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The transmission of compressed images over highly corrupted chan-

nels is addressed. The implicit residual redundancy inherent in the

quantised subband images and the bit-reliability information at the

channel output are utilised for error protection. As a novelty a known

estimation technique is extended to the two-dimensional case, where

both horizontal and vertical correlations are exploited. Especially for

very noisy channels the quality of the reconstructed image is greatly

increased compared to one-dimensional approaches.

Introduction: Recent joint source-channel decoding for the transmission

of compressed images includes techniques where the residual redundancy

after source encoding is used to improve the error resilience [1–3]. In

these schemes the output signal of the decoder is estimated depending on

bit-reliability information at the channel output and on the source

statistics. As a novelty, this estimation technique is extended to spatial

image correlations in two dimensions. We use a simple wavelet-based

image source coder, which deliberately leaves some redundancy in the

source-encoded bit stream; this a priori knowledge is exploited at the

receiver. The scheme can easily be combined with conventional forward

error protection using soft-output channel decoding [4].

Transmission system: The block diagram of the underlying transmission

system is depicted in Fig. 1. Herein, the two-dimensional subband images

are scanned after analysis filtering to obtain the one-dimensional source

signal vectors U (‘)
¼ [U0

(‘), U1
(‘), . . . , Uk

(‘), . . .], with ‘¼ 0, 1, . . . , K� 1

denoting the subband number and k the sample index. For simplicity the

subband index ‘ will be omitted below.
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Fig. 1 Experimental image transmission system

The quantisation of the subband signal vectors leads to indices Ik

which can be represented by N bits. We model the residual correlation

between the indices Ik by a first-order stationary Markov process, which

is described by the index-transition probabilities P(Ik¼ ljIk�1¼ m), l,

m¼ 0, 1, . . . , 2N
� 1. In what follows we will write Ik

(l) for the

hypothesis Ik¼ l. The bits il,k of the source-encoded indices Ik¼ {il,k,

l¼ 1, . . . , N} are transmitted over a binary-input additive white

Gaussian noise (AWGN) channel, where after a mapping to bipolar

bits we add white Gaussian noise samples nl,k that have zero mean and a

variance of sn
2
¼N0=2Es. Es denotes the energy used to transmit each bit

and N0=2 represents the power spectral density of the channel noise.

Soft-input source decoding: The a posteriori probabilities (APPs)

P(Ik
(l)
jÎ 0

k)¼P(Ik¼ ljÎ 0, . . . , Î k�1, Î k), l¼ 0, . . . , 2N
� 1, describe the

probability that the index Ik¼ l has been transmitted, given all received

soft-bit vectors Î 0
k
¼ [Î 0, . . . , Î k�1, Î k] up to the time k. With the transition

probabilities P(Î k
(l)
jIk�1

(m) ) of the Markov model and the conditional prob-

ability density function (pdf) p(Î kjIk
(l)) that describes the channel, the APPs

can be calculated via the recursion [3, 5]

PðI
ðlÞ
k jÎ

k
0 Þ ¼ ck � pðÎ k jI

ðlÞ
k Þ

P2N�1

m¼0

PðI
ðlÞ
k jI

ðmÞ
k�1ÞPðI

ðmÞ
k�1jÎ

k�1
0 Þ ð1Þ

The factor ck2 2 IR ensures that the P(Ik
(l)
jÎ 0

k) are true probabilities (which

sum up to one), and the initialisation for k¼ 0 can be carried out with the

unconditional source-index probabilities P(Ik
(l)). The APPs obtained by (1)

can be used for an estimation of the decoder output. In the sequel we

apply a mean-square (MS) estimator which is well suited for waveform-

like signals, since it directly corresponds to an SNR-maximisation [3]:

Û k ¼
P2N�1

l¼0

UqðlÞ � PðI
ðlÞ
k jÎ

k

0Þ ð2Þ

The MS estimation Û k equals the conditional expectation of the

quantisation levels Uq(l).

Extension to two dimensions: Since subband images have spatial

correlations in the horizontal and vertical direction, this additional

knowledge can be exploited by two-dimensional (2-D) APPs. This is

depicted in Fig. 2, where some received indices of a subband image

are displayed, and Î 0
M
¼ [Î 0, Î 1, . . . , Î M] denotes a received row or

column vector of length Mþ 1. The a priori knowledge is restricted to

all indices in the boxes drawn with bold lines.
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Fig. 2 Received subband values and corresponding Markov models

By use of the Bayes rule the 2-D APPs can be written according to

PðI
ðlÞ
k jÎ

kþ1

0 ; Î k;�1; Î k;1Þ ¼ ck � pðÎ kþ1; Î k;�1; Î k;1jI
ðlÞ
k Þ � PðI

ðlÞ
k jÎ

k

0Þ ð3Þ

Both the memoryless property of the channel and the Markov property

of the source are utilised in (3). The joint pdf p(Î kþ1, Î k,�1, Î k,1jIk
(l))

from (3) can now be further decomposed as

pðÎ kþ1; Î k;�1; Î k;1jI
ðlÞ
k Þ ¼

P2N�1

m¼0

P2N�1

n¼0

P2N�1

k¼0

pðÎ kþ1jI
ðmÞ
kþ1Þ

� pðÎ k;1jI
ðnÞ
k;1ÞpðÎ k;�1jI

ðkÞ
k;�1Þ

� PðI
ðmÞ
kþ1; I

ðnÞ
k;1; I

ðkÞ
k;�1jI

ðlÞ
k Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼: Pðm;n;kjlÞ

ð4Þ

The term P(m, n, kjl) describes the joint transition probabilities from

the actual index Ik (the one under consideration) to all possible

combinations of the neighbouring indices Ikþ1 and Ik,�1. However, to

store this joint probability a four-dimensional matrix is needed, leading

to high memory requirements especially for larger N. A simplification is

possible when the diagonal correlations in the subband image are

neglected, which leads to P(m, n, kjl)’P(Ikþ1
(m)
jIk

(l)) P(Ik,1
(n)
jIk

(l))

P(Ik,�1
(k)
jIk

(l)). By inserting this approximation into (4) and using (3)

we obtain the final expression for the APPs as

PðI
ðlÞ
k jÎ

kþ1

0 ; Î k;�1; Î k;1Þ ’ ck � PðI
ðlÞ
k jÎ

k
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�
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In (5), the reliability values P(Ik
(l)
jÎ 0

k) from (1) are weighted with three

sum-terms. Each of these contains the corresponding transition prob-

ability and the channel term for the additionally considered indices Ikþ1,

Ik,1 and Ik,�1, respectively. An MS estimation at the decoder can again

be carried out by simply replacing the probabilities in (2) with the

values P(Ik
(l)
jÎ 0

kþ1, Î k,�1, Î k,1) from (5).

Robust transmission of compressed images: The proposed estimation

approach is now applied to the image transmission system in Fig. 1.

For the subband decomposition we utilise a wavelet-based octave filter

bank with L levels. Prior to quantisation the two-dimensional subband

images are scanned in a meander-type fashion to obtain an one-

dimensional subband vector U(‘). Since the bit-allocation information

is highly sensitive to channel errors, we assume that this information

is protected by a sufficiently strong channel code. At the receiver side,

the estimation of the reconstructed subband coefficients Û k
(‘) is carried

out independently for every subband image as described above.

This experimental image transmission system is applied to the

‘Goldhill’ test image of pixel dimension 512� 512 for a three level
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decomposition and a source coding rate of 0.36 bits per pixel (bpp)

including all side information. We compare estimation techniques with

the APPs given by (1) (denoted as ‘1-D’) and with the APPs given by

(5) (denoted as ‘2-D’). Furthermore, different techniques for obtaining

the index transition probabilities at the decoder are utilised:

� From the original subband images (‘Orig.’), which is the practically

infeasible best case.

� From a training set (‘Tr.’) of images (i.e. faces, landscapes, ‘Goldhill’

image not included).

� From two-dimensional first-order auto-regressive modelling (‘AR(1)’)

of the original input image, where the horizontal and vertical AR-

coefficients are assumed to be known at the receiver.

In Fig. 3 the average peak-SNR (PSNR) values of the reconstructed

‘Goldhill’ image against the channel SNR Es=N0 are displayed. The

‘2-D, Orig.’ technique outperforms all other methods especially for low

channel SNRs. The best realisable decoding scheme can be obtained

from the training set using the novel ‘2-D, Tr.’ approach, which is

superior compared to the one-dimensional version (‘1-D, Tr.’). For

lower channel SNRs it even leads to better results than the 1-D optimal

case ‘1-D, Orig.’. Utilising the AR(1) model yields poor reconstruction

PSNR compared to the other approaches.

Fig. 3 Performance for ‘Goldhill’ image

R¼ 0.36 bpp, L¼ 3

Conclusion: The residual redundancy inherent in the quantised subband

images can be utilised for error protection. As a novelty we have included

the two-dimensional spatial correlations of the subband images into

decoding which leads to a much better reconstruction compared to

one-dimensional approaches. The subband image statistics can be best

approximated from a large image training set.
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