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Abstract—We consider networks of noisy degraded wiretap
channels in the presence of an eavesdropper. For the case where
the eavesdropper can wiretap at most one channel at a time,
we show that the secrecy capacity region, for a broad class of
channels and any given network topology and communication
demands, is equivalent to that of a corresponding network where
each noisy wiretap channel is replaced by a noiseless wiretap
channel. Thus in this case there is a separation between wiretap
channel coding on each channel and secure network coding on
the resulting noiseless network. We show with an example that
such separation does not hold when the eavesdropper can access
multiple channels at the same time, for which case we provide
upper and lower bounding noiseless networks.

I. INTRODUCTION

Information theoretically secure (secret) communication in
the presence of an eavesdropper has been studied under various
models. One body of literature studies the wiretap channel,
introduced by Wyner [1], where the intended receiver and
the eavesdropper observe outputs of a physical layer channel.
Another body of literature investigates the secure capacity of
networks of noise-free links. Under this model, introduced by
Cai and Yeung in [2], an eavesdropper perfectly observes all
information traversing a restricted but unknown subset of links.
The first paper on the secure capacity of a network of noisy
channels is [3], which finds upper and lower bounds on the
unicast capacity of a network of independent broadcast erasure
channels when the output observed by the eavesdropper equals
that of the intended receiver on all wiretapped channels.

Our work considers the problem of secure communication
over a network of independent wiretap channels which are
physically degraded and “simultaneously maximizable” (see
Definition 1 in Section II), and broadens consideration to
general capacity regions specifying vectors of simultaneously
achievable rates. We require asymptotically negligible decod-
ing error probability and information leakage to the eaves-
dropper, as defined formally in Section II. In the case where
the eavesdropper has access to only one link, the identity of
which is unknown to the code designer, we show that the
secrecy capacity region is identical to that of a corresponding
noiseless network, for any network topology and connection
types. Thus in this case capacity can be achieved by separate
design of wiretap channel codes converting each channel to
a pair of public and confidential noiseless links, and a secure
network code on the resulting noiseless network. We show
with an example that such separation does not hold when
the eavesdropper can access multiple channels at the same

time, for which case we provide upper and lower bounding
noiseless networks. Our results bring together and generalize
the wiretap channel and secure network coding literature,
allowing application of existing results on secure network
coding capacity to characterize or bound the secure capacity
of networks of such wiretap channels. Our work builds on and
generalizes the techniques developed by Koetter, Effros, and
Medard in [4], [5], which show similar capacity bounds in the
absence of secrecy constraints. We provide below outlines of
all proofs, details of which are given in the full version of this
paper [6].

II. MODEL AND PRELIMINARIES

Consider a network G = (V, E), where V is the set of nodes
and E ⊆ V×V×N is a set of directed edges between pairs of
nodes in the network. Edge (i, j, k) represents the kth wiretap
channel through which node i communicates to node j and
through which an eavesdropper may or may not be listening.
The total number of nodes in the network is m. The channel
inputs and outputs for node i at time t are given by

X
(i)
t =

(
X

(e)
t : e ∈ Eout(i)

)
and Y

(i)
t =

(
Y

(e)
t : Ein(i)

)
where X(e)

t and Y (e)
t denote the input to and the output from

edge e respectively, and X (e) and Y(e) denote their alphabets,
which may be discrete or continuous. We define

Ein(i) = {(u, v, w) ∈ E : v = i}
Eout(i) = {(u, v, w) ∈ E : u = i}

X (i) =
∏

e∈Eout(i)

X (e) and Y(i) =
∏

e∈Ein(i)

Y(e).

Let P(E) denote the power set of the set of all edges. In a
secure communication problem, an adversarial set A ⊆ P(E)
is specified. Each set E ∈ A describes a subset of channels
over which an eavesdropper may be listening. The code is
designed to be secure against eavesdropping on the set of
channels E for every E ∈ A. When the eavesdropper listens to
edge e = (i, j, k), the eavesdropper receives, at each time t, a
degraded version Z

(e)
t of the channel output Y (e)

t observed
by the intended recipient, which is the output node j of
edge e = (i, j, k). If the eavesdropper has eavesdropping
set E ∈ A, then at time t it receives the set of random
variables

(
Z

(e)
t : e ∈ E

)
, which we compactly write as Z(E)

t .



The vector
(
Z

(E)
1 , . . . , Z

(E)
n

)
of observations from all edges

e ∈ E over time steps t ∈ {1, . . . , n} is denoted by
(
Z(E)

)n
.

Similarly we define
(
X(E)

)n
=

(
X

(E)
1 , . . . , X

(E)
n

)
and(

Y (E)
)n

=
(
Y

(E)
1 , . . . , Y

(E)
n

)
where X(E)

t =
(
X

(e)
t : e ∈ E

)
and Y (E)

t =
(
Y

(e)
t : e ∈ E

)
.

For each e ∈ E , channel e is a memoryless, time-invariant,
physically degraded wiretap channel described by a condi-
tional distribution

p(y(e), z(e)|x(e)) = p(y(e)|x(e)) · p(z(e)|y(e)).

All wiretap channels are independent by assumption, giving

p
(
y(E), z(E)|x(E)

)
=
∏
e∈E

p
(
y(e), z(e)|x(e))

=
∏
e∈E

p
(
y(e)|x(e))p

(
z(e)|y(e)).

We further restrict our attention to channels that are “simulta-
neously maximizable,” as defined below.

Definition 1: Wiretap channel e is called simultaneously
maximizable if

arg

[
max
p(x)

I(X(e);Y (e))

]
= arg

[
max
p(x)

I(X(e);Z(e))

]
and

max
p(x(e))

[
I(X(e);Y (e))− I(X(e);Z(e))

]
= max
p(x(e))

I(X(e);Y (e))− max
p(x(e))

I(X(e);Z(e)).

The about maximization is subject to any constraints on the
channel input (e.g., an input power constraint for a Gaus-
sian channel) associated with the communication network
of interest. Examples of simultaneously maximizable wiretap
channels include weakly symmetric channels and Gaussian
channels [7], [8]. Intuitively, restriction to simultaneously
maximizable channels simplifies our analysis since the same
input distribution maximizes both the total and secure capacity.

A code of blocklength n operates over n time steps to
reliably communicate message

W (i→B) ∈ W(i→B) def
={1, . . . , 2nR(i→B)}

from each source node i ∈ V to each nonempty set B ⊆ V\{i}
of sink nodes in a manner that guarantees information theoretic
security in the presence of any eavesdropper E ∈ A. This
constitutes a unicast connection if |B| = 1 and a multicast
connection if |B| > 1. Constant R(i→B) is called the trans-
mission rate from source i to sink set B. The vector of all
rates R(i→B) is denoted by R =

(
R(i→B) : i ∈ V,B ∈ B(i)

)
,

where set B(i) = {B : B ⊆ V\{i},B 6= ∅} is the set of non-
empty receiver sets to which node i may wish to transmit.
Similarly, the vector of all messages is denoted by W =(
W (i→B) : i ∈ V,B ∈ B(i)

)
.

Each node i ∈ V also has access to a random variable
T (i) ∈ T (i) def

={1, . . . , 2nC(i)} for use in randomized coding

Fig. 1. A noiseless degraded broadcast channel with confidential rate Rc

and public rate Rp.

for secrecy, where

C(i) =
∑

e∈Eout(i)

max
p(x(e))

I
(
X(e);Y (e)

)
(1)

is the sum of the outgoing channel capacities from node
i. Each T (i) is uniformly distributed on its alphabet and
independent of all messages and channel noise.

Definition 2: Let a network

N def
=(
∏
e∈E
X (e),

∏
e∈E

(
p(y(e)|x(e))p

(
z(e)|y(e)

))
,∏

e∈E

(
Y(e) ×Z(e)

)
)

be given corresponding to a graph G = (V, E). A blocklength
n solution S(N ) is defined as a set of encoding functions

X
(i)
t :

(
Y(i)

)t−1

×
∏
B∈B(i)

W(i→B) × T (i) −→ X (i)

mapping
(
Y

(i)
1 , . . . , Y

(i)
t−1,

(
W (i→B) : B ∈ B(i)

)
, T (i)

)
to

X
(i)
t for each i ∈ V and t ∈ {1, . . . , n}, and a set of decoding

functions

W̆ (j→K,i) :
(
Y(i)

)n
×

∏
B∈B(i)

W(i→B) × T (i) −→W(j→K)

mapping
(
Y

(i)
1 , . . . , Y

(i)
n ,

(
W (i→B) : B ∈ B(i)

)
, T (i)

)
to

W̆ (j→K,i) for each j ∈ V , K ∈ B(j), and i ∈ K. The
solution S(N ) is called a (λ, ε,A,R)–solution, denoted
(λ, ε,A,R)–S(N ), if Pr

(
W̆ (j→K,i) 6= W (j→K)

)
< λ for

every j ∈ V , K ∈ B(j) and i ∈ K, and I
((
ZE
)n

;W
)
< nε

for every E ∈ A.
Definition 3: The A–secure rate region R(N , A) ⊆

Rm(2m−1−1)
+ of a network N is the closure of all rate vectors

R such that for any λ > 0 and ε > 0, a solution (λ, ε,A,R)–
S(N ) exists.

Given a network N and a channel ē ∈ E , the model
Nē(Rc, Rp) replaces ē with noiseless bit pipes as defined
below and illustrated in Figure 1.



Definition 4: Given a network

N def
=(
∏
e∈E
X (e),

∏
e∈E

(
p
(
y(e)|x(e)

)
p
(
z(e)|y(e)

))
,∏

e∈E

(
Y(e) ×Z(e)

)
)

and some ē ∈ E , the model Nē(Rc, Rp) replaces the degraded
wiretap channel

Cē =
(
X (ē), p(y(ē)|x(ē))p(z(ē)|y(ē)),Y(ē) ×Z(ē)

)
with the noiseless degraded wiretap channel

C(Rc, Rp) = ({0, 1}Rc+Rp , δ
(
y(ē) − (x(ē),c, x(ē),p)

)
δ
(
z(ē) − y(ē),p

)
, {0, 1}Rc+Rp × {0, 1}Rp)

that delivers the rate-Rc confidential portion x(ē),c of channel
input x(ē) = (x(ē),c, x(ē),p) to the intended receiver and the
rate-Rp public portion x(ē),p of that input to both the intended
receiver and eavesdropper. The resulting network is given by

Nē(Rc, Rp) def
=({0, 1}Rc+Rp ×

∏
e∈E\{ē}

X (e),

δ(y(ē) − (x(ē),c, x(ē),p))δ(z(ē) − y(ē),p)

·
∏

e∈E\{ē}

(p(y(e)|x(e)).p(z(e)|y(e))),

{0, 1}Rc+Rp × {0, 1}Rp ×
∏

e∈E\{ē}

(Y(e) ×Z(e))).

As in [4], [5], we allow non-integer values of Rc and Rp to
denote noiseless bit pipes that require multiple channel uses
to deliver some integer number of bits.

Many of the subsequent proofs use the notion of a “stacked
network” introduced in [4], [5], extended here by adding
an eavesdropper. Informally, the N -fold stacked network N
contains N copies of network N . The N copies of each node
i ∈ V use the outgoing messages and channel outputs from
all N layers of the network to form the channel inputs in
each layer of the stack. Likewise, each node uses the channel
outputs and messages from all layers in the stack in building its
message reconstructions. An eavesdropper E ∈ A overhears
all copies of channel e for each e ∈ E.

As defined formally below following [4], [5], a solution
for N -fold stacked network N must securely and reliably
transmit, for each i ∈ V and B ∈ B(i), N independent
messages W (i→B)(1), . . . ,W (i→B)(N) from node i to all the
receivers in set B. We underline the variable names from
N to denote variables for the stacked network N . Therefore

W (i→B) ∈ W(i→B) def
=
(
W(i→B)

)N
, T (i) ∈ T (i) def

=
(
T (i)

)N
,

X
(i)
t ∈ X (i) def

=
(
X (i)

)N
, Y (i)

t ∈ Y(i) def
=
(
Y(i)

)N
, and Z(e)

t ∈

Z(e) def
=
(
Z(e)

)N
denote N -dimensional vectors of messages,

channel inputs, channel outputs, and eavesdropper outputs,
respectively, in network N . The variables in the `th layer of the
stack are denoted by an argument `. Finally, we define the rate

R(i→B) for a stacked network to be (log2 |W(i→B)|)/(nN)
since any solution of blocklength n for N -fold stacked net-
work N can be operated as a rate-R solution of blocklength
nN for network N under this definition [4, Theorem 1].
A similar argument, given in Theorem 1 below, justifies
the security constraint imposed below. Definitions 5-7 are
analogous to Definitions 4-6 in [4].

Definition 5: Let a network

N def
=(
∏
e∈E
X (e),

∏
e∈E

(
pe

(
y(e)|x(e)

)
pe

(
z(e)|y(e)

))
,∏

e∈E

(
Y(e) ×Z(e)

)
)

be given corresponding to a graph G = (V, E), and let an
eavesdropper set A ⊆ P (E) be defined on network N . Let
N be the N -fold stacked network for N . A blocklength-n
solution S(N ) to this network is defined as a set of encoding
functions

X
(i)
t :

(
Y(i)

)t−1

×
∏
B∈B(i)

W(i→B) × T (i) −→ X (i)

mapping
(
Y

(i)
1 , . . . , Y

(i)
t−1,

(
W (i→B) : B ∈ B(i)

)
, T (i)

)
to

X
(i)
t for each i ∈ V and t ∈ {1, . . . , n}, and decoding

functions

W̆
(j→K,i)

:
(
Y(i)

)n
×

∏
B∈B(i)

W(i→B) × T (i) −→W(j→K)

mapping
(
Y

(i)
1 , . . . , Y (i)

n ,
(
W (i→B) : B ∈ B(i)

)
, T (i)

)
to

W̆
(j→K,i)

for each j ∈ V , K ∈ B(j), and i ∈ K. The
solution S(N ) is called a (λ, ε,A,R)–solution for stacked
network N , denoted (λ, ε,A,R)–S(N ), if

(
log2

∣∣∣W (i→B)
∣∣∣) /

(nN) = R(i→B), I
((
Z(E)

)n
;W
)
< nNε for every E ∈ A,

and Pr
(
W̆

(j→K,i) 6= W (j→K)
)

< λ for the specified
encoding and decoding functions.

Definition 6: The A-secure rate region R(N , A) ⊆
Rm(2m−1−1)

+ of stacked network N is the closure of all rate
vectors R such that for any λ > 0 and any ε > 0, a solution
(λ, ε,A,R)–S(N ) exists for sufficiently large N .

Definition 7: Let a network

N def
=(
∏
e∈E
X (e),

∏
e∈E

(
pe

(
y(e)|x(e)

)
pe

(
z(e)|y(e)

))
,∏

e∈E
Y(e) ×

∏
e∈E
Z(e))

be given corresponding to a graph G = (V, E). Fix positive
integers n and N as the blocklength and stack size, respec-
tively. For each i ∈ V and B ∈ B(i), let R(i→B) and R̃(i→B)

be constants with R̃(i→B) > R(i→B). Define W (i→B) =
{1, . . . , 2nR(i→B)} and W̃ (i→B) = {1, . . . , 2nR̃(i→B)}. Let N
be the N -fold stacked network forN . A blocklength-n stacked



solution S(N ) to this network is defined as a set of mappings

W̃
(i→ B)

:W(i→B) → W̃(i→ B)

X
(i)
t :

(
Y(i)

)t−1

×
∏
B∈B(i)

W̃(i→B) × T (i) −→ X (i)

˘̃W (j→K,i) :
(
Y(i)

)n
×

∏
B∈B(i)

W̃(i→B) × T (i) −→ W̃(j→K)

W̆ (j → K, i) :W̃(j → K) →W(j→K),

where the other channel encoder W̃ (i→ B)
(· ) encodes mes-

sage W (i→B) to W̃
(i→ B)(

W (i→B)
)
, encoder X

(i)
t (· ) in-

dependently encodes each dimension ` ∈ {1, . . . , N}
of outgoing messages W̃

(i→ B), received channel outputs
Y

(i)
1 , . . . , Y

(i)
t−1, and random keys T (i) to channel input

X
(i)
t (Y

(i)
1 (`), . . . , Y

(i)
t−1(`),

(
W̃

(i→ B)
(`) : B ∈ B(i)

)
, T (i)(`)),

node decoder ˘̃W (j→K,i)(· ) independently decodes each di-
mension of the reconstruction
˘̃W (j→K,i)(Y

(i)
1 (`), . . . , Y (i)

n (`),
(
W̃

(i→ B)
(`) : B ∈ B(i)

)
, T (i)(`))

of W̃ (j → K) at node i, and channel decoder W̆ (j → K, i)(· )
reconstructs message vector W̆ (j → K, i)( ˘̃W (j → K, i)).

The following theorem extends [4, Theorem 2] from tradi-
tional to secure capacity.

Theorem 1: The rate regions R(N , A) and R(N , A) are
identical. Further, for any R ∈ int

(
R(N , A)

)
, there exists a

sequence of (2−Nδ, ε, A,R)–S(N ) stacked solutions for the
stacked network N for some δ > 0.

Sketch of the proof: The argument to show R(N , A) ⊆
R(N , A) follows [4, Theorem 1]: given any R ∈
int(R(N , A)), a blocklength-n (λ, ε,A,R) − S(N ) solu-
tion for network N is unraveled across time to achieve a
blocklength-nN solution for network N . Since the given code
satisfies the causality constraints and precisely implements the
operations of S(N ), the solution S(N ) achieves the same
rate, error probability, and secrecy on N as the solution S(N )
achieves on N , which gives the forward result.

The converse follows [4, Theorem 2]. Again, fix ε > 0,
and for any R ∈ int

(
R(N , A)

)
choose R̃ ∈ int

(
R(N , A)

)
with R̃(i→B) > R(i→B) for all (i,B) with R(i→B) > 0.
Define ρ = mini∈V minB∈B(i)

(
R̃(i→B)−R(i→B)

)
and choose

constant λ > 0 satisfying

max
i∈V

max
B∈B(i)

R̃(i→B)λ+ h(λ) < ρ.

This is possible by choosing λ small enough so that λ < ρ/
(3 maxi∈V maxB∈B(i) R̃(i→B)) and h(λ) < ρ/(3ρ). Since
R̃(i→B) > R(i→B), there exists a blocklength n such that
a (λ, ε3 , A, R̃)–S(N ) single-layer solution exists. A stacked
solution is built using this same (λ, ε3 , A,R)–S(N ) single-
layer solution in each layer and a randomly chosen channel
code across the layers of the stack. �

III. MAIN RESULTS

In Theorem 2, we show that for any network N of wiretap
channels and any edge ē ∈ E , replacing channel Cē with a
noiseless degraded wiretap channel of appropriate capacities
Rc and Rp, as shown in Figure 1, yields a networkNē(Rc, Rp)
(Definition 4) whose secure capacity region contains the secure
capacity region of N . Theorem 2 extends [5, Theorem 5] from
traditional to secure capacity.

Theorem 2: Consider a network N and an adversarial set
A ⊆ P(E). R(N , A) ⊆ R(Nē(Rc, Rp), A) for

Rc > max
p(x(ē))

I(X(ē);Y (ē))− max
p(x(ē))

I(X(ē);Z(ē))

Rp > max
p(x(ē))

I(X(ē);Z(ē)).

Sketch of the proof: By Theorem 1 it suffices to prove
R(N , A) ⊆ R(N ē(Rc, Rp), A). We employ a channel code
across layers of the stack to emulate a secure code for network
N on networkN ē(Rc, Rp). Typical inputs Xt to ē are mapped
to jointly typical outputs from a random codebook. It can be
shown that the induced probability distribution p′ is close to
the probability distribution p of the original secure code for
N , and that mutual information values under both probability
distributions are similar. The bits transmitted over the noiseless
channel correspond to the codeword index, and thus reveal
a similar amount of information to the wiretapper as its
observations of the original noisy channel. �

Theorem 3 shows cases where the upper bound shown in
Theorem 2 is tight.

Theorem 3: Consider a network N , an adversarial set A ⊆
P(E), and a single link ē ∈ E . Let

Rc = max
p(x(ē))

I(X(ē);Y (ē))− max
p(x(ē))

I(X(ē);Z(ē))

Rp = max
p(x(ē))

I(X(ē);Z(ē)).

If ē is invulnerable to wiretapping (ē /∈ E for all E ∈ A)
or is not simultaneously wiretapped with other links (ē ∈ E
implies |E| = 1), then R(N , A) = R(Nē(Rc, Rp), A).
Sketch of the proof: We outline the proof for the case where ē
is wiretapped but not simultaneously with other links; the case
where it is invulnerable to wiretapping is a simpler version.

We first show that R(Nē(Rc − ε, Rp − ε), A) ⊆ R(N , A)
for any ε > 0, by starting with a secure code of rate R for
network Nē(Rc, Rp) and constructing a corresponding secure
code for network N . Denote by Ct and Pt the transmissions
across the confidential and public links, respectively, of edge
ē ∈ E at time t. Let Cn = (C1, . . . , Cn), Pn = (P1, . . . , Pn)
and denote by Cij and P ij for any j < i the vectors
Cij = (Cj , Cj+1, . . . , Ci) and P ij = (Pj , Pj+1, . . . , Pi). We
define networks I and II shown in Figure 2 that are identical
to networks Nē(Rc, Rp) and N respectively with the addition
of an auxiliary receiver that observes the wiretap output of
ē, messages W and a noiseless side channel of capacity
Cē (defined below) from a “super-source” that has access
to (W,Cn, Pn). In network I (II) the auxiliary receiver is



Fig. 2. Network Nē(Rc, Rp) along with networks I, II and N that assist proving Theorem 3.

required to decode the confidential bits Cn.
We construct a code for a stacked version of network I with

N1 layers in which the auxiliary receiver is able to decode the
confidential bits Cn. The constructed coded for the stacked
version of network I can be seen as a code of blocklength n1 =
nN1 for the non-stacked version of network I. To move the
proof from network I to network II we use a stacked version
of network II with N2 layers. The code used at each layer of
the stacked version of network II is the code of blocklength
n1 constructed above. We need to use a stacked version of
network II to use a channel code at edge ē of network II to
emulate the noiseless edge ē of network I.

In the following we show that the communication code of
network II gives a secure code of network N . These auxiliary
receivers assist in the proof of the secrecy of the code for the
eavesdropping set {e} ∈ A in the following manner: capacity
Cē is defined such that the sum of capacities of (W,Zn, Lnē )
(where Lnē are the bits in the noiseless bit pipe of capacityCē)
that are all the incoming links to the auxiliary receivers is
almost equal to the entropy of (Pn, Cn,W ) that correspond
to the decoded message at the auxiliary receivers and therefore
all links are filled up to capacity. Therefore there is no spare
capacity at links Zn to carry any information about message
W and therefore the code is secure.

On the other hand, the upper bound result in Theorem 2
implies that R(N , A) ⊆ R(Nē(Rc + ε, Rp + ε), A) for any
ε > 0. We then prove a continuity result on the rate region
R(Nē(Rc, Rp), A) with respect to (Rc, Rp) when Rc > 0 and

Rp > 0. The lower bound result, the upper bound result, and
the continuity result together prove Theorem 3. �

Example 1 demonstrates applications of Theorem 2 and 3
and shows that while Theorem 2 is tight in many cases, it
is not always tight when the replaced link appears in one or
more eavesdropping sets of size greater than 1.

Example 1: In the network of Figure 3(a), channels e1 =
(1, 2, 1), e2 = (1, 4, 1), e3 = (1, 3, 1), e4 = (4, 2, 1), and e5 =
(4, 3, 1) are independent degraded binary wiretap channels.
Channels e1 and e3 have erasure probability 0 at each intended
receiver and erasure probability 1

2 at each wiretap output, as
shown in Figure 3(e). Channels e2, e4, and e5 have erasure
probability 1

2 , with identical outputs for their intended and
eavesdropped outputs, as shown in Figure 3(f). We consider
a single multicast from source S at node 1 to terminals T1

and T2 at nodes 2 and 3. We therefore set R(i→B) = 0 for all
(i,B) 6= (1, {2, 3}) and then consider the point R ∈ R(N , A)
that maximizes R(1→{2,3}). The eavesdropper can listen in on
either both e1 and e3 or just e2, i.e., A =

{
{e1, e3}, {e2}

}
.

The network N̆ shown in Figure 3(b) has secrecy capacity
under adversarial set A =

{
{e1, e3}, {e2}

}
identical to that

of the network in Figure 3(a)
(
R(N , A) = R(N̆ , A)

)
and is

obtained by three applications of Theorem 2. Here channel Ce4
and Ce5 have been replaced by channel C( 1

2 , 0) since channels
e4 and e5 are invulnerable to eavesdropping (e4, e5 /∈ E for
all E ∈ A). Likewise Ce2 has been replaced by C(0, 1

2 ) since
e2 cannot be simultaneously eavesdropped with any other
channel (e2 ∈ E implies |E| = 1) and has 0 confidential



(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a) The network for Example 1 and (b) its equivalent model by replacing channels e2, e4, and e5 by their equivalent noiseless links by Theorem 3
(rate-0 links are omitted from the model). (c) The noiseless model of (a) by applying Theorem 2 and (d) the secrecy capacity achieving code for the network
in (c). (e), (f) The channel distributions for independent degraded wiretap channels e1, e3 and e2, e4, e5 respectively.

bits. The noiseless network N̂ is an upper bounding model
for the network in Figure 3(b) (and therefore also an up-
per bounding model for the network in Figure 3(a), giving
R(N , A) = R(N̆ , A) ⊆ R(N̂ , A)), and is obtained by two
applications of Theorem 2, replacing channels e1 and e3 by
their upper bounding models.

A rate-1 blocklength-2 code for network N̂ is shown in
Figure 3(d). The message W (1→{2,3}) ∈ {0, 1}2 is broken into
a pair of messages W (1→{2,3}) =

(
W1,W2

)
∈ {0, 1}2 with

H
(
W1

)
= H

(
W2

)
= 1 and H

(
W1,W2

)
= 2. Random key

K1 ∈ {0, 1} is chosen uniformly at random and independently
of
(
W1,W2

)
. The code is secure since I

(
W1,W2;K1

)
= 0

and I
(
W1,W2;W2 + K1

)
= 0. In [6] we prove using infor-

mation inequalities that the noisy network N of Figure 3(a)
has multicast secrecy capacity at most 0.875.

To provide some intuition, notice that our capacity-
achieving code for N̂ transmits the same key over a pair of
noiseless links (e1 and e3 in N̂ ). Direct emulation of this
solution in N̆ network in Figure 3(a) fails to maintain security.
Specifically, if the same input is transmitted over channels

e1 and e3 (X(e1)
t = X

(e3)
t for all t ∈ {1, . . . , n}), then

an eavesdropper accessing E = {e1, e3} sees independent
channel outputs Z

(e1)
t and Z

(e3)
t resulting from the same

channel input X(e1)
t = X

(e3)
t at each time t. Since each

transmitted bit is erased with probability 1
2 and the erasure

events are independent by assumption, an eavesdropper that
wiretaps both e1 and e3 is expected to receive roughly 75%
of the transmitted information bits. Consequently, a key of rate
0.5 is not enough to completely protect W (1→{2,3}) from the
eavesdropper in this case. The problem here is that transmitting
correlated information on multiple channels may be necessary
to achieve the secure capacity in the noiseless case, but the
same strategy may fail in the noisy case owing to independent
realizations of probabilistic noise on different channels.

Theorems 4 and 5 provide two different lower bounds
for the case of multiple wiretapped channels. These bounds
correspond to achievable schemes that ensure all links to the
eavesdropper are filled to capacity with independent random-
ness.
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Fig. 4. An example wiretap network for which lower bound model-II is not
tight but lower bound model-II is tight.

Lower bound model-I. The first lower bound results from
removing the public portion of the upper bounding model. The
lower bound is achievable since it is always possible to simply
avoid the transmission of any rate on channel ē that can be
overheard by the eavesdropper.

Theorem 4: Consider a network N , an adversarial set A ⊆
P(E), and a single link ē ∈ E . R(Nē(Rc, 0), A) ⊆ R(N , A)
for

Rc < max
p(x(ē))

I(X(ē);Y (ē))− max
p(x(ē))

I(X(ē);Z(ē)).

Sketch of the proof: The proof of this theorem is similar to
the proof of Theorem 3 except that in the noisy network we
transmit independent random bits in place of public bits. �

The lower bound model-I of Theorem 4 is not tight in
general. As a result, we do not use it to bound all channels but
instead apply it to a selective sequence of channels from E .
Notice that the model Cē(Rc, 0) for channel Cē in Theorem 4
sets the public rate Rp to zero. This effectively removes ē from
all eavesdropping sets E ∈ A, giving a new adversarial set
A′ =

{
E\{ē} : E ∈ A

}
. Repeated application of Theorem 4

on a carefully chosen sequence of channels enable us to
reduce all eavesdropping sets to size at most one. Once this is
accomplished, we can use the equivalence result of Theorem 3
to replace the remaining noisy channels.

To show that lower bound model-I is not tight, con-
sider the network of Figure 4, where each i in {1, 2, 3},
max I(Yi;Xi) = 2 and max I(Zi;Xi) = 1. The adversary
can eavesdrop any two of {e1, e2, e3}. Since for each link in
{e1, e2, e3} the confidential capacity is 1, and the public rate
on two of the three links must be set to zero, the capacity of
lower bound model-I is 3. In the following we introduce lower
bound model-II, using which we get a tighter lower bound, 4,
for this network.

Lower bound model-II. In this model we bound the secrecy
capacity region of network N with adversarial set A ⊆ P(E)
by deriving a relationship with the traditional capacity of
a noiseless communication network called the A-enhanced
network N (A) defined below and illustrated by Figure 5.

Definition 8: Consider network N on graph G = (V, E).
Define rate vector Rc,p =

(
(Ře,c, Re,p) : e ∈ E

)
, and

i

Ti

vi

Wi

Re,p

CE

vT

vE

Re,c

v̄i

C(i)

C(i)

Fig. 5. The A-enhanced network N (A).

fix an adversarial set A ⊆ P(E). The A-enhanced network
N (Rc,p, A) on graph Ǧ = (V̌, Ě) is defined as follows:

1) V̌ = V ∪
{
vi : i ∈ V

}
∪
{
v̄i : i ∈ V

}
∪
{
vE : E ∈ A

}
∪

{vT }. For each i ∈ V we call vi and v̄i the ith message
node and random key node of network N (Rc,p, A). For
each E ∈ A, node vE is called an eavesdropper node.
Node vT is called the overall key node.

2) Ě =
{
hi : i ∈ V

}
∪
{
h̄i : i ∈ V

}
∪
{
Če : e ∈ E

}
∪
{
he :

e ∈ E
}
∪
{

(vT , vE , 1) : E ∈ A
}

.

For each i ∈ V , hi is a noiseless hyperarc of capacity C(i)

(or alternatively a set of bit pipes each of capacity C(i)) from
node vi to all of the nodes in

{
i
}
∪
{
vE : E ∈ A

}
, and h̄i is

a noiseless hyperarc also of capacity C(i) (or alternatively a
pair of bit pipes each of capacity C(i)) from node v̄i to both
of the nodes in

{
i, vT

}
, where C(i) is defined in (1) as the

sum of the outgoing channel capacities from node i.
For each e = (i, j, k) ∈ E , channel Če in network is a bit

pipe of capacity Re,c from node i to node j, and hyperarc he
is a noiseless hyperarc of capacity Re,p from node i to all of
the nodes in

{
j
}
∪
{
vE : E ∈ A, e ∈ E

}
. For every E ∈ A

channel C(vT ,vE ,1) is noiseless bit pipe of capacity

CE =
∑
i∈V

C(i) −
∑
e∈E

Re,p

from node vT to node vE .
The A-enhanced network is used for traditional (rather than

secure) communication with a collection of reconstruction
constraints that depend on both N and A.

Definition 9: Let N (Rc,p, A) be the A-enhanced network
for network N and adversarial set A ⊆ P(E). A blocklength-
n solution S(N (Rc,p, A)) to network N (Rc,p, A) is defined
as a set of encoding functions for each node v in V̌
(X(v))n : (Y(v))n−1

1 × (W(v))n−1
1 × (T (v))n−1

1 −→ (X (v))n

and decoding functions

( ˆW (v))n : (Y(v))n−1
1 × (W(v))n−1

1 × (T (v))n−1
1 −→ (W(v))

( ˆT (v))n : (Y(v))n−1
1 × (W(v))n−1

1 × (T (v))n−1
1 −→ (T (v)).

such that for each i ∈ V and B ∈ B(i), message W (vi→B)

from node vi is delivered to all of the nodes in B ∈ B(i),
where B(i) is the receivers set for node i ∈ V in network N ,



and random keys T (i) ∈ T (i) = {1, . . . , 2nC(i)} are delivered
from node v̄i to nodes {vE : E ∈ A}.

Definition 10: The rate region R(N (Rc,p, A)) ⊆
Rm(2m−1−1)

+ of the A-enhanced network N (Rc,p, A) of
network N is the closure of all rate vectors R such that for
any λ > 0, a solution (λ,R)–S(N (Rc,p, A)) exists.

Theorem 5: Consider network N on graph G = (V, E) and
an adversarial set A ⊆ P(E). Let N (Rc,p, A) be the A-
enhanced network of network N . If for every e ∈ E

Re,p < max
p(x)

I(X(e);Z(e))

Rc,p < max
p(x)

I(X(e);Y (e))−max
p(x)

I(X(e);Z(e)),

then R(N (Rc,p, A)) ⊆ R(N , A).
Sketch of the proof: We start with a code for network
N (Rc,p, A) and we will construct a secure code for network
N . We make use of an auxiliary network I which is the same
as the A-enhanced network except that the noiseless bit pipes
in
{
Če : e ∈ E

}
∪
{
he : e ∈ E

}
∪
{

(vT , vE , 1) : E ∈ A
}

are changed back to the original noisy channels. We show
that we can emulate the given code on network I such that
the auxiliary receivers are still able to decode the required
messages. Since the total capacity of all incoming links to
the auxiliary receivers is almost equal to the entropy of
(Pn, Cn,W, (ZE\{ē})n), there is no spare capacity at links
((ZE\{ē})n, Zn) to carry any information about message W
and this corresponds to a secure code for network N . �

Unlike the rest of the results, where changing a single wire-
tap channel Cē to its noiseless counterpart Cē(Rc, Rp) results
in an equivalent or bounding network, Theorem 5 requires
all wiretap channels in the noisy network N to be changed
to noiseless channels in order to obtain a lower bounding
network. Intuitively, this is because our construction requires
the eavesdropper E ∈ A to decode all sources of randomness
in the network, which is not possible generally for noisy
networks where the entropy of the noise can be potentially
infinite. If we wish to replace only some noisy channels by
their noiseless counterparts then Theorem 4 should be used.
When all channels are to be replaced Theorem 5 can be used,
potentially leading to a tighter bound.

For example, we consider the network in Figure 4 where
model-I gives a lower bound of 3. Here, we show that
lower bound model-II gives a tighter lower bound, 4. The
A-enhanced network is shown in Figure 6. For simplic-
ity, we combine the three direct links (with capacity 1)
from S to R into a single link with capacity 3. The fol-
lowing code achieves rate (RW , RT ) = (4, 6) in the A-
enhanced network. Let W = {W1, . . . ,W4} and T =
{T1, . . . , T6}. The outgoing link of S with capacity 3 di-
rectly delivers {W1,W2,W3} to R. Each of other outgoing
links of S transmits a linearly independent combination of
{W4, T5, T6}. Node V̄S transmits {T1, T2, T3, T4} to each of
{V{1,2}, V{1,3}, V{2,3}}. Node {VS} transmits {W1, . . . ,W4}
to each of {V{1,2}, V{1,3}, V{2,3}}. R can decode W4 from the
three linearly independent combinations of {W4, T5, T6}. At

S

T

W

R

4

4

4

1
3

1

1

6

6

6

6

6

v̄s

vs

v(1,2)

v(1,3)
v(2,3)

Fig. 6. The A-enhanced network for the network in Figure 4. The number
on top of each link represents the link capacity.

V{1,2}, messages {T1, T2, T3, T4} and {W1,W2,W3,W4} are
directly received from V̄S and VS , respectively. By using W4

and two linearly independent combinations of {W4, T5, T6},
node V{1,2} can decode {T5, T6}. V{1,3}, V{2,3} decode simi-
larly.
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