn|Mc=mc,Mp=m p (z

n)

× |pMp(m p)− pUnRp
(m p)|

)

+ V ( p̃Zn , pZn)

= ε + V

(
pMp, pUnRp

)
+ V ( p̃Zn , pZn)

(d)
� 2ε + V ( p̃Zn , pZn)
(e)
� 2ε +

∑

zn

∑

mc,m p

(
pMc(mc)pZn|Mc=mc,Mp=m p (z

n)

× |pMp(m p)− pUnRp
(m p)|

)

= 2ε + V

(
pMp, pUnRp

)

( f )
� 3ε, (11)

where (a), (c), and (e) follow by the triangle inequality, (b)
holds by (10), (d) and ( f ) hold by (7).

Consider then an optimal coupling [46] between
Mp and M̃p such that P[E] = V(pMp , pUnRp

), where

E � {Mp �= M̃p}. We have for any mc,

P

[
M̂p �= Mp |Mc = mc

]

= P

[
M̂p �= Mp |Mc = mc, Ec

]
P
[
Ec]

+ P

[
M̂p �= Mp |Mc = mc, E

]
P [E]

� P

[
M̂p �= Mp |Mc = mc, Ec

]
+ P [E]

= P

[
M̂p �= Mp |Mc = mc, Ec

]
+ V(pMp, pUnRp

)

= P

[ ˆ̃Mp �= M̃p |Mc = mc

]
+ V(pMp, pUnRp

)

� 2ε,

where the last inequality follows from (7) and (8). Similarly,
using (7) and (9), we have for any mc,

P

[
M̂c �= Mc|Mc = mc

]
� 2ε.

Encoding the sources into codewords with Cn as
fn( f c

n (V
n
c ), f p

n (V n
p ,Udn )), and forming estimates from the

channel output Y n as V̂ n
c � gc

n(gn(Y n)), and V̂ n
p �

g p
n (gn(Y n),Udn ), we obtain again

P

[
(V n

c , V n
p ) �= (V̂ n

c , V̂ n
p )
]

� P

[
(V n

c , V n
p ) �= (V̂ n

c , V̂ n
p )|(M̂p, M̂c) = (Mp,Mc)

]

+ P

[
(M̂p, M̂c) �= (Mp,Mc)

]

� 5ε.

For any vn
c ∈ Vn

c , we also have

V
(

pZn|V n
c =vn

c
, pZn

)

(a)
�
∑

mc

pMc|V n
c =vn

c
(mc)V

(
pZn|Mc=mc,V n

c =vn
c
, pZn

)

(b)=
∑

m

pMc|V n
c =vn

c
(mc)− V

(
pZn|Mc=mc , pZn

)

� 3ε,

where (a) follows by the triangle inequality, (b) holds because
Zn → Mc → V n

c . Since ε > 0 can be chosen arbitrarily small,
we obtain again the achievability part of Theorem 1.
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V. CONCLUSION

We have proposed and analyzed two coding architectures
for multiplexing confidential and public messages that achieve
information-theoretic secrecy over the wiretap channel. Our
first architecture relies on wiretap codes that do not require
uniform randomization, while the second architecture exploits
compression codes that output nearly uniform messages.
By showing that secrecy can be achieved with only vanishing-
rate randomness resources, and without reducing the overall
rate of reliable communication, the proposed architectures
establish that secrecy can be achieved at negligible cost.

An important issue that we have not addressed is the design
of universal wiretap codes that merely require that the public
message carries enough randomness, and do not require the
knowledge of the statistics. Some results in this direction are
already available in [38]. Finally, the design of actual codes
for the proposed architecture remains an important avenue for
future research.

APPENDIX A
CONVERSE OF THEOREM 1

We consider the problem described in Section II-B when
the uniformly distributed seed is shared between the encoder
and the decoder, as is the case in Section IV. Obviously, the
converse will also hold when the seed is not available at the
decoder, as is the case in Section III. We develop our converse
following techniques similar to Csiszár and Körner [23] and
Oohama and Watanabe [37]. Although the ideas are similar,
the converse does not follow directly from these known results
because of the presence of a seed with length dn . Formally,
consider two sources (Vc, pVc) and (Vp, pVp) that can be
transmitted reliably and secretly. Then, there exists a code with
block length n such that

P((V̂ n
c , V̂ n

p ) �= (V n
c , V n

p )) � ε′
n (reliability), (12)

I (V n
c ; Zn) � δn (secrecy), (13)

dn/n � μn (sub-linear seed rate), (14)

where limn→∞ ε′
n = limn→∞ δn = limn→∞ μn = 0. We also

define εn = ε′
n + 1/n. Consequently,

H (V n
c )

(a)= H (V n
c V n

p )− H (V n
p )

= I (V n
c V n

p ; Y nUdn)+ H (V n
p V n

c |Y nUdn )− H (V n
p )

(b)
� I (V n

c V n
p ; Y nUdn)+ nεn − H (V n

p )

� I (V n
c V n

p ; Y nUdn)+ nεn − I (V n
p ; Zn|V n

c )

(c)
� I (V n

c V n
p ; Y nUdn)+ nεn − I (V n

p V n
c ; Zn)+ nδn

� I (V n
c V n

p ; Y n)− I (V n
p V n

c ; Zn)+ nεn + nδn + dn,

(15)

where (a) holds by the independence of the sources, (b) holds
by (12) and Fano’s inequality, (c) holds by (13). Next,

H (V n
p )+ nμn � H (V n

p )+ dn

(a)= H (V n
p Udn )

(b)= H (V n
p Udn |V n

c )

(c)
� H (Xn|V n

c )

� I (Xn; Zn|V n
c )

(d)
� I (Xn V n

c ; Zn)− nδn

(e)
� I (Xn; Zn)− nδn, (16)

where (a) and (b) hold by independence of the sources and
the seed, (c) holds because Xn is a function of V n

p ,Udn , V n
c ,

(d) holds by (13), (e) holds because V n
c − Xn − Zn forms a

Markov chain. Similarly,

H (V n
c )+ H (V n

p )
(a)= H (V n

p V n
c |Udn )

= I (V n
p V n

c ; Y n|Udn )+ H (V n
p V n

c |Y nUdn )

(b)
� I (V n

p V n
c ; Y n|Udn )+ nεn

� I (V n
p V n

c Udn ; Y n)+ nεn, (17)

where (a) holds by independence of the sources and the seed,
(b) holds by (12) and Fano’s inequality. Finally,

nμn
(a)
� dn
(b)= H (Udn)

� H (Udn |V n
c V n

p )

(c)
� H (Xn|V n

c V n
p )

� I (Xn; Zn|V n
c V n

p ), (18)

where (a) holds by (14), (b) holds by uniformity of the seed,
(c) holds because Xn is a function of V n

p ,Udn , V n
c . The single

letterization is obtained by introducing a random variable I
uniformly distributed over �1, n� and defining

Qi = (Y i−1
1 , Zn

i+1), Vi = (Qi , V n
c , V n

p ),

Q = (QI , I ), V = (VI , I ),

X = X I , Y = YI , Z = Z I .

Note that the joint distribution of Q, V , X,Y, Z factorizes as
pQ pV |Q pX |V WY Z |X . Then, using Csiszár’s sum-equality

I (V n
c V n

p ; Y n)− I (V n
p V n

c ; Zn)

�
n∑

i=1

[
I (V n

c V n
p ; Yi |Y i−1

1 )− I (V n
p V n

c ; Zi |Zn
i+1)

]

=
n∑

i=1

[
I (V n

c V n
p ; Yi |Y i−1

1 Zn
i+1)− I (V n

p V n
c ; Zi |Y i−1

1 Zn
i+1)

]

= n[I (V ; Y |Q)− I (V ; Z |Q)]. (19)

In addition,

I (Xn; Zn|V n
c V n

p )

=
n∑

i=1

[
H (Zi |Zi+1

1 V n
c V n

p )− H (Zi |Zi+1
1 Xn V n

c V n
p )
]

�
n∑

i=1

[
H (Zi |Y i−1

1 Zi+1
1 V n

c V n
p )−H (Zi|Zi+1

1 Y i−1
1 Xi V

n
c V n

p

]

=
n∑

i=1

I (Xi ; Zi |Zi+1
1 Y i−1

1 V n
c V n

p )

= nI (X; Z |V ), (20)
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where the inequality holds because Zi − Xi −
Zi+1

1 Y i−1
1 Xn V n

c V n
p forms a Markov chain. Similarly,

I (Xn; Zn) =
n∑

i=1

(
H (Zi |Zn

i+1)− H (Zi |Zn
i+1 Xn)

)

=
n∑

i=1

(
H (Zi |Zn

i+1Y i−1
1 )− H (Zi |Xi Zn

i+1Y i−1
1 )

)

=
n∑

i=1

I (Xi ; Zi |Qi )

= nI (X; Z |Q). (21)

Finally,

I (V n
p V n

c Udn ; Y n)

=
n∑

i=1

I (V n
p V n

c Udn ; Yi |Y i−1
1 )

�
n∑

i=1

I (V n
p V n

c Udn Y i−1
1 Zn

i+1; Yi )

=
n∑

i=1

I (Xi Y
i−1
1 Zn

i+1; Yi )

=
n∑

i=1

I (Xi Qi ; Yi )

= nI (X Q; Y )

= nI (X; Y |Q), (22)

where the second equality holds because Xi is a function of
V n

p ,Udn , V n
c and Yi −Zn

i+1Y i−1
1 Xi −V n

c V n
p Udn forms a Markov

chain. Combining (15) – (22) we obtain

H (Vc) � I (V ; Y |Q)− I (V ; Z |Q)+ εn + δn + μn

H (Vp)+ μn � I (X; Z |Q)
H (Vc)+ H (Vp) � I (X; Y |Q)+ εn

μn � I (X; Z |V ).
Note that using pQV XY Z = pQ pV |Q pX |V W pY Z |X we have

I (V ; Z |Q) = I (V X; Z |Q)− I (X; Z |QV )

= I (X; Z |Q)+ I (V ; Z |QX)− I (X; Z |V )
� I (X; Z |Q)− μn,

and

I (V ; Y |Q) � I (V X; Y |Q)
= I (X; Y |Q) + I (V ; Y |QX)

= I (X; Y |Q).
Hence, we must have

H (Vc) � I (X; Y |Q)− I (X; Z |Q)+εn +δn +2μn,

H (Vp) � I (X; Z |Q)− μn,

H (Vc)+ H (Vp) � I (X; Y |Q)+ εn .

APPENDIX B
PROOF OF PROPOSITION 1

We fix a joint distribution pQ X on Q × X such
that2 I (X; Z |Q) � limn→∞ 1

n H2(Mp) and I (X; Y |Q) −
I (X; Z |Q) > 0. Let ε > 0, R0 > 0, and n ∈ N.
We randomly construct a sequence of codes {Cn}n∈N as
follows. We generate 2nR0 sequences independently at random
according to pQ , which we label qn(i) for i ∈ �1, 2nR0 �.
For each sequence qn(i), we generate 2n(Rc+Rp) sequences
independently a random according to pX |Q , which we label
xn(i, j, s) with j ∈ �1, 2nRc� and s ∈ �1, 2nRp �. To transmit
a message i ∈ �1, 2nR0� and j ∈ �1, 2nRc�, the transmitter
obtains a realization s of the public message Mp ∈ �1, 2nRp �,
and transmits xn(i, j, s) over the channel. Upon receiving yn ,
Bob decodes i as the received index if it is the unique one such
that (qn(i), yn) ∈ T n

ε (QY ); otherwise he declares an error.
Bob then decodes ( j, s) as the other pair of indices if it is
the unique one such that (qn(i), xn(i, j, s), yn) ∈ T n

ε (QXY ).
Similarly, upon receiving zn , Eve decodes i as the received
index if it is the unique one such that (qn(i), zn) ∈ T n

ε (QZ);
otherwise she declares an error. For a particular code Cn , we
note Pe(Cn) the probability that Bob does not recover correctly
(i, j, s) and that Eve does not recover correctly i .

Lemma 3: If R0 < I (Q; Y ) and Rc + Rp < I (X; Y |Q),
then E[Pe(Cn)] � 2−αn for some α > 0.

Proof: The proof follows from a standard random coding
argument and is omitted.

Lemma 4: If lim
n→∞

1

n
H2(Mp) > I (X; Z |Q), then we have

ECn

[
V(pMc Zn , pMc pZn)

]
� 2−βn for some β > 0 and all

n ∈ N sufficiently large.
Proof: The proof relies on a careful analysis and modifica-

tion of the “cloud-mixing” lemma [47]. Let ε > 0. For clarity,
we denote here p̂Qn Xn Zn the joint distribution of (Qn, Xn, Zn)
induced by the code, as opposed to pQn Xn Zn defined as

pQn Xn Zn (qn, xn, zn) = pZn|Xn (zn|xn)pXn Qn (xn, qn).

First note that the variational distance V( p̂Mc Zn , pMc p̂Zn) can
be bounded as follows.

V( p̂Mc Zn , pMc p̂Zn)

� V( p̂Mc Qn Zn , pMc p̂Qn Zn )

= EQn Mc

[
V( p̂Zn|Mc Qn , p̂Zn|Qn )

]

� EQn Mc

[
V( p̂Zn|Mc Qn , pZn|Qn )+ V(pZn|Qn , p̂Zn|Qn )

]

� 2EQn Mc

[
V( p̂Zn|Mc Qn , pZn|Qn )

]

Then, let Qn
1 be the sequence in Qn corresponding to M0 = 1.

By symmetry of the random code construction, the average
of the variational distance V( p̂Mc Zn , pMc p̂Zn) over randomly
generated codes Cn satisfies

ECn

[
V( p̂Mc Zn , pMc p̂Zn)

]

� 2ECn

[
V( p̂Zn|Qn=Qn

1 Mc=1, pZn|Qn=Qn
1
)
]
,

2If such a probability distribution does not exist the result of Lemma 1 is
trivial and there is nothing to prove.
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where

p̂Zn|Qn=Qn
1 Mc=1(z

n) =
2nRp
∑

k=1

pZn|Xn (zn|xn(1, 1, k))pMp(k).

The average over the random codes can be split between the
average of Qn

1 and the random code Cn(qn
1 ) for a fixed value

of qn
1 , so that

ECn

[
V( p̂Zn|Qn=Qn

1 Mc=1, pZn|Qn=Qn
1
)
]

=
∑

qn
1 ∈Qn

pQn(qn
1 )ECn(qn

1 )

[
V( p̂Zn|Qn=qn

1 Mc=1, pZn|Qn=qn
1
)
]

�
∑

qn
1 ∈T n

ε (U )

pU n(qn
1 )ECn(qn

1 )

[
V( p̂Zn|Qn=qn

1 Mc=1, pZn|Qn=qn
1
)
]

+ 2P
[
Qn /∈ T n

ε (Q)
]
,

where the last inequality follows from the fact that the varia-
tional distance is always less than 2. The first term on the right-
hand side vanishes exponentially with n, and we now proceed
to bound the expectation in the second term following [47].
First note that, for any zn ∈ Zn ,

ECn(qn
1 )

[
p̂Zn|Qn=qn

1 Mc=1(z
n)
]

= ECn (qn
1 )

⎡

⎣
2nRp
∑

k=1

pZn|Xn (zn|xn(1, 1, k))pMp(k)

⎤

⎦

=
2nRp
∑

k=1

ECn(qn
1 )

[
pZn|Xn (zn|xn(1, 1, k))

]
pMp(k)

= pZn|Qn=qn
1
(zn).

We now let 1 denote the indicator function and we define

p(1)(zn) �
2nRp
∑

k=1

pZn|Xn (zn|xn(1, 1, k))pMp(k)

×1{(xn(1, 1, k), zn) ∈ T n
2ε(X Z |qn

1 )},

p(2)(zn) �
2nRp
∑

k=1

pZn|Xn (zn|xn(1, 1, k))pMp(k)

×1{(xn(1, 1, k), zn) /∈ T n
2ε(X Z |qn

1 )},

so that we can upper bound V( p̂Zn|Qn=qn
1 Mc=1, pZn|Qn=qn

1
) as

V( p̂Zn|Qn=qn
1 Mc=1, pZn |Qn=qn

1
)

�
∑

zn /∈T n
2ε (Z |qn

1 )

∣
∣
∣ p̂Zn|Qn=qn

1 Mc=1(z
n)− pZn|Qn=qn

1
(zn)

∣
∣
∣

(23)

+
∑

zn∈T n
2ε(Z |qn

1 )

∣
∣
∣p(1)(zn)− E

[
p(1)(zn)

]∣
∣
∣ (24)

+
∑

zn∈T n
2ε(Z |qn

1 )

∣
∣
∣p(2)(zn)− E

[
p(2)(zn)

]∣
∣
∣ . (25)

Taking the expectation of the term in (23) over Cn(qn
1 ), we

obtain

E

⎡

⎣
∑

zn /∈T n
2ε (Z |qn

1 )

∣
∣
∣ p̂Zn|Qn=qn

1 Mc=1(z
n)− pZn|Qn=qn

1
(zn)

∣
∣
∣

⎤

⎦

�
∑

zn /∈T n
2ε (Z |qn

1 )

E

[
p̂Zn|Qn=qn

1 Mc=1(z
n)+ pZn|Qn=qn

1
(zn)

]

= 2
∑

zn /∈T n
2ε (Z |qn

1 )

pZn|Qn=qn
1
(zn),

which vanishes exponentially fast as n goes to infinity for
qn

1 ∈ T n
ε (Q). Similarly, taking the expectation of the term

in (25) over Cn(qn
1 ), we obtain

E

⎡

⎣
∑

zn∈T n
2ε(Z |qn

1 )

∣
∣
∣p(2)(zn)− E

[
p(2)(zn)

]∣
∣
∣

⎤

⎦

� E

⎡

⎣
∑

zn∈Zn

∣
∣
∣p(2)(zn)− E

[
p(2)(zn)

]∣
∣
∣

⎤

⎦

� 2
∑

zn∈Zn

E

[
p(2)(zn)

]

=
∑

zn∈Zn

E
[

pZn|Xn (zn |Xn(1, 1, 1))

× 1{(Xn(1, 1, 1), zn) /∈ T n
2ε(X Z |qn

1 )}
]

=
∑

(xn,zn)/∈T n
2ε (X Z |qn

1 )

pZn Xn |Qn=qn
1
(zn, xn),

which vanishes exponentially fast with n. Finally, we focus
on the expectation of the term in (24) over Cn(qn

1 ). For
zn ∈ T n

2ε(Z |qn
1 ), Jensen’s inequality and the concavity of

x �→ √
x guarantee that

E

[∣
∣
∣p(1)(zn)− E

[
p(1)(zn)

]∣
∣
∣
]

�
√

Var
(

p(1)(zn)
)
.

In addition,

Var
(

p(1)(zn)
)

=
2nRp
∑

k=1

pMp(k)
2Var

× (
pZn|Xn (zn |Xn(1, 1, k))

×1{(Xn(1, 1, k), zn) ∈ T n
2ε(X Z |qn

1 )}
)

Note that

Var
(

pZn|Xn (zn|Xn(1, 1, k))

×1{(Xn(1, 1, k), zn) ∈ T n
2ε(X Z |qn

1 )}
)

�
∑

xn∈X n

pXn|Qn=qn
1
(xn)

(
pZn|Xn (zn|xn)

× 1{(xn, zn) ∈ T n
2ε(X Z |qn

1 )}
)2

=
∑

xn:(xn,zn)∈T n
2ε(X Z |qn

1 )

pXn|Qn=qn
1
(xn)pZn|Xn (zn|xn)2

(a)
� 2−n(H(Z |X)−δ(ε))

×
∑

xn :(xn,zn)∈T n
2ε(X Z |qn

1 )

pXn|Qn=qn
1
(xn)pZn|Xn (zn|xn)

� 2−n(H(Z |X)−δ(ε)) pZn|Qn=qn
1
(zn)

(b)
� 2−n(H(Z |X)+H(Z |Q)−δ(ε)),
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where (a) and (b) follow from the AEP; therefore,

Var
(

p(1)(zn)
)

� 2−n(H(Z |X)+H(Z |Q)−δ(ε))
2nRp
∑

k=1

pMp(k)
2

� 2−n(H(Z |X)+H(Z |Q)−δ(ε))+ H2(Mp )
n .

and
∑

zn∈T n
2ε(Z |qn

1 )

E

[∣
∣
∣p(1)(zn)− E

[
p(1)(zn)

]∣
∣
∣
]

� 2nH(Z |Q)2− n
2 (H(Z |X)+H(Z |Q)−δ(ε)+ H2(Mp )

n )

= 2− n
2 (

H2(Mp )
n −I (X;Z |Q)−δ(ε))

Hence, if limn→∞ 1
n H2(Mp) > I (X; Z |Q) + δ(ε), the sum

vanishes as n goes to infinity, which concludes the proof.
We point out that a generalized version of Lemma 4 may

now be found in [38]; in fact, [38, Th. 14] develops a
general exponential bound on the secrecy metric, and a close
inspection of their result shows a tighter exponent involves the
Rényi entropy of order 1 + ρ with ρ ∈ [0, 1] in place of the
Rényi entropy of order 2. Actually, [48] shows that this is
the best exponent with random codes.

Using Markov’s inequality, we conclude that there exists
at least one code Cn satisfying the rate inequalities in
Lemma 3 and Lemma 4, such that Pe(Cn) � 3 · 2−αn and
V(pMc M0 Zn , pMc pM0 Zn ) � 3 · 2−βn . We now define

P1(m) � P

[
Mc �= M̂c|Mc = m

]
,

P2(m) � P

[
Mp �= M̂p |Mc = m

]
,

S(m) = V(pZn|Mc=m, pZn ).

Since E[P1(Mc)] � 2−αn , E[P2(Mc)] � 2−αn , and
E[S(Mc)] � 2−βn , we conclude with Markov’s inequality that
for n large enough, we have

P1(m) < 2−αn+2, P2(m) < 2−αn+2, S(m) < 2−βn+2

for at least a quarter of the messages m. Expurgating the
code Cn to retain only these messages concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 2

A. Achievability

We show next that there exists a sequence of (2nR, n, 2dn )
uniform compression codes {Cn}n∈N∗ such that H (X) is
achievable with a seed length dn scaling as

dn = 
(υn
√

n), for any {υn}n∈N with lim
n→∞ υn = +∞.

Let ε1 > 0, ε > 0, n ∈ N, dn ∈ N, R > 0. Define
Mn � 2nR and Mn � �1,Mn�. Consider a random mapping
 : X n × Udn → Mn , and its associated decoder � :
Mn × Udn → X n . Given (m, udn ) ∈ Mn × Udn , the decoder
outputs x̂ n if it is the unique sequence such that x̂ n ∈ T n

ε1
(X)

and (x̂ n, udn ) = m; otherwise it outputs an error. We let

M � (Xn,Udn ), and define Ue � V
(

pM , pUMn

)
,

Pe � P[Xn �= �((Xn,Udn ),Udn )].
• We first determine a condition over R to ensure

E [Ue] � ε. Note that ∀m ∈ Mn ,

pM(m) =
∑

xn

∑

u

p(xn, u)1{(xn, u) = m},

hence, on average ∀m ∈ Mn, E [pM(m)] = 2−nR,
which allows us to write

E [Ue]

= E

[
∑

m

|pM(m)− E [pM(m)]|
]

�
2∑

i=1

E

[
∑

m

∣
∣
∣p
(i)
M (m)− E

[
p(i)M (m)

]∣
∣
∣

]

, (26)

where ∀m ∈ Mn , ∀i ∈ �1, 2�,

p(i)M (m) =
∑

xn∈Ai

∑

u

p(xn, u)1{(xn, u) = m},

with A1 � T n
ε1
(X) and A2 � Ac

1. After some manipula-
tions similar to those used to bound (25), we bound the
second term in (26) as

E

[∑

m

∣
∣
∣p(2)M (m)− E

[
p(2)M (m)

]∣
∣
∣
]

� 4|X |e−nε2
1μX ,

(27)

with μX = min
x∈supp(PX )

PX (x). Then, we bound the first

term in (26) by Jensen’s inequality

E

[
∑

m

∣
∣
∣p
(1)
M (m)− E

[
p(1)M (m)

]∣
∣
∣

]

�
∑

m

√

Var
(

p(1)M (m)
)
. (28)

Moreover, after additional manipulations similar to those
used to bound (24), we obtain

Var
(

p(1)M (m)
)

=
∑

xn∈T n
ε1
(X)

∑

u

p(xn, u)2Var
(
1{(xn, u) = m})

�
∑

xn∈T n
ε1
(X)

∑

u

p(xn, u)2E

[
(1{(xn, u) = m})2

]

=
∑

xn∈T n
ε1
(X)

∑

u

p(xn, u)2E

[
1{(xn, u) = m}]

=
∑

xn∈T n
ε1
(X)

∑

u

p(xn)2 p(u)22−nR

=
∑

xn∈T n
ε1
(X)

p(xn)22−d2−nR

�
∑

xn∈T n
ε1
(X)

exp2 [−2n(1 − ε1)H (X)] 2−dn
1

Mn

� |T n
ε1
(X)| exp2 [−2n(1 − ε1)H (X)] 2−dn 2−nR

� exp2 [−n(1 − 3ε1)H (X)] 2−dn 2−nR . (29)
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Thus, by combining (28) and (29), we obtain

E

[
∑

m

∣
∣
∣p
(1)
M (m)− E

[
p(1)M (m)

]∣
∣
∣

]

�
∑

m

√
exp2 [−n(1 − 3ε1)H (X)] 2−dn 2−nR (30)

= √
Mn exp2

[

−n

2

(

(1 − 3ε1)H (X)+ dn

n

)]

� exp2

[
n

2

(

R − (1 − 3ε1)H (X)− dn

n

)]

. (31)

Hence, if R < H (X)+ dn
n −3ε1 H (X), then asymptotically

E [Ue] � ε by (27) and (31).
• We now derive a condition over R to ensure E[Pe] � ε.

We define E0 � {Xn /∈ T n
ε1
(X)}, and E1 � {∃x̂ n �=

Xn ,(x̂ n,U) = (Xn,U) and x̂ n ∈ T n
ε1
(X)} so that by

the union bound, E[Pe] � P[E0] + P[E1]. We have

P[E0] � 2|X |e−nε2
1μX , (32)

and defining P(xn, x̂ n, u) � P[∃x̂ n �= xn,(x̂ n, u) =
(xn, u) and x̂ n ∈ T n

ε1
(X)], we have

P[E1] =
∑

xn

∑

u

p(xn, u)P(xn, x̂ n, u)

�
∑

xn

∑

u

p(xn, u)
∑

x̂ n∈T n
ε1
(X)

x̂ n �=xn

P[(x̂ n, u) = (xn, u)]

=
∑

xn

∑

u

p(xn, u)
∑

x̂ n∈T n
ε1
(X)

x̂ n �=xn

2−nR

�
∑

xn

∑

u

p(xn, u)|T n
ε1
(X)|2−nR

�
∑

xn

∑

u

p(xn, u) exp2 [nH (X)(1 + ε1)] 2−nR

� exp2 [n(H (X)(1 + ε1)− R)] . (33)

Hence, if R > H (X) + ε1 H (X), then asymptotically
E(Pe) � ε by (32) and (33).

All in all, if R is such that

H (X)+ ε1 H (X) < R < H (X)+ dn

n
− 3ε1 H (X),

then asymptotically by the selection lemma (e.g.,
[5, Lemma 2.2]), E[Ue] � ε and E[Pe] � ε. Thus,
we choose dn such that

4nε1 H (X) < dn � 4nε1 H (X)+ 1.

We can also choose ε1 = υn√
n

,3 for any υn with
limn→∞ υn = +∞, such that

4H (X) <
dn

υn
√

n
� 4H (X)+ (

√
nυn)

−1,

which means dn = 
(υn
√

n). Finally, by means of the
selection lemma applied to Pe and Ue, there exists a realization
of  such that Ue � ε and Pe � ε.

3Note that we cannot make ε1 decrease faster because of (27) and (32).

B. Converse

We first show that any achievable rate R must satisfy
R � H (X). Assume that R is an achievable rate. We note
M � φn(Xn,Udn ). We have

n R � H (M)

� I (Xn; M|Udn )

= H (Xn|Udn )− H (Xn|MUdn )
(a)
� H (Xn|Udn )− nδ(ε)
(b)= nH (X)− nδ(ε),

where (a) holds by Fano’s inequality and (b) holds by inde-
pendence of Xn and Udn .

Hence it remains to show an upper bound for the optimal
scaling of dn . Recall first the Berry-Esséen Theorem.

Theorem 2 (Berry-Esséen Theorem): Let {Zi }i∈N be a
sequence of i.i.d. random variables with E[Z1] = μ and
E[(Z1 − μ)2] = σ 2

Z > 0 and E[|Z1 − μ|3] = ρZ < ∞.
Let Yn = Z1+Z2+···+Zn−nμ

σZ
√

n
. Let Fn denote the cumulative

distribution function of Yn. Then, for any x ∈ R,

|Fn(x)−(x)| � αρZ

σ 3
Z

√
n
, (34)

where  is the cumulative distribution function of the standard
normal distribution with mean zero and variance 1 and α is
a constant that depends only on the distribution of Z1.

Using Theorem 2, we show the following.
Lemma 5: Let {Xi }i∈N be a sequence of i.i.d. random

variables with each distributed according to pX such that

H (X) � −E[log pX (X1)] < ∞,

σ 2 � E
[
(log pX (X1)+ H (X))2

]
> 0,

ρ � E
[| log pX (X1)+ H (X)|3] < ∞.

Then, there exists an α > 0 such that for any a > b > 0,

ηa,b �
∣
∣
∣P[Xn ∈ Tn(a, b)] − (

(−b)−(−a)
)∣∣
∣ � 2αρ

σ 3
√

n
,

η∞,b �
∣
∣
∣P[Xn ∈ Tn(∞, b)] −(−b)

∣
∣
∣ � αρ

σ 3
√

n
.

where

Tn(a, b) �
{

xn ∈ X n : 2−nH(X)−aσ
√

n < pX (xn)

2−nH(X)−bσ
√

n � pX (xn)

}

.

Proof: Define Sn � nH(X)+∑n
j=1 log2 pX (X j )

σ
√

n
. Then,

P[Xn ∈ Tn(a, b)] = P [−a < Sn � −b]

= P [Sn � −b] − P [Sn � −a] .

Hence,

ηa,b �
∣
∣P[Xn ∈ Tn(a, b)] − (

(−b)−(−a)
)∣
∣

(a)
�
∣
∣P [Sn � −b] −(−b)

∣
∣+ ∣

∣P [Sn � −a] −(−a)
∣
∣

(b)
� 2αρ

σ 3
√

n
,

where (a) holds by the triangle inequality, and (b) holds by
Theorem 2. The bound on η∞,b holds similarly.
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We will also make use of the following lemma.
Lemma 6: For any φn : X n × Udn → Mn and for any

γn ∈]0,Mn [,

Ue(φn) � 2

(

P

[

pXn(Xn) >
2dn

γn

]

− γn

Mn

)

.

Proof: Let φn : X n × Udn → Mn . We apply
[49, Lemma 2.1.2] to φn so that for any n ∈ N, for any a, for
any ϒ > 0

1

2
Ue(φn)

= 1

2
V
(

pφn(Xn,Udn ), pUMn

)

� P[(Xn,Udn ) /∈ S′
n(a)] − P[UMn ∈ Tn(a +ϒ)] − e−nϒ

= P[Xn /∈ Sn(a − dn/n)] − P[UMn ∈ Tn(a +ϒ)] − e−nϒ,

where

S′
n(a) �

{

(xn, udn ) ∈ X n × Udn : 1

n
log

1

PXnUdn
(xn, udn )

� a

}

=
{

(xn, udn ) ∈ X n × Udn : 1

n
log

1

PXn (xn)
� a − dn

n

}

,

Sn(a) �
{

xn ∈ X n : 1

n
log

1

PXn (xn)
� a

}

,

Tn(a) �
{

u ∈ UMn : 1

n
log

1

PUMn
(u)

< a

}

.

For any γn ∈]0,Mn [, we choose ϒ � 1
n log Mn

γn
and

a � 1
n log γn , such that a + ϒ = 1

n log Mn and P[UMn ∈
Tn(a +ϒ)] = 0. Hence, we obtain

1

2
Ue(φn) � P[Xn /∈ Sn(a − dn/n)] − e−nϒ

= P

[
1

n
log

1

PXn (xn)
< a − dn/n

]

− e−nϒ

= P

[
1

n
log

1

PXn (xn)
<

1

n
log(γn2−dn )

]

− γn

Mn
.

Proposition 5 (Converse): Let for each n ∈ N, Cn be an
(2nR, n, 2dn ) uniform compression code Cn for a DMS (X , pX )
such that

lim
n→∞ Pe(φn, ψn) = lim

n→∞ Ue(φn) = 0.

Then, dn = 	(
√

n).
Proof: Since the encoding function φn of Cn utilizes a

seed Udn taking values in �1, 2dn � that is independent of the
source Xn , we can find u∗

dn
such that

P[Xn �= ψn(φn(X
n, u∗

dn
), u∗

dn
)] � Pe(φn, ψn). (35)

Fix a > b > 0, and define Ln(a, b) as

Ln(a, b) �
{
xn ∈ Tn(a, b) : xn = ψn(φn(x

n, u∗
dn
), u∗

dn
)
}
.

Note that

P[Xn ∈ Ln(a, b)]
� P[Xn ∈ Tn(a, b)] − P[Xn �= ψn(φn(X

n, u∗
dn
), u∗

dn
)]

(a)
� P[Xn ∈ Tn(a, b)] − Pe(φn, ψn)
(b)
� (−b)−(−a)− 2αρ

σ 3
√

n
− Pe(φn, ψn)

� υn(a, b),

where (a) follows from (35), and (b) holds by Lemma 5
with σ 2, ρ defined therein. Note that for any xn ∈ Ln(a, b),
pX (xn) � 2−nH(X)−bσ

√
n . Hence,

|Ln(a, b)|
2nH(X)+bσ

√
n

� P[Xn ∈ Ln(a, b)] � υn(a, b).

Since Ln(a, b) is a subset of source realizations for which
the code offers perfect reconstruction (when the seed used is
Udn = u∗

dn
), we have

Mn � |Ln(a, b)| � υn(a, b) 2nH(X)+bσ
√

n. (36)

We now use Lemma 6 with

γn � υn(a, b) 2nH(X), Mn � υn(a, b) 2nH(X)+bσ
√

n,

which yields

P

[
pXn(Xn) > 2dn

γn

]
� Ue(φn)

2
+ γn

|Mn|
� Ue(φn)

2
+ 2−bσ

√
n . (37)

From Lemma 5, it follows that

P

[
pXn (Xn) � 2dn

γn

]
= P

[

pXn(Xn) � 2dn

υn(a, b)2nH(X)

]

� 

⎛

⎝
log 2dn

υn(a,b)

σ
√

n

⎞

⎠+ αρ

σ 3
√

n
. (38)

Combining (37) and (38), we obtain



⎛

⎝
log 2dn

υn(a,b)

σ
√

n

⎞

⎠ � βn � 1 − Ue(φn)

2
− 2−bσ

√
n − αρ

σ 3
√

n
.

Rearranging terms and taking appropriate limit, we get

lim
n→∞

dn

σ
√

n
= −1

(



(

lim
n→∞

dn

σ
√

n

))

= −1
(

lim
n→∞

(
dn

σ
√

n

))

� −1
(

lim
n→∞ βn

)
= −1(1) = ∞,

where in the above arguments, we have used the fact that 
is invertible, continuous and increasing.

Remark 5: In [2], we prove a converse for i.i.d. sources
that is stronger than Proposition 5. If dn = o(

√
n), then

lim sup
n→∞

Pe(φn, ψn)+ lim sup
n→∞

Ue(φn) � 1.

We however do not need this stronger statement for our
purpose.
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APPENDIX D
PROOF OF PROPOSITION 3

Let ε > 0, δ > 0 and n ∈ N. Let t , m, and dn to be
expressed later. We know from [43] and [44] that there exists
an invertible (m, d,m, t, ε)-extractor EXT0, such that (2) is
satisfied. Assume that the emitter and the receiver share a
sequence Udn of dn uniformly distributed bits. As described
in Figure 5, we proceed in two steps to encode Xn . First,
we perform a compression of Xn to form S based on ε0-
letter typical sequences, ε0 > 0, we note this operation
φ′

n : X n → M′
n , such that S � φ′

n(X
n), and we note

ψ ′
n : M′

n → X n the inverse operation such that

lim
n→∞ P[Xn �= ψ ′

n ◦ φ′
n(X

n)] = 0. (39)

Note that this compression implies

lim sup
n→∞

1

n
log |M′

n| � H (X)+ δ. (40)

Then, we apply the extractor EXT0 to S and Udn , to form the
encoded message M = EXT0(S,Udn ). We define the encoding
function φn : X n × Udn → Mn as

φn(X
n,Udn ) � M = EXT0(φ

′
n(X

n),Udn ),

and the decoding function ψn : Mn × Udn → X n as

ψn(M,Udn ) � ψ ′
n(EXT−1

0 (M,Udn ))

= ψ ′
n(S)

= ψ ′
n ◦ φ′

n(X
n), (41)

which is possible since EXT0 is invertible. Note that
by (39), (41), we have

lim
n→∞ P[Xn �= ψn(φn(X

n,Udn ),Udn )]
= lim

n→∞ P[Xn �= ψ ′
n ◦ φ′

n(X
n)]

= 0,

and since the sizes of the first input and output of the extractor
are the same, by (40), we have

lim sup
n→∞

1

n
log |M′

n| � H (X)+ δ.

Moreover, [43], [44] also shows that Ue � ε. It remains to
show that for any εb > 0, we can choose dn � 
(n1/2+εb).
Let ε0 > 0. As in the proof of Lemma 1, we may show

H∞(S) = − log(max pS(s))

� n(1 − ε0)H (X)− log

[

1 + δε0(n)

1 − δε0(n)

]

.

We define

t � n(1 − ε0)H (X)− log

[

1 + δε0(n)

1 − δε0(n)

]

. (42)

Thus, since the input size m of the extractor verifies
m � �n(1 + ε0)H (X)	, by (2) and (42) we obtain

dn � n(1 + ε0)H (X)− t + 2 log[n(1 + ε0)H (X)]
+ 2 log

1

ε
+ O(1)

= 2nε0 H (X)+ log

[

1 + δε0(n)

1 − δε0(n)

]

+ 2 log[n(1 + ε0)H (X)] + 2 log
1

ε
+ O(1).

Then, we choose ε0 = υn√
n

, for any υn with
limn→∞ υn = +∞, such that

dn

υn
√

n
� 2H (X)+ 2

υn
√

n
log

1

ε
+ O

(
log n

υn
√

n

)

,

which means dn = O(υn
√

n).

APPENDIX E
PROOF OF PROPOSITION 4

Let β ∈]0, 1/2[. Let n ∈ N and N � 2n . We set
AN � X N GN . We define the following sets.

VX �
{

i ∈ �1, N� : H
(

Ai |Ai−1
)
> 1 − δN

}
,

HX �
{

i ∈ �1, N� : H
(

Ai |Ai−1
)
> δN

}
.

These sets cardinalities satisfy the following properties.
Lemma 7: The sets HX and VX satisfy

1) limN→+∞ |HX |/N = H (X),
2) limN→+∞ |VX |/N = H (X),
3) limN→+∞ |HX\VX |/N = 0.

Proof: 1) follows from [45] and [50]. 2) follows from
[51, Lemma 1] which also uses [50]. 3) holds by 1) and 2)
since VX ⊂ HX .

Lemma 8: The output of the encoder AN [VX ] is near
uniformly distributed with respect to the Kullback-Leibler
divergence.

Proof: We have

H
(

AN [VX ]
)

=
∑

i∈VX

H
(

Ai |Ai−1[VX ]
)

�
∑

i∈VX

H
(

Ai |Ai−1
)

� |VX | (1 − δN ) ,

where the first inequality holds because conditioning reduces
entropy and the last inequality follows from the definition
of VX . We thus obtain

log 2|VX | − H (AN [VX ]) � |VX |δN � NδN .

Finally, by [45], the receiver can reconstruct X N from
AN [VX ] and I0 � AN [HX\VX ], where I0 is encrypted via a
one-time pad with the uniform seed shared by Alice and Bob.
Hence, by Lemmas 7, 8, we obtain a polar code construction
for a uniform compression code, whose seed length scales
as o(N).
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