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Abstract—The serial concatenation of a repetition code with
two or more accumulators has the advantage of a simple encoder
structure. Furthermore, the resulting ensemble is asymptotically
good and exhibits minimum distance growing linearly with block
length. However, in practice these codes cannot be decoded by
a maximum likelihood decoder, and iterative decoding schemes
must be employed. For low-density parity-check codes, the notion
of trapping sets has been introduced to estimate the performance
of these codes under iterative message passing decoding. Inthis
paper, we present a closed form finite length ensemble trapping
set enumerator for repeat multiple accumulate codes by creating
a trellis representation of trapping sets. We also obtain the
asymptotic expressions when the block length tends to infinity
and evaluate them numerically.

I. I NTRODUCTION

Turbo-like codes [1], as well as LDPC codes [2], can
perform close to the Shannon limit using suboptimal iterative
decoding schemes. However, these codes typically exhibit an
error floor at medium to high signal-to-noise ratios (SNRs).
In [3], the height of the error floor of LDPC codes was linked
to so-called ”near codewords”. Later, in [4], this concept was
generalized to trapping sets, substructures in the Tanner graph
of a code that may cause the iterative message passing decoder
to fail. For certain LDPC codes, small trapping sets, rather
than the minimum distance of the code, dominate the error
floor performance.

Asymptotic spectra of trapping sets in LDPC code ensem-
bles were computed in [5] for regular and irregular LDPC
codes and in [6] for protograph-based codes. It was shown
that there exist LDPC codes that exhibit a minimum trapping
set size growing linearly with block length, for certain types
of trapping sets.

In turbo-like codes, the concatenation of simple component
codes through interleavers can lead to powerful code construc-
tions. The simplest examples are repeat multiple accumulate
(RMA) codes. These codes have a low encoding complexity
of O(1) and can be decoded using relatively few iterations.
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Furthermore, it has been shown in [7] and [8] that the double
serially concatenated repeat accumulate accumulate (RAA)
code of rate 1/3 or smaller is asymptotically good and exhibits
minimum distance growing linearly with block length.

Like LDPC codes, turbo-like codes are decoded in an itera-
tive fashion. Commonly, the component codes are decoded
with a maximum a posteriori probability (MAP) decoding
algorithm and the extrinsic information provided by a com-
ponent decoder functions as a priori information for another.
For RMA codes, the turbo decoder can be represented as a
message passing decoder [9], similar to the belief propagation
decoder, albeit with a different message passing schedule.
Thus the turbo decoder may also be susceptible to trapping
sets. To predict the error floor of a code one generally needs
to have full knowledge of the trapping sets that dominate the
error floor, i.e., one needs to know their graph structure and
enumerate their multiplicities, and to find the probabilitythat
the decoder gets trapped in a particular set. The latter not only
depends on the graph structure of the trapping set but also on
the channel model, the decoding algorithm, and the particular
decoder implementation that is used.

In this paper we address the first part of the problem, the
enumeration of subgraphs in an RAA code. We derive a closed
form trapping set enumerator (TSE) for general(a, b) trapping
sets, as defined in [4] and [5]. A general(a, b) trapping set for
a given Tanner graph is a set ofa variable nodes that induces
a subgraph containingb odd degree check nodes, which can
be thought of asunsatisfiedchecks, and an arbitrary number
of even degree check nodes. If there are only a few unsatisfied
check nodes and a sufficiently large number of erroneous
variable nodes, the iterative message passing decoder may not
be able to correct the erroneous nodes. The TSE is the average
number of(a, b) trapping sets in the ensemble composed of
all possible interleaver realizations. We also derive asymptotic
expressions for the TSE and analyze them.

II. T RAPPING SET ENUMERATORS FOR REPEAT

ACCUMULATE ACCUMULATE CODE ENSEMBLES

The encoder structure of an RAA codeCRAA is shown
in Fig. 1. It is a serial concatenation of a repetition code
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Fig. 1. Block diagram and factor graph (q = 3) of an RAA encoder. The
circles represent variable nodes and the boxes check nodes,respectively.

Crep of rateRrep = 1/q and two identical rate-1, memory-1,
accumulate codesCacc

l , l = {1, 2}, with generator polynomials
g(D) = 1/(1 + D), connected by interleaversπ1 andπ2. For
the repetition codeCrep, we denote the binary input sequence
of length K by u = [u1, . . . , uK ] and the binary output
sequence of lengthN by x

rep = [xrep
1 , . . . , xrep

N ]. Likewise, for
encoderCacc

l , vl = [vl
1, . . . , v

l
N ] andx

l = [xl
1, . . . , x

l
N ] denote

the input sequence and the codeword, respectively, where both
are of lengthN . Note thatv1 = π1(x

rep) andv
2 = π2(x

1).
The overall code rate isR = K/N .

The factor graph of an RAA code is also depicted in Fig. 1
for a repetition factor ofq = 3. The circles represent variable
nodes while the boxes represent check nodes. The information
symbolsu correspond to the variable nodes of the first layer
and their degree is equal to the repetition factorq. The variable
nodes of the second layer correspond to the output of the first
accumulatorx1, and the variable nodes of the third layer to
the output of the second accumulatorx

2, respectively. The
input bits of the accumulators are represented by the variable
nodes of the next higher layer. Only the variable nodes in the
third layer are transmitted through the channel. This implies
that, initially, only variable nodes in the third layer can be in
error, while the others have a neutral initial value. However,
in the first decoding iteration, the variable nodes in layers1
and 2 get values assigned based on the received sequence.
If there are trapping sets containing variable nodes in those
layers, erroneous values that were assigned during the first
iteration may never be corrected and may cause the iterative
decoder to fail. Therefore, we consider the whole graph when
enumerating for trapping sets.

Let ĀC
RAA

a,b be the ensemble-average TSE of an RAA code
ensemble, i.e., the average number of(a, b) trapping sets. With
reference to Fig. 1, we denote byw the number of information
bits that participate in an(a, b) trapping set ofCRAA. Also, let
ai

l , ao
l , andbl be the number of variable nodes corresponding

to input bits, the number of variable nodes corresponding to
code bits, and the number of unsatisfied checks, respectively,
of codeCacc

l involved in an(a, b) trapping set ofCRAA.

xk

vk xk-1

xkxk-1

vk

Fig. 2. Block diagram and factor graph representation of an accumulate
code.

To proceed, we must define the trapping set enumerators
of the component codesAC

rep

w,qw andA
C
acc
l

ai
l
,ao

l
,bl

, for l = {1, 2}.
Since there are no check nodes in layer 1 of the factor graph,
AC

rep

w,qw =
(

K
w

)

is the input-output weight enumerator (IOWE)
of the repetition code, giving the number of codewords in
Crep of input weightw and output weightqw, while A

C
acc
l

ai
l ,a

o
l ,bl

is the input-output trapping set enumerator (IOTSE) of code
Cacc

l , denoting the number of trapping sets inCacc
l consisting

of ai
l input variable nodes (i.e., variable nodes corresponding

to information bits),ao
l output variable nodes (i.e., variable

nodes corresponding to code bits), andbl unsatisfied checks.
With these definitions, the ensemble average TSEĀC

RAA

a,b

can be computed using the uniform interleaver concept [10]
as:

ĀC
RAA

a,b =
∑

w,ao
1,ao

2: w+ao
1+ao

2=a
b1,b2: b1+b2=b

AC
rep

w,qwA
C
acc
1

qw,ao
1,b1

A
C
acc
2

ao
1,ao

2,b2
(

N
qw

)(

N
ao
1

)

=
∑

w,ao
1,ao

2: w+ao
1+ao

2=a
b1,b2: b1+b2=b

ĀC
RAA

w,ao
1,b1,ao

2,b2
,

(1)

where ĀC
RAA

w,ao
1,b1,ao

2,b2
is called the ensemble-average condi-

tional TSE.
The evaluation of (1) requires the computation ofA

C
acc
l

ai
l ,a

o
l ,bl

,
which will be presented in the next section. The extension
of (1) to more than two serially concatenated accumulators is
straightforward.

III. I NPUT-OUTPUT TRAPPING SET ENUMERATOR FOR THE

ACCUMULATE CODE

In the following, we address the computation of the IOTSE
A

C
acc
l

ai
l ,a

o
l ,bl

of an accumulate code by considering an equivalent
trellis representation of trapping sets in the factor graph. In
Fig. 2, the block diagram of an accumulate code and a single
section of the corresponding factor graph are depicted. From
the figure we obtain the following relation:

vk = xk−1 + xk. (2)

Four different 3-tuples(vk, xk−1, xk) are possible, namely
(0, 0, 0), (0, 1, 1), (1, 0, 1), and (1, 1, 0), such that the parity
check is satisfied. Their factor graph representations are shown
in Fig. 3(a), where black circles represent non-zero symbols
and empty circles represent zero symbols. Now consider an
(a, b) trapping set ofCRAA, and assume that (some) of the
variable nodes of accumulate codeCacc corresponding to
(vk, xk−1, xk) participate in the trapping set and cause an
unsatisfied check. Again, only four different configurations are
possible. They are depicted in Fig. 3(b), where black circles
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Fig. 3. Factor graph representations of an accumulate code.
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Fig. 4. Extended Trellis Section.

correspond to erroneous symbols and a black box means that
the check is unsatisfied. Note that all possible trapping sets
can be obtained by properly combining the eight factor graph
sections of Fig. 3.

For enumeration purposes, it is simpler to refer to an
equivalent trellis representation. Assign to the variablenodes
and the check nodes in Fig. 3 that participate in a trapping
set (the black circles and boxes) the value1. Then the eight
factor graph sections in Fig. 3 can be conveniently represented
by the equivalent trellis section of Fig. 4. We call this the
extended trellis sectionsince it extends the standard trellis
section of an accumulate code to include all possible trapping
sets. Each edge between two trellis states is labeled with a
binary 3-tuplesi/c/so, wheresi denotes the input symbol,
so denotes the output symbol, andc is 1 if the check node
in the corresponding equivalent factor graph representation
is unsatisfied. The four labels in black correspond to the
four configurations of Fig. 3(a) and define the standard trellis
section of an accumulate code, while the four labels in
red correspond to the four configurations of Fig. 3(b). Now
the IOTSE of the accumulate code can be computed from
the trellis representation of Fig. 4 by considering a trellis
consisting ofN concatenated trellis sections like the one in
Fig. 4 and enumerating all possible paths. The IOTSE is given
in closed form in the following Theorem.

Theorem 1. Let (ai, ao, b) be a trapping set withai informa-
tion variable nodes,ao code variable nodes, andb unsatisfied
checks. The input-output trapping set enumerator (IOTSE)
for the rate-1, memory-1, convolutional encoderCacc with
generator polynomialg(D) = 1/(1 + D), terminated to the
all-zero state at the end of the trellis, and with input and output
block lengthN , can be given in closed form as:

Aai,ao,b =
∑

m

∑

n

(

N − ao

m

)(

ao − 1

m − 1

)

·

·

(

ao − m
ai+b

2
− n − m

)(

N − ao − m

n

)(

2m
ai−b

2
+ m

)

,

(3)

wherem and n must satisfy the constraints

m ≥
|ai − b|

2
, m ≤ min{ao, N − ao},

n ≥
ai + b

2
− ao, n ≤ N − ao − m.

(4)

Proof: Consider the extended trellis section of the encoder
g(D) = 1/(1 + D) in Fig. 4. Denote byn the number of
length-one error events1/1/0 from the zero state to the zero
state, called type-1 error events, and bym the number of
error events that leave the zero state, and remerge later to the
zero state, called type-2 error events. Further, letai, ao, and
b be the number of information variable nodes, the number of
code variable nodes, and the number of unsatisfied checks,
respectively, participating in the trapping set. Also, letwt

denote the total input weight associated with the transitions
0 → 1 (from state zero to state one) and1 → 0 (from state
one to state zero) in them type-2 error events.

Only type-2 error events are responsible for the weight at
the output of the accumulator. From [11], we know that the
number of permutations ofm type-2 error events resulting in
an output weight ofao is

(

N − ao

m

)(

ao − 1

m − 1

)

.

(Here, the transitions away from and back to the zero state are
not only caused by the input weightwt but also by2m− wt

unsatisfied check nodes.) Them type-2 error events include
ao−m transitions from the one state to the one state (1 → 1),
and the input weight associated with the transitions1 → 1 is

w1→1 = ai − n − wt. (5)

Moreover, the following equality holds:

wt =
ai − b

2
+ m. (6)

Also, due to termination,ai + b is even. From (5) and (6) it
now follows thatw1→1 = ai+b

2
− n − m. This weight can

be ordered in
( ao

−m
ai+b

2
−n−m

)

different ways, which gives the

third binomial coefficient in (3). On the other hand, there are
N − ao − m transitions from the zero state to the zero state
with an associated input weightn. Therefore, we obtain the

term
(

N−ao
−m

n

)

. The last binomial coefficient in (3) results

from the ordering of thewt ones in the2m transitions0 → 1

and1 → 0, in
( 2m

ai
−b
2

+m

)

ways.

To summarize, the number of paths in the extended trellis
consisting ofn type-1 error events andm type-2 error events
is given by:
(

N − a
o

m

)(

a
o
− 1

m − 1

)(

a
o
− m

ai+b

2
− n − m

)(

N − a
o
− m

n

)(

2m

ai
−b

2
+ m

)

.

The result for the encoderg(D) = 1/(1 + D) follows by
summing over all possible values ofn andm.

Corollary 1. For b = 0, the expression in (3) reduces to the
well-known IOWE for the rate-1, memory-1, accumulate code
[11].



IV. A SYMPTOTIC ENSEMBLE TRAPPING SET ENUMERATOR

In order to determine the asymptotic spectral shape of the
trapping sets associated with a particular code ensemble, as
the block lengthN tends to infinity, we define the normalized
logarithmic asymptotic TSErC(α, β) of a code ensembleC as

rC(α, β) = lim sup
N→∞

ln ĀC

a,b

N
, (7)

whereα = a/N , β = b/N , and the supremum is taken over all
intermediate variables. We also define the functionsfC

rep

and
fC

acc
l as the asymptotic behavior of the IOWE of a repeat code

and the asymptotic behavior of the IOTSE of an accumulate
codeCacc

l , respectively:

fC
rep

(ω) = lim
N→∞

ln AC
rep

w,qw

N

fC
acc
l (αi

l , α
o
l , βl) = lim

N→∞

ln AC
acc

ai
l ,a

o
l ,bl

N
, l = 1, 2,

(8)

whereω = w/K, αi
l = ai

l/N , αo
l = ao

l /N , andβl = bl/N .
Using Stirling’s approximation for binomial coefficients

(

n
k

) n→∞
−→ enH( k

n ), whereH(·) is the binary entropy function
with natural logarithms, the functions in (8) can be writtenas:

fC
rep

(ω) =
1

q
H(ω), (9)

and

fC
acc
l (αi

l , α
o
l , βl) = sup

µl,νl

(1 − αo
l )H

(

µl

1 − αo
l

)

+

+ αo
l H

(

µl

αo
l

)

+ (αo
l − µl)H

(

αi
l + βl − 2(νl + µl)

2(αo
l − µl)

)

+

+ (1 − αo
l − µl)H

(

νl

1 − αo
l − µl

)

+ 2µlH

(

αi
l − βl + 2µl

4µl

)

,

(10)
where we have defined the normalized quantitiesµl = ml/N
andνl = nl/Nl.

Then, using (8-10) and (1) in (7), the asymptotic TSE of a
code ensembleCRAA can be written as:

rC
RAA

(α, β) = sup
α=ω/q+αo

1
+αo

2
β=β1+β2

fC
rep

(ω) + fC
acc
1 (ω, αo

1, β1)+

+ fC
acc
2 (αo

1, α
o
2, β2) − H(ω) − H(αo

1),
(11)

with the constraintsα = ω
q

+ αo
1 + αo

2 andβ = β1 + β2.

V. NUMERICAL EVALUATION

In this section, we present a numerical evaluation of (11).
Following [6], in the curves for the asymptotic TSE that we
present, we keep the ratio∆ = β/α of unsatisfied check nodes
to erroneous variable nodes constant and computer(α, ∆α)
for varying values ofα. In Fig. 5, the unsatisfied checks in
the RAA code ensemble are equally distributed between the
middle and inner accumulator, i.e.,β1 = β2 = β/2. For
∆ = 0, when no unsatisfied checks are present in the factor
graph, the spectral shaper(α, 0) exhibits a zero stretch in the
beginning and turns positive when the number of codewords
with normalized weightα starts to grow exponentially in
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N with increasingα. The presence of unsatisfied checks in
the factor graph results in a positive initial slope, and we
observe a quasi-linear increasing first section of the curve, until
there is a discontinuity in the slope. In the second section,
the slope of the curve is similar for all values of∆, and
the curve shifts to the left with increasing∆. Also, as the
fraction of unsatisfied checks∆ increases, the slope in the
first section also increases. Because of the large number
of parameters involved in taking the supremum in (11), it
is difficult to draw general conclusions about the trapping
set structures that are most likely to cause decoding failures.
The structure of a trapping set is greatly influenced by the
choice of these parameters. We are primarily concerned with
trapping set configurations that lead to decoding errors and
this requiresω > 0. The choice of the parametersβ1 andβ2

determines how many unsatisfied checks are associated with
the middle and inner accumulator, respectively. For instance,
in the extreme case ofβ1 = β andβ2 = 0, all the unsatisfied
checks are associated with the middle accumulator, and there
are no unsatisfied checks in the graph of the inner accumulator.

In Fig. 6 we vary the ratioβ1/β, the fraction of unsatisfied
check nodes associated with the middle accumulator in the
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RAA code ensemble. For largerβ1/β, when relatively more
unsatisfied check nodes are present in the middle accumulator,
the slope in the first section is smaller and the influence of
varyingβ1/β on the slope becomes greater asβ1/β gets closer
to one. However, the influence that varying∆ has on the slope
is much greater than the influence of varyingβ1/β. Also, for
larger values of∆, the variance of the curves withβ1/β is
greater.

In Figs. 7 and 8 we display the influence of the repeti-
tion factor q and the number of concatenated accumulators,
respectively, on the shape of the asymptotic TSE. In both
cases the greatest effect on the slope in the first section
was observed whenβ1 = β, i.e., when all unsatisfied check
nodes are associated with the outermost accumulator. In the
other extreme case, when all the unsatisfied check nodes are
associated with the inner accumulator, the slope in the first
section did not change. In Fig. 7, the reduction in slope in
the first section caused by increasing the repetition factorq
is only marginal and the curves almost lie on top of each
other. However, increasing the number of serially concatenated
accumulators decreases the slope in the first section, as canbe
seen in Fig. 8. Finally, we note that increasing the repetition
factor q or adding more accumulators increases the minimum
distance of the code, and thus the transition from the quasi-
linear section of the asymptotic TSE to the more steeply
increasing section takes place at higher values ofα.

VI. CONCLUSIONS

We have presented a simple closed form method to enu-
merate general(a, b) trapping sets for RAA code ensembles.
The trapping set enumerator is first obtained for finite block
lengthsN and its asymptotic expression is derived by letting
N go to infinity. Similar to [5] and [6], we observe that,
when unsatisfied check nodes are present in the factor graph,
the asymptotic TSE lies strictly above the asymptotic spectral
shape for the case when no unsatisfied check nodes exist in
the graph. Although the RAA code ensemble is asymptotically
good and exhibits minimum distance growing linearly with
block length, in contrast to regular and some protograph-
based irregular LDPC codes, there exists no region where
the minimum trapping set size grows linearly with block
length. It can, at best, grow only sublinearly in the block
length, since the asymptotic TSE of the RAA code ensemble
is always positive if unsatisfied check nodes are present in
the graph. While the method presented in this paper allows
us to enumerate all general(a, b) trapping sets, the influence
that these trapping sets have on the error floor must still
be evaluated separately. As noted earlier, the probabilitythat
the decoder gets stuck in particular types of trapping sets
depends on the channel, the decoding algorithm, and the
particular decoder implementation. In future work we hope to
evaluate this probability for the turbo decoder and the belief
propagation decoder, in order to obtain a reliable estimateof
the height of the error floor for RMA codes.
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