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ABSTRACT

In this paper we address design and properties of an oversampled
non-uniform DFT filter bank derived by an allpass frequency trans-
form from its uniform version. The novel synthesis bank utilizes
only stable FIR filters, which can be designed via closed-form ex-
pressions. The overall analysis-synthesis system leads to a near-
perfect-reconstruction solution, where the phase compensation er-
ror can be made arbitrarily small at the expense of additional sys-
tem delay. Furthermore, we also address the case of different sub-
sampling factors in the subbands. The filter bank design is carried
out by utilizing a lifting factorization for the prototypes, which has
the advantage that the overall system delay can be controlled in an
efficient way.

1. INTRODUCTION

For many applications a non-uniform time-frequency representa-
tion of a signal is more suitable, where examples are the approx-
imation of the critical bands in the human auditory system with
non-uniform filter banks or subband-based noise reduction ap-
proaches. A non-uniform frequency resolution can be obtained
by applying a frequency transformation to the classical uniform
DFT polyphase filter bank, where all delay elements in the DFT
filter bank are replaced with allpass filters [1, 2]. This, however,
leads to unstable synthesis filters when an overall perfect recon-
struction (PR) system is desired. One solution of this problem
may be obtained by anticausal filtering combined with a double
buffering scheme for the processing of infinite-length signals as
in [3,4], where segmentation and time-reversal of the subband sig-
nals is required. The disadvantage of this method is the request for
extra information which grows with the order of the allpass filters
in the analysis, since initial conditions for the synthesis allpasses
have to be additionally transmitted. Furthermore, the system delay
is increased due to the buffering steps.

In this paper we present a near-perfect-reconstruction (near-
PR) approach for designing the synthesis filters in the allpass-
based non-uniform DFT filter bank, where the proposed synthesis
bank only employs FIR subband filters. By factorizing analysis
and synthesis prototypes into lifting steps the system delay can be
efficiently controlled. In extension to the work in [5] we also ad-
dress the case of different subsampling factors for the subbands
and derive general design conditions for the near-PR oversampled
allpass-transformed DFT filter bank. Furthermore, it is shown that
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all distortions in the reconstructed signal can be made arbitrarily
small at the expense of additional system delay and vice versa.

2. ANALYSIS FILTER BANK BASED ON
ALLPASS-TRANSFORMS

In Fig. 1 a generalized
�

-band DFT filter bank in polyphase rep-
resentation is depicted, where all delay blocks are replaced by
allpass transfer functions ������� . The matrix �
	 represents the
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Fig. 1. Generalized analysis polyphase DFT filter bank�213�
DFT matrix with elements 4 �5	768:9<;>= 8?9	 ;>@BA�C�DFEG 8?9 ,HJI*K ;ML I#NONONOI �QPSR

, and T�8 denotes the subsampling factor for
the

H
-th subband. In the following we address stable and causal

first-order allpass filters, which are defined as

�������U; � AWV<XZY\[R X]Y � A^V I Y`_]ab Idc Y c0e R I
(1)

with the frequency response ����@ Cgf �h;i@ C:j�klf�m . The phase re-
sponse can be written asn � op�q; P o Xsrqtvu*w:xgtzy { |~}'� y � o P]� �| wO� } � o P�� � P�RJ� (2)

with radius
|

, angle
�

and Y ; P | @:C*� . For the sake of simplicity
we restrict ourselves to a real-valued parameter Y .

The analysis subband filters are derived from the prototype
impulse response �<���W� for the modified DFT bank in Fig. 1 by an
allpass transformation and a subsequent complex modulation. We
assume in the following that the prototype length is restricted to



integer multiples of
�

, i.e. ��� ;���� � , � _�� 	 . The transfer
function of the

H
-th subband filter 
`8 ����� can be expressed as


780�����U; 	 AWV�
������ � ��� 	 �����'�0� � ������= A 8 �	 I

(3)

by using the (type 1) allpass-transformed polyphase components
for � ; L I R I#NONONOI � P R

� � ��� 	 �����'�U;�� A^V�
� �� �<��� � X ���0� � 	 ����� N (4)

As an example the nonlinear transformation of the frequency scale
is shown in Fig. 2 for

� ;�� and Y ; P L N �
, where the choice of

the parameter Y in (1) determines the nonlinearity of the frequency
transformation. Note that the classical uniform DFT filter bank
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Fig. 2. Nonlinear transformation of the frequency scale for the
parameters

� ;�� and Y ; P L N �
can be derived as a special case from the structure in Fig. 1 if we
choose the parameter Y to be equal zero.

3. DESIGN OF THE SYNTHESIS FILTER BANK

In order to design a near-PR analysis-synthesis system we gener-
ally require stable analysis and synthesis filters which excludes the
use of allpasses having inverse transfer functions in the synthesis
filter bank. In the following we present a new synthesis structure
where only stable FIR subband filters are utilized. These filters
can be designed such that the phase distortion of the allpasses in
the analysis bank is almost compensated, which leads to near-PR
for the oversampled analysis-synthesis system.

3.1. Compensation of the phase distortion
We propose a closed-form expression for FIR filters which approx-
imately compensate the phase distortion caused by a first-order all-
pass up to a certain error [5]. The main idea is that by employing
the polynomial factorization relation

� A�� P � P.R � � � Y � ;M��� AWV X]Y � �vAWV� 9 �� � P.R � 9 Y 9 � AWk�� A^V'A 9 m (5)

with  _�� 	 , a phase compensation FIR filter ! ����� can be stated
according to

! �����U;M� R XZY � A^V � � A^V� 9 �� � P.R � 9 Y 9 � AWk��vAWV'A 9 m N (6)

It can now easily be verified from (1), (5) and (6) that�������"! ���B��; � A�� P � P.R � � Y � ;; � A�� P � P.R � �$# � Y I  0� I  _�� 	 N
(7)

Since
P.R e Y e R

the compensation error # � Y I  0� can be made
arbitrarily small at the expense of additional delay by appropri-
ate choice of the filter order  . Then (7) can be approximated as� ���B�"! �����&% ��A�� .

3.2. Near-PR conditions in the oversampled case
The phase compensation FIR filters in (6) can now be used to de-
sign a near-PR synthesis filter bank when both the analysis and
synthesis prototype of length � � are designed appropriately, which
will be discussed below. The resulting synthesis bank is depicted
in Fig. 3, where the ”modified” (type 1) polyphase components are
defined with � ; L I R NON#NOI � PsR

as

'( � �����U; � AWV�
� )�&* ��� � X ���)! k 	 k � A � m/A � A^V m �����W� A 	 � � N

(8)
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Fig. 3. Modified DFT synthesis filter bank

Non-subsampled case. In this case with T 8W; R
for all

H
we have

only linear distortions in the reconstructed signal at the output of
the filter bank. Thus, the linear distortion transfer function P������ ,
which should at least approximately correspond to a delay, can
be written with appropriately constructed analysis and synthesis
polyphase matrices Q ����� and R~����� [5] as

P������q;TSHU� �����HR~�����VQ ���B�"W^���B��X% � AZY I
(9)

where [ denotes the delay of the overall analysis-synthesis
system, WW����� ; 4 R I � ����� ION?NONOI � G D A^V ���B� 6 U and S � ����� ;4 � A^k G D A^V m@� I � A^k G D A�\'m;� ION#NON?I R 6 U . In order to fulfill the condi-
tion (9) it is obvious that by employing the diagonal matrix] �����U; diag 4 ! � ����� I ! V ����� IONON?NOI ! G D AWV ����� 6 the relation

R ���B�HQ ���B� X; r� � AG^ ] ���B� with _ _`� 	 (10)

has to be satisfied for the polyphase matrices when we want the
phase compensation error # � Y I  0� to be the only distortion in the
reconstructed signal. It can now be shown [5] that by rewriting
(10) we may obtain the following conditions for the analysis and
synthesis polyphase components:� A G�aD '( 	 A^V'A 80����� � 80��� 	 ���B�'� X � G D ����� '( G D AWV'A 8 �����b�

� � G Ddc 8 ��� 	 �����'� X; r� \ � AZ^ ! 8 ����� (11)



where
H ;QL I R ION#NONOI 	 \ P]R

. Furthermore, the parameter _ in
(11) has to be chosen as _ ; *

�  X 	 \  , * _�� 	 in order
to achieve an overall system delay of [ ; *

�  X � � P R �V 
samples. Note that when we have a linear-phase prototype�<���W�B; * ���W�B; �^�3��� P R0P �W� satisfying (11) it can be shown that
its type 1 polyphase components also satisfy the PR-conditions for
the uniform twofold oversampled DFT filter bank except for an
amplification factor. Thus, a PR prototype designed for the over-
sampled uniform case [6] can be used also in the non-uniform case
and only causes linear distortions due to the nonideal phase com-
pensation.

Subsampled case. The input-output relation for the analysis-
synthesis filter bank in the subsampled case can be given with

'� �����U; 	 AWV�8 )� RT�8 ��� A^V� � )� � ��� = �� � �"
780��� = �� � ���.8 ����� (12)

where the � 8 ����� denote the subband synthesis filters. In this case
the aliasing components should be suppressed by a sufficiently
high stopband attenuation of the prototype filters designed for the
non-subsampled case. Therefore, the subsampling factor T 8 in theH

-th subband has to be chosen such that the aliasing components in
each subband do not overlap with the subband spectrum of the in-
put signal. However, critical subsampling without strong aliasing
distortions in the reconstructed signal is not possible here (exactly
as for the uniform case with � ��� �

[7]).

In the following we state an expression for the individual alias-
ing transfer functions. Let T denote the least common multiple
of all subsampling factors T 8 ,

H ; L I#N?NONOI � P R
. Then, with� 8.; T�	?T�8 (12) can also be written as

'� �����U; RT � AWV� � )� � ��� = �� � 	 A^V�8 �� 
 80��� = �� �
�.8 ����� ��� A^V�
� )� = � � ����

(13)

where

� � A^V�
� )� = � � � �� ;  � 8 for � _�� L I � 8 ION?NONOI � 8 ��T 8 P R ��� IL elsewhere.

The aliasing transfer functions � � ����� , � ; R I#NONON?I T P R
for the � -th

aliasing component
� ���B= �� � can be obtained from (13) as

� � �����U; RT 	 A^V�8 )� 
780��� = �� �
�.80����� � � A^V�
� )� = � � � �� N

(14)

Thus, in the case of unequal subsampling factors in the subbands
we generally have T P R

aliasing components. Note that some
of these components may be zero, which depends on the choice of
the factors T 8 . As an example an allpass-transformed DFT bank is
designed for

� ;�� subbands with the set of subsampling factors
chosen as � ;M4 T � ION#NONOI T 8 I#NONONOI T 	 A^V 6 ;M4 � I�� I��0I r I r I r I��0I�� 6 .
The resulting magnitude bifrequency system function [8] in Fig. 4
reveals that only five different (attenuated) aliasing components
are present in the reconstructed signal.

3.3. Design via lifting factorizations
For longer prototypes with higher stopband attenuation the sys-
tem delay may increase drastically due to the longer allpass-
transformed analysis polyphase components, which also require
higher order compensation filters. As a possible solution we uti-
lize a lifting factorization [9] for the analysis and synthesis proto-
type. This method has the advantage that by applying lifting and
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Fig. 4. Magnitude bifrequency system function for the parameters� ;�� and �h;M4 � I�� I��0I r I r I r I��0I�� 6
dual lifting steps with different amounts of additional delay to the
polyphase components of the prototype filters, the length of the
filters can be increased while constraining the overall delay to a
desired value. In a first step the PR-conditions in (11) for every

H
can be written as�
� 80��� 	 �����'�s� G D ����� � 8 c G D ��� 	 �����'������� � A G�aD '( 	 AWV'A 80���B�'( G D A^V'A 8 ����� �

X; r� \ � AZ^ ! 8 ����� N
The identity matrix is then replaced by � ;"!$# �%!$# �?A^V , where
in a zero delay lifting step the matrices # and ! are defined ac-
cording to!�! AWV ;'& R L( � G D ����� R$) & R LP ( � G D ���B� R$) ; � I
#*# AWV ;'& R,+ � G D �����L R ) & R P-+ � G D �����L R ) ; � N

The parameters
+

and ( represent free parameters, which can be
optimized to improve the stopband attenuation of the prototype
filter. Likewise, we can use a single lifting step approach, which
increases the delay by r �  samples. The overall system delay is
given as [ ; * \

�  X � � P R �V with * \ ; �8� 9 P R � X/. ^ ,
where � �10 ;�� 9 �

denotes the length of the initial prototype and. ^ the number of the single delay lifting steps.

4. DESIGN EXAMPLES

4.1. Prototype design
In order to design the lowpass prototype we utilize the lifting fac-
torization from Section 3.3 for the uniform case with Y ; L , where
a rectangular window of length ��� 0 is used as initial filter. We se-
lect zero lifting and single lifting steps in such a way that an over-
all system delay of [5; � � � PSR �  samples is obtained for the
analysis-synthesis system, where the free parameters in the lifting
factorization are fixed by nonlinear optimization under minimiza-
tion of the stopband energy. The magnitude frequency responses
for two design examples with the design parameters (a) � � ;324� ,� �50 ; � ,

� ; � , [Q; r �  and (b) � � ; R56 r , � �50 ; r � ,� ; r � , [ ;87 R  are displayed in Fig. 5.

4.2. Filter bank design examples
Case 9 ;;: . In this example we apply the prototype from
Fig. 5(a) to both the analysis and synthesis bank of the allpass-
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Fig. 5. Magnitude frequency responses for two prototype design
examples: (a)

� ;�� , ��� ;$24� , � �50 ;�� , [>; r �  ; (b)
� ; r � ,� � ; R56 r , � �10 ; r � , [Z; 7 R  .

transformed DFT filter bank, where the design parameters are cho-
sen as Y ; P L N �

and  ;�� leading to an overall system delay of[ ; R � � samples. In Fig. 6(a) the resulting magnitude frequency
responses of the analysis subband filters are depicted. For the sub-
band subsampling factors �s; 4 2 I 2 I � I r I r I r I � I 2 6 we obtain the
peak aliasing distortion

��� � op� according to Fig. 6(b), which is
calculated as the root mean square (RMS) error over all non-zero
aliasing transfer functions � � ����� in (14). We can see that the alias-
ing distortion has the same order of magnitude as the stopband
attenuation of the prototype in Fig. 5(a).
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Fig. 6. Overall analysis-synthesis system (
� ;�� , Y ; P L N �

,  q;�� ,
prototype from Fig. 5(a)): (a) Subband magnitude frequency re-
sponses, (b) RMS aliasing distortion for � ; 4 2 I 2 I � I r I r I r I � I 2 6 .
Case 9i;���� . In this case we apply the prototype filter from the
design example in Fig. 5(b) to an analysis-synthesis system with� ; r � and Y ; P L N �

. With  ; � an overall system delay
of [ ; � 20� is obtained. Fig. 7 shows the resulting magnitude
frequency responses for the subband filters and the group delay.

5. CONCLUSION

This paper generalizes a near-PR design approach for a sta-
ble FIR-based synthesis filter bank corresponding to an allpass-
transformed oversampled DFT analysis bank. As a new result we
have shown that the overall analysis-synthesis system satisfies the
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Fig. 7. Overall analysis-synthesis system (
� ; r � , Y ; P L N �

, U;�� , prototype from Fig. 5(b)): (a) Magnitude frequency re-
sponses for the subband filters, (b) group delay [�% 7 R  U; � 20� .

near-PR property also for different subsampling factors in the sub-
bands. Furthermore, the proposed system has the interesting prop-
erty that an increased system delay may be traded for a lower re-
construction error and vice versa. By using allpass-transformed
lifting steps for representing the polyphase components of the pro-
totypes the overall system delay can be constrained to a desired
value independently of the prototype lengths.
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