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Abstract

This paper presents methods for the decomposition of arbitrary-length signals with linear-phase cosine-modulated
"lter banks. The analysis "lters of this "lter bank are divided into two sets having di!erent centers of symmetry. This
prohibits the use of standard extension methods as described in the literature. Nevertheless, we show that symmetric
extension can be adapted in such a way that the "lter bank is support-preservative. Methods for dealing with arbitrary
length of both signals and "lters are presented. Finally, applications in image and audio coding are outlined. In audio
coding the proposed processing methods allow to e$ciently avoid pre-echoes. ( 2000 Elsevier Science B.V. All rights
reserved.

Zusammenfassung

In diesem Artikel werden Methoden fuK r die Verarbeitung endlich langer Signale mit einer linearphasigen cosinus-
modulierten Filterbank vorgestellt. Die Impulsantworten der Analyse"lter dieser Filterbank sind in zwei Gruppen mit
unterschiedlichen Symmetriezentren aufgeteilt, weshalb herkoK mmliche Randbehandlungsmethoden aus der Literatur
nicht angewendet werden koK nnen. Wir stellen eine Modi"kation der symmetrischen Re#exion fuK r diese Filterbank vor,
die kritische Abtastung auch fuK r endlich lange Signale erlaubt. Dabei darf die LaK nge des Eingangssignals und der
Teilband"lter}Impulsantworten beliebig sein. Schlie{lich werden Anwendungen im Bereich der Kompression von Bild-
und Audiosignalen vorgestellt. Bei der Audiocodierung erlauben die vorgestellten Randbehandlungsmethoden eine
e$ziente UnterdruK ckung von Vorechos. ( 2000 Elsevier Science B.V. All rights reserved.

Re2 sume2

Cet article preH sente de nouvelles meH thodes pour la deH composition de signaux d'une longueur quelconque à l'aide de
bancs de "ltres moduleH s en cosinus à phase lineH aire. Les "ltres d'analyse de ces bancs de "ltres se repartissent en deux
cateH gories, ayant des centres de symeH trie di!eH rents, et ceci interdit l'utilisation de meH thodes d'extension classiques que l'on
peut trouver dans la litteH rature. Ici, nous montrons neH anmoins qu'il est possible d'adapter la meH thode d'extension
symeH trique pour permettre un sous-eH chantillonnage critique des signaux de longueur "nie, et ce, quelle que soit la
longueur des signaux et des "ltres. Finalement, des applications en codage d'images et et de signaux audiofreH quence sont
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Fig. 1. (a) Periodic and (b) (even) symmetric extension of the input signal.

expliciteH es. Pour le codage audio, il faut souligner que les traitements proposeH s permettent de reH duire consideH rablement le
pheH nomène de preH -eH cho. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Critically subsampled "lter banks are widely used for subband-based coding of speech, audio, images and
video. On the analysis side, the input signal is divided into a number of subband signals by means of FIR
analysis "lters. The subband signals are critically subsampled and then quantized in order to be transmitted
or stored. On the synthesis side, the subband signals are "rst upsampled and then applied to the synthesis
"lters. The total number of subband samples per time interval is equal to the number of input samples in the
same interval. However, when processing "nite-length signals, such as the rows and columns of an image, the
total number of subband samples is generally larger than the length of the input signal. Thus, the "lter bank
cannot be regarded as support-preservative in this case. One solution to this problem, which is applicable if
the number of input values is an integer multiple of the number of channels, is a periodic extension of the
input signal as depicted in Fig. 1(a) [25]. The subband signals are then periodic as well and can be restricted
to one period, which "nally leads to critical subsampling again. However, this method has the disadvantage
that, due to possibly di!erent amplitudes at its borders, the periodically extended signal may show extreme
discontinuities that have not been part of the original input signal (see Fig. 1(a)). These discontinuities may
lead to additional border distortions when subband quantization is present.

For "lter banks with linear-phase analysis and synthesis "lters, support preservation can also be obtained
by a symmetric extension of the input signal at both boundaries (see Fig. 1(b)), provided that all "lters have
the same center of symmetry [1,22]. The use of symmetric extension methods guarantees } in contrast to
a periodic extension of the input signal } a `smootha behavior at the signal boundaries and thus reduces the
border distortions under subband quantization.

Other methods discussed in the literature are based on the design of special boundary "lters [5,16],
resulting in implementations where the "lter coe$cients must be switched at the boundaries. Furthermore,
time-varying "lter banks have been proposed [12,16,20]. Generally, if the boundary "lters are obtained by
some kind of optimization, a model of the statistical properties of the } in general non-stationary } input
signal is needed.

In this paper, we discuss a special class of cosine-modulated "lter banks with linear-phase analysis and
synthesis "lters. Such a system was "rst presented in [13]. An extension to arbitrary prototype lengths was
independently reported in [3,4]. The "lter bank can also be regarded as a special case of the modi"ed DFT
"lter bank [8]. This system has the advantage that due to its modulated nature, the "lter bank can be
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e$ciently realized in a polyphase structure [2,24]. Moreover, compared to general linear-phase "lter banks
[18,23], the design cost is also reduced. The only drawback is that the linear-phase analysis "lters do not have
the same center of symmetry. Therefore, standard symmetric extension methods as described in [1,22] cannot
be applied to this "lter bank. In this paper we propose modi"ed symmetric extension methods for the
linear-phase cosine-modulated "lter bank, which enable us to process arbitrary-length input signals in such
a way that support preservation is guaranteed. Note that standard cosine-modulated "lter banks [11], which
utilize a DCT-IV-type modulation, cannot be used in combination with symmetric extension methods due to
their in general non-linear-phase subband "lters.

The organization of the paper is as follows. In Section 2 we brie#y introduce the cosine-modulated "lter
bank with linear-phase subband "lters and show that the subband impulse responses have di!erent centers of
symmetry. Section 3 shows (for two particular input signal lengths) how symmetric extension can be obtained
by using linear-phase "lters with di!erent centers of symmetry. The result is then subsequently applied to the
cosine-modulated "lter bank. Section 4 derives the general solution for arbitrary lengths of the input signal.
In Section 5 the in#uence of the symmetric extension on the preservation of the DC-component in the
lowpass subband is discussed, an issue being especially important in image processing applications. Section
6 presents applications of the cosine-modulated "lter bank and the proposed extension method. In
particular, we look at image compression and pre-echo reduction in subband audio coding. Finally, Section
7 gives a brief conclusion.

2. Linear-phase cosine-modulated 5lter banks

In this section the cosine-modulated "lter bank according to Refs. [3,4,13] is introduced. We consider the
structure in Fig. 2 and refer to this "lter bank as a 2M-subband structure. The linear-phase analysis "lters
h@
k
(n) and hA

k
(n) are derived from a linear-phase prototype p(n) of length N by cosine and sine modulation

according to

h@
k
(n)"o

k
p(n) cosC

p

M
kAn!

N!1#M

2 BD, k"0,1,2,M@, (1)

hA
k
(n)"o

k
p(n!M) sinC

p
M

kAn!M!

N!1#M

2 BD, k"1,2,2,MA, (2)

where n"0,2, N!1#M and

o
k
"G

J2 if k"0 or k"M,

2 otherwise,
M@"G

M for N#M odd,

M!1 for N#M even,
MA"2M!1!M@.

The corresponding linear-phase synthesis "lters are

f @
k
(n)"h@

k
(N!1#M!n), k"0,1,2, M@, (3)

f @@
k
(n)"!hA

k
(N!1#M!n), k"1,2,2, MA. (4)

Note that the impulse responses hA
k
(n) and f @

k
(n) have M leading zeros whereas for h@

k
(n) and f @@

k
(n) the last

M values are zero.
Due to the linear-phase even-symmetric nature of the prototype, i.e. p(n)"p(N!1!n), and the sym-

metry of the sine and cosine modulation in (1) and (2) we have eight possible symmetries for the impulse
responses of the analysis and synthesis "lters, which are given in Table 1. For the sake of simplicity we refer to
the di!erent types of symmetry with the designation given in Table 2. The synthesis "lter impulse responses
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Fig. 2. Linear-phase cosine-modulated "lter bank.

Table 1
Possible types of symmetry for the analysis impulse response. The prototype-length is N and 0 denotes a row vector of M zeros

Type of symmetry

k Symmetry of impulse response N even N odd

Even h@
k
(n)"h@

k
(N!1!n) [2, C, B,A,A,B, C,2, 0] [2, C, B,A,B,C,2,0]

hA
k
(n)"!hA

k
(N!1#2M!n) [0,2,!C,!B,!A, A,B, C,2] [0,2,!C,!B, 0, B,C,2]

Odd h@
k
(n)"!h@

k
(N!1!n) [2,!C,!B,!A, A,B, C,2, 0] [2,!C,!B, 0, B,C,2,0]

hA
k
(n)"hA

k
(N!1#2M!n) [0,2, C, B,A, A,B, C,2] [0,2, C, B,A, B,C,2]

are the #ipped versions of the corresponding analysis "lters, see (3) and (4). Thus Table 1 also describes the
symmetries of f @

k
(!n) and f @@

k
(!n).

Due to leading or "nal zeros of the impulse responses, the centers of symmetry for h @
k
(n) and h @@

k
(n), and also

for f @
k
(n) and f @@

k
(n), di!er by M samples, which has to be taken into account when we wish to apply symmetric

extension methods to the input signal.

3. Symmetric extension for certain input signal lengths

In this section we show (for some special cases) how symmetric extension methods can be applied to
linear-phase analysis "lters with di!erent centers of symmetry. We "rst consider the system depicted in Fig. 3,
which can be regarded as the k-th subband of the analysis "lter bank with k"1,2,M!1. For these values
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Table 2
Types of symmetry

Even symmetry Odd symmetry Designation in this paper

[2, C, B,A,A,B, C,2] [2,!C,!B,!A, A,B, C,2] AA-symmetry
[2, C, B,A,B,C,2] [2,!C,!B, 0, B,C,2] BAB-symmetry

Fig. 3. Detail of the analysis "lter bank with linear-phase analysis "lters h@
k
(n) and hA

k
(n) having the same spectral support.

of k we have two analysis "lters with the same spectral support, but di!erent centers of symmetry as we can
see from Table 1.

The necessary condition for the application of symmetric extension methods to the system in Fig. 3 is that
both output signals y@

k
(m) and yA

k
(m) provide symmetries across the boundaries if the input signal is

symmetrically extended. Clearly, the subbands for k"0 and k"M can be neglected in our considerations,
because we have only one analysis "lter and thus only one output signal. For the other values of k we will
show in the following that for y@

k
(m) and yA

k
(m) such an output symmetry can be obtained for special input

signal lengths.

3.1. Odd-length linear-phase prototype xlter, signal length N
x
"cM#1

The impulse response of an odd-length linear-phase prototype has BAB-symmetry, and this also applies to
the analysis impulse response. We extend our input signal at the beginning and the end by
Q"(2l#1)M!(N!1)/2 samples, where 2lM'N, l3N, using the same kind of symmetry. The extended
input signal x

%9
(n) is given as

x
%9
"[x(Q),2,x(1),x(0),x(1),2,x(N

x
!2),x(N

x
!1),x(N

x
!2),2,x(N

x
!Q!1)]T. (5)

Both output signals y@
k
(m) and yA

k
(m) are symmetric with regard to the boundaries if the input signal has length

N
x
"cM#1 with c3N. This is shown in the following two examples for even and odd values of c,

respectively.

Example 1. The "rst example considers the case of even multiples of M, which restricts the length of the input
signal to N

x
"2cM#1, c3N. The input signal length is chosen as N

x
"13, the prototype "lter length as

N"5 and the decimation factor as 2M"4, leading to Q"8.
In Fig. 4(a), the result of the convolution in the upper branch of the system in Fig. 3 is shown, where the

subsampling by factor 2M"4 is already introduced in the shift of the reversed "lter impulse response
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Fig. 4. Symmetries of decimated output signals y@
k
(m) and yA

k
(m) in the case of an input signal of length N

x
"13 and a linear-phase

prototype "lter of length N"5. The subband index k is omitted for clarity. h@
n

denotes h@
k
(n).

h@
k
(!n). The symmetric extension of the input signal and the redundant samples of the output signal are

shown in dotted boxes. We can see that the output signal y@
k
(m) shows BAB-symmetry at both boundaries

and that the part in the solid boxes contains all signal information. If the non-zero part of h@
k
(n) has an odd

BAB-symmetry (as it is the case for odd k), the coe$cient denoting the symmetry center (i.e. h@
2

in Fig. 4(a)) is
necessarily zero due to the linear-phase property of h@

k
(n). Hence, the "rst and the last value in the solid boxes

(i.e. y@
0

and y@
3

in Fig. 4(a)) will be equal to zero, too.
Fig. 4(b) shows the convolution operation in the lower branch of Fig. 3, where both, the subsampling factor

2M"4 and the leading zeros of the impulse response hA
k
(n) are considered. Note that the output signal shows

AA-symmetry in this case, so that it is again possible to reduce yA
k
(m) to the non-redundant part shown in the

solid boxes.

Example 2. In Fig. 5 symmetric output signals are derived for an input signal of length N
x
"11,

i.e. N
x
"(2c#1)M#1, c3N. The other parameters are kept as in Example 1, that is 2M"4,

N"5.
The symmetries at the beginning of the output signals are the same as in Example 1 since they do

not depend on the signal length. At the end we have AA-symmetry for y@
k
(m) and BAB-symmetry

for yA
k
(m), respectively. Note that the symmetries are exactly the opposite of the ones in Example 1.

Again, all information about the input signal is contained in the values surrounded by the solid
boxes.

From Examples 1 and 2 it can be seen that for all input signal lengths N
x
"cM#1, c3N, symmetries

occur at the beginning and the end of both output signals in Fig. 3, provided that the prototype "lter has odd
length.
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Fig. 5. Symmetries of decimated output signals y@
k
(m) and yA

k
(m) in the case of an input signal of length N

x
"11 and a linear-phase

prototype "lter of length N"5. A coe$cient h@
n

denotes h@
k
(n), where the subband index k is omitted for clarity.

3.2. Even-length linear-phase prototype xlter, signal length N
x
"cM

Processing schemes for even-length linear-phase "lters can be derived in a similar way as for odd-length
"lters. Since the impulse response of an even-length linear-phase prototype has an AA-symmetry, we here
extend the input signal according to

x
%9
"[x(Q!1),2,x(1), x(0),x(0),2, x(N

x
!1),x(N

x
!1),2, x(N

x
!Q)]T (6)

with Q"(2l#1)M!N/2 and 2lM'N. As in the odd-length case it can easily be shown that both output
signals are symmetric for input signals of length N

x
"cM, c3N.

3.3. Application to cosine-modulated xlter banks

So far, we have seen that we obtain symmetries in the subband signals for special input lengths. These
symmetries can be utilized to achieve support preservation with the linear-phase cosine-modulated "lter
bank. In the following, we have a closer look at the most important cases.

3.3.1. Special cases N
x
"2cM#1 and N

x
"2cM

We "rst discuss the cases where the input signal length is "xed to N
x
"2cM#1 for odd-length prototypes

and to N
x
"2cM for even-length prototypes, respectively. The subband matrices Y @ and Y A that contain the
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Table 3
Number of non-redundant samples (d nrs) in Y @ and Y A for input signals of length N

x
"2cM#1 and N

x
"2cM, c3N

N even, M even N even, M odd N odd, M even N odd, M odd

N
x

2cM 2cM 2cM#1 2cM#1
N#M Even Odd Odd Even
M@ M!1 M M M!1
MA M M!1 M!1 M
d nrs Y @ (c#1)M/2#

(c!1)M/2
(c#1)(M#1)/2#
(c!1)(M#1)/2

(c#1)(M#2)/2#
(c!1)M/2

(c#1)(M#1)/2
#(c!1)(M!1)/2

d nrs Y A cM c(M!1) c(M!1) cM

d nrs total 2cM 2cM 2cM#1 2cM#1

decimated signals y@
k
(m), k"0,2,M@ and yA

k
(m), k"1,2,MA are given as

(7)

(8)

where we assume that the input signal has been extended according to (5) and (6), respectively. Note that the
boundary symmetries discussed previously can again be found in the subband matrices. Since the boundary
symmetries between adjacent subbands change from even to odd and vice versa in both subband matrices, we
have positive signs in the last rows of Y @ for even M@ and in Y A for odd MA. In Y @ the values y@

M{
(0) and y@

M{
(c)

are identically zero if M@ is odd. The non-redundant parts of Y @ and Y A are shown inside the dotted boxes.
The number of non-redundant samples per subband depends on the symmetry of the impulse response. In Y A
all rows (i.e. subbands) have c non-redundant samples, so that we can always cut out a rectangular block of
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Table 4
Number of non-redundant samples (d nrs) in Y @ and Y A for input signals of length N

x
"(2c#1)M#1 or N

x
"(2c#1)M

N even, M even N even, M odd N odd, M even N odd, M odd

N
x

(2c#1)M (2c#1)M (2c#1)M#1 (2c#1)M#1
N#M Even Odd Odd Even
M@ M!1 M M M!1
MA M M!1 M!1 M
d nrs Y @ (c#1)M/2 (c#1)(M#1)/2 (c#1)(M#2)/2 (c#1)(M#1)/2

#cM/2 #c(M#1)/2 #cM/2 #c(M!1)/2
d nrs Y A (c#1)M/2 (c#1)(M!1)/2 (c#1)M/2 (c#1)(M#1)/2

#cM/2 #c(M!1)/2 #c(M!2)/2 #c(M!1)/2

d nrs total (2c#1)M (2c#1)M (2c#1)M#1 (2c#1)M#1

size MA]c as the non-redundant part. In Y @ however, the number of non-redundant samples per subband is
alternately (c#1) and (c!1). Table 3 shows that for both odd and even prototype lengths we end up with
exactly N

x
samples inside both dotted boxes. Thus, the linear-phase cosine-modulated "lter bank is support-

preservative for input signal lengths N
x
"2cM, c3N, when using an even-length prototype, and for

N
x
"2cM#1 when using an odd-length prototype.

3.3.2. Special cases N
x
"(2c#1)M#1 and N

x
"(2c#1)M

Now we consider the cases where we either have an input signal of length N
x
"(2c#1)M#1 and an

odd-length prototype, or an input signal of length N
x
"(2c#1)M and an even-length prototype. Taking the

symmetries of the decimated signals in Fig. 5 into account, the subband matrices Y @ and Y A are now given as

(9)

(10)
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Again, the non-redundant subband samples are found in the dotted boxes. The upper sign in the last row of
Y @ is valid for even M@ and the one in Y A is valid for odd MA. Note that in contrast to the cases discussed in
Section 3.3.1, the number of non-redundant samples per subband amounts to c in even rows and (c#1) in
odd rows of Y @ and Y A. Table 4 gives an overview of the total number of non-redundant samples in Y @ and Y A,
depending on the choice of N and M. It shows that the linear-phase cosine-modulated "lter bank is
support-preservative for input signals of length N

x
"(2c#1)M#1 when using an odd-length prototype

and of length N
x
"(2c#1)M for an even-length prototype.

3.4. Matrix formulation of symmetric extension

In order to discuss the e!ects of the symmetric extension on the properties of the subband signals it is
more convenient to describe the analysis and synthesis "ltering operations with block convolution
matrices.

When the linear-phase prototype is designed in such a way that the "lter bank yields PR for an in"nite
length input signal we address the paraunitary case. The application of the "lter bank to a length N

x
input

signal x can then be viewed as an orthonormal transform y"Hx, with a size N
x
]N

x
transform matrix

H satisfying HTH"I.
In the following discussion we restrict ourselves to the case of even-length prototype "lters and input signal

lengths of N
x
"2cM, c3N. However, the extensions to N

x
"(2c#1)M and to odd-length prototypes are

straightforward.
A vector y lining up all columns inside the dotted boxes of (7) and (8), i.e. containing all non-redundant

subband samples, can be obtained by multiplication of the extended input signal

x
%9
"[x(N/2#M!1),2,x(1), x(0),x(0),2,x(N

x
!1),x(N

x
!1),2, x(N

x
!N/2)]T (11)

with a convolution matrix H of size N
x
](N

x
#N#M), which has the following structure:

The sub-matrices H and HA contain the #ipped analysis impulse responses:

H"C
H@
H@@D with H@"C

h@
0
(N!1#M) h@

0
(N!2#M) 2 h@

0
(0)

h@
1
(N!1#M) h@

1
(N!2#M) 2 h@

1
(0)

F F } F

h@
M{

(N!1#M) h@
M{

(N!2#M) 2 h@
M{

(0)D,
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HA"C
hA
1
(N!1#M) hA

1
(N!2#M) 2 hA

1
(0)

hA
2
(N!1#M) hA

2
(N!2#M) 2 hA

2
(0)

F F } F

hA
MA (N!1#M) hA

MA (N!2#M) 2 hA
MA (0)D.

Since every second subband sample in the "rst and last column in the dotted box of Y @ in (7) is zero, we have
to consider only every second analysis impulse response h@

k
(n) at the left and right boundary of the input

signal. Thus, the sub-matrix HK @ of dimension (xM@/2y#1)](M#N) is given as

HK @"C
h@
0
(N!1#M) h@

0
(N!2#M) 2 h@

0
(0)

h@
2
(N!1#M) h@

2
(N!2#M) 2 h@

2
(0)

F F } F

h@
2>xM{@2y

(N!1#M) h@
2>xM{@2y

(N!2#M) 2 h@
2>xM{@2y

(0)D. (12)

All non-redundant subband samples are now acquired by y"Hx
%9

.
Since the "lter bank is paraunitary when applied to in"nite-length signals, the analysis impulse responses

are pairwise orthogonal and also orthogonal to their shifted versions (shifts by multiples of 2M). These
impulse responses form the rows of the rectangular matrix H such that

hT
i
h
k
"d

ik
, i, k"0,2,N

x
!1, (13)

where d
ik

denotes the Kronecker symbol and hT
i

denotes the i-th row of H.
Instead of symmetrically extending the input signal x as in (11), we can also apply the symmetric extension

operation to the analysis "lters at the boundaries of the matrix H. This can be carried out by postmultiplying
the block convolution matrix H with a (N

x
#N#M)]N

x
matrix

E
h
"C

K
1

I
Nx

K
2
D,

where K
1

and K
2

denote re#ection matrices

[K
1
]
i,l
"d

M`N@2~1~i,l
, i"0,2, N/2#M!1, l"0,2,N

x
!1,

[K
2
]
i,l
"d

Nx~1~i,l
, i"0,2,N/2!1, l"0,2, N

x
!1.

This leads to a new N
x
]N

x
analysis transform matrix H

Nx
"HE

h
and an analysis of the form y"H

Nx
x.

Using (13) and the symmetries of the linear-phase even-length analysis "lters, one can prove that the rows
of H

Nx
are still orthogonal, but not orthonormal, i.e.

hT
Nx ,i

h
Nx ,k

"c
i
d
ik
, i, k"0,2,N

x
!1 (14)

with

c
i
"G

2 for i"0,2,xM@/2y and i"N
x
!1!MA!xM@/2y ,2, N

x
!1!MA,

1 otherwise.
(15)

Thus, the input signal can be reconstructed according to

x("FT
Nx

y with F
Nx

"diagM[c
0
, c

1
,2, c

Nx~1
]N~1 H

Nx
. (16)

From (14) and (15) we see that the energies of some "lters are increased by a factor two.
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Construction of an orthonormal transform: An orthonormal transform with all c
i
"1, i"0,2, N

x
!1, can

be obtained by proper scaling of the analysis and synthesis transform matrices. This can be carried out by

multiplying H
Nx

with a size N
x
]N

x
diagonal matrix D"diagM[1/Jc

0
,1/Jc

1
,2,1/Jc

Nx~1
]N according to

H
0
"DH

Nx
"D~1F

Nx
, (17)

so that H
0
HT

0
"HT

0
H

0
"I

Nx
is satis"ed.

4. Symmetric extension for arbitrary input-signal lengths

4.1. Problem statement

In the last section we have shown that the linear-phase cosine-modulated "lter bank can be support-
preservative for input signals of length N

x
"cM#1 and N

x
"cM, c3N, depending on the prototype

length. In order to recover the symmetries within the subbands for arbitrary-length input signals, we propose
the following procedure:

In a "rst step, we extend the input signal vector x with N
a

values a(n) to the length N
x8
"c8 M or

N
x8
"c8 M#1. We thus obtain the new input signal x8 (n), which can be written as a vector x8 according to

x8 "[a(0),2, a(N
a1
!1), x(0),2,x(N

x
!1), a(N

a1
),2, a(N

a
!1)]T (18)

with N
a
"N

x8
!N

x
, 0)N

a1
)N

a
. A possible choice for N

x8
is given by

N
x8
"G

c8 M#1, c8 "xNx~2
M

y#1 for odd prototype length,

c8 M, c8 "xNx~1
M

y#1 for even prototype length.
(19)

The e!ect of this "rst step is that for even c8 we obtain the subband matrices Y @ and Y A depicted in (7) and
(8), respectively, and for odd c8 those shown in (9) and (10). Thus, by extension of the original signal vector
according to (18) we can again exploit the symmetries discussed for the special cases in Section 3.3.1 and
Section 3.3.2. However, there is still one drawback with this solution: The resulting "lter bank is not
support-preservative, since the number of non-redundant subband samples is now N

x8
, which is N

a
samples

more than the length N
x

of our original input signal.
Support preservation can again be achieved, when the number of non-redundant samples in both Y @ and

Y A is reduced by N
a

samples. For this the extra values a(n) may be chosen in such a way that they lead to
N

a
pre-de"ned values in the subband matrices, denoted as k(n), n"0,2,N

a
!1. The pre-de"ned values are

known in the receiver and do not need to be transmitted.
The additional N

a
pre-de"ned samples may appear at all positions within Y @ and Y A that are in#uenced

by the introduced values a(n) during convolution and subsampling. Possible choices for their placement
are
f in the "rst or last column inside the dotted boxes of Y @ and Y A,
f if c8 is even, in the "rst columns of Y @ in (7) just outside the dotted box (and thus also the corresponding

values inside the dotted box),
f if c8 is odd, in the "rst column of Y @ in (9) on the left-hand side and the "rst column of Y A in (10) on the

righthand side of the dotted box.
N

a1
samples may be placed in the "rst columns and N

a
!N

a1
samples in the last columns of the dotted boxes

in Y @ and Y A, respectively. However, the actual choice may depend on di!erent aspects:
f The variance of the subband signals at the boundaries should not be changed too much by the inserted

values and the symmetric extension.
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f It might be disadvantageous for subband coding to have too many di!erent subband signal lengths, e.g.
when a zig-zag scanning over the subbands is required (as for example in the JPEG image coding scheme
[7]).

f In real-time applications with "xed-point arithmetic it might cause problems if the inserted values a(n) are
not in the same range as the input signal x(n).

4.2. Solution

In the following we show that the inserted values a(n) can be determined by solving a system of linear
equations. The matrix formulation for the convolution can be given similarly to the solution in the last
section when replacing N

x
by N

x8
for the matrix and vector dimensions, as

y8 "H
Nx8

x8 . (20)

Here y8 is of length N
x8

and still contains the predetermined values k(n), n"0,2,N
a
!1, from which

N
a1

values can be arbitrarily positioned within the "rst and N
a
!N

a1
values within the last values of y8 .

For reasons of simplicity, we here choose N
a1
"0 and y8 "[ yT, kT]T, where y contains the N

x
non-

redundant subband samples and k"[k(0), k(1),2, k(N
a
!1)]T. The system of linear equations is then

given by

C
y

kD"C
H

00
H

01
H

10
H

11
DC

x

aD (21)

with

[H
00

]
i,l
"[H

Nx8
]
i,l

, i, l"0,2,N
x
!1,

[H
01

]
i,l
"[H

Nx8
]
i,Nx`l , i"0,2,N

x
!1, l"0,2, N

a
!1,

[H
10

]
i,l
"[H

Nx8
]
Nx`i,l

, i"0,2,N
a
!1, l"0,2, N

x
!1,

[H
11

]
i,l
"[H

Nx8
]
Nx`i,Nx`l , i, l"0,2,N

a
!1.

Note that this special case can be derived from the general case with N
a1
O0 and a di!erent placement of k(n)

inside y8 by introduction of a permutation matrix that rearranges the rows of y8 and H
Nx8

.
Given the vector k, the solution for a writes

a"H~1
11

(k!H
10

x), (22)

and the relationship between the non-redundant subband samples y, the input vector x and the pre-de"ned
subband values k is given by

y"(H
00

!H
01

H~1
11

H
10

)
hggggiggggj

H
b

x#H
01

H~1
11

k. (23)

Likewise, the reconstructed signal x( can be obtained from

C
x(

a( D"C
F
00

F
01

F
10

F
11
D

T

C
y

kD (24)
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Fig. 6. Frequency responses for the "rst four boundary "lters in H
b
. N

a1
"0, M"8, and an ELT prototype are used.

with

[F
00

]
i,l
"[F

Nx8
]
i,l

, i,l"0,2, N
x
!1,

[F
01

]
i,l
"[F

Nx8
]
i,Nx`l , i"0,2, N

x
!1, l"0,2, N

a
!1,

[F
10

]
i,l
"[F

Nx8
]
Nx`i,l

, i"0,2, N
a
!1, l"0,2, N

x
!1,

[F
11

]
i,l
"[F

Nx8
]
Nx`i,Nx`l , i, l"0,2, N

a
!1

as

x("FT
00

y#FT
10

k. (25)

Note that this method can as well be applied to a periodic extension of arbitrary-length input signals. This
only requires a matrix formulation similar to Section 3.4, where the resulting convolution matrices then
replace H

Nx8
in (21) and F

Nx8
in (24), respectively.

The special case k"0: For k"0 it is possible to write (23) and (25) in terms of size N
x
]N

x
analysis and

synthesis transform matrices H
b

and F
b
, respectively:

H
b
"H

00
!H

01
H~1

11
H

10
3RNxCNx , F

b
"FT

00
, (26)

where FT
b
H

b
"I

Nx
.

Note that the transform matrices F
b

and H
b

are generally not orthogonal to themselves, but the
biorthogonality relation f T

bi
h
bk
"d

ik
, i, k"0,2,N

x
!1 holds between the column vectors f

bi
and h

bi
of

F
b

and H
b
, respectively. Thus, the underlying "lter bank generally becomes biorthogonal when using

a linear-phase PR prototype and processing "nite signals of lengths N
x
OcM, c3N. This is evident, since

inserting N
a
"N

x8
!N

x
additional non-zero samples into the input signal increases the energy of the

subband signals compared to an input signal of length N
x
.

Boundary frequency responses: To illustrate the frequency selectivity of the boundary "lters, we consider
a "lter bank with M"8 and an extended lapped transform (ELT) prototype from Malvar [15] of length
N"4M. The parameter N

a1
is chosen as N

a1
"0. The magnitude frequency responses of the "rst four

boundary "lters on the left boundary in H
b
(these are the "lters in HK @, see (12)) are depicted in Fig. 6. We can

see that these "lters are fairly frequency selective. However, it should be noted that their performance
degrades for N

a1
'0.
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5. In6uence on the DC-component

In subband coding of images it is important that the DC component of the input signal is kept in the
lowpass subband. We thus require all analysis "lters (except the lowpass "lter) to have one or more zeros at
z"1, or at least a su$ciently high stopband attenuation for u"0, which prevents the DC from leaking to
other subbands. Otherwise quantization of the subband samples would cause a DC input not to be
reconstructed as pure DC, which may lead to a noticeable degradation of the reconstructed signal. When
processing "nite length signals (e.g. images) these requirements also must hold for the boundary "lters of the
"lter bank.

For a constant input signal x
c
of length N

x
"2cM the analysis based on the extension method results in

a constant DC value in the lowest subband, while all other subbands are zero due to the zeros of the analysis
"lters at z"1. On the other hand, when using the orthonormalized "lter bank described in Eq. (17), the DC
ampli"cation in the lowest band changes at the boundaries by factor 1

J2
. Thus, if we want to maintain the

ideal DC behavior in the lowest band, while achieving orthonormality for the other bands, we may replace
the scaling matrix D in (17) by

D
d
"diagGC1,

1

Jc
1

,2,
1

Jc
q

,1,
1

Jc
q`2

,2,
1

Jc
Nx~1

DH with q"N
x
!2!MA!xM@/2y ,

resulting in a transform matrix H
d
"D

d
H

Nx
. The c

i
are de"ned as in (15) and the synthesis has to be carried

out with F
d
"D~1

d
F

Nx
.

For general signal lengths (2c!1)M(N
x
(2cM the perfect DC behavior can be maintained by using

appropriate extension values. However, for arbitrary input signals, this is not a trivial matter. To "nd the
necessary extension values a(n) one "rst needs to compute the DC component at the boundaries of the signal.
Then, this knowledge can be applied to de"ne the extra subband samples k(n), from which "nally the samples
a(n) can be computed.

6. Applications

6.1. Image coding example

Important applications where "nite-length signals are involved are image and intraframe video compres-
sion. Utilizing a modulated "lter bank for spectral decomposition in those applications has generally the
advantage of reduced computational complexity compared to the widely used tree-structured systems.

As we have seen, signals of any length can be processed, so that there is no restriction on the image size.
However, the image size and the distribution of extra values a(n) to the left and right boundary in#uence the
compression properties. In order to show these e!ects, we look at the compression of parts of the Lena image
with di!erent sizes. A "lter bank with 2M"16 subbands and an ELT prototype of length N"4M from
Malvar [15] are used. The bit allocation is carried out in a rate-distortion optimal sense according to the
method presented in [19]. The entropy of the quantized subband signals amounts to 0.1 bits per pixel (bpp) in
all cases.

We "rst consider a part of the Lena image of size 446]510. The image is shown in Fig. 7(a). Note that both
446 and 510 are not multiples of 2M, and the rows and columns of the input image have to be extended (by
two samples) prior to decomposition. As an example we choose k"0 in the following. Fig. 7(b) shows the
coding result for the case where insertion takes place at the end of each row and column (N

a1
"0) with the

modi"ed subband values y@
6
(c)"yA

MA (c!1)"0. We see that heavy artifacts at the lower and the right
boundary of the reconstructed image occur. These artifacts are due to extremely large subband samples at
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Fig. 7. (a) Part of original Lena image (size 446]510); (b)}(d) reconstructed Lena images with 2M"16, bit rate 0.1 bpp, and ELT
prototype; (b) image size 446]510, insertion at the end of rows and columns with the modi"ed subband values y@

6
(c)"yA

MA (c!1)"0,
PSNR"25 dB; (c) image size 446]510 samples, modi"ed subband values y@

6
(c)"yA

3
(c!1)"0, PSNR"29 dB; (d) image size

448]512, PSNR"29.2 dB.

these boundaries. If we choose di!erent subband values to be modi"ed (y@
6
(c) and yA

3
(c!1)), the subband

samples at the boundaries behave much better, and we achieve a much better visual quality and a higher
PSNR (4 dB more). The result is shown in Fig. 7(c). Finally, the reconstruction result for an image of size
448]512 is shown in Fig. 7(d), where the introduction of additional values in the rows and columns is not
necessary. The visual quality and the PSNR are comparable to the result in Fig. 7(c).

6.2. Improved representation of transient signal segments in subband audio coding

In this section, we show that the proposed extension method can be successfully applied to pre-echo
reduction in subband audio coding. The problem being addressed here is that in audio subband coding, the
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Fig. 8. Castanet signal: Adaptive framing.

frame boundaries for partitioning the input signal are usually chosen independently of the content of the
audio signal. For attack-like transients (e.g. castanets, triangles, etc.) this results in audible pre-echoes, since
the duration of premasking in the human auditory system can almost be neglected [26]. As a solution we use
an adaptive framing strategy, where the frame boundaries are chosen so that the attacks always appear at the
beginning of a segment while the segments end either in front of the next attack or in a stationary region. This
framing is carried out prior to the analysis "lter bank and is obtained via an energy-based criterion presented
in [10].

The proposed processing scheme for linear-phase cosine-modulated "lter banks allows the support-
preservative decomposition of arbitrary-length signals, so that the segmentation can take place extremely
close to attacks, and pre-echoes can almost completely be avoided. This is not the case for other methods
based on adaptively changing the resolution of the time-frequency plane via switched "lter banks as the ones
in [17,21], where the frame borders are only allowed on a "xed time grid. The same holds for post-"ltering of
pre-echo corrupted frames as proposed in [14].

The segmentation result for an excerpt of a castanet signal is depicted in Fig. 8. The "gure reveals that
symmetric extension remains as the only feasible signal extension method, since especially for transient
frames we most likely have completely di!erent signal behaviors at the left and the right frame boundary.

The resulting audio coding scheme, which utilizes this adaptive framing strategy is derived from the
MPEG layer 1 codec [6]. After the segmentation of the input signal the resulting ("nite-length) signals are
processed with the support-preservative linear-phase cosine-modulated analysis "lter bank. Since the DC
component in audio signals can be neglected, the extra scaling operations described in Section 5 are not
necessary here, and we can simply assume the "lter bank to be orthonormal. Furthermore, we restrict
ourselves to an input signal length of N

x
"2cM, c3N. As mentioned earlier, this choice ensures to have

well-behaved subband samples at the boundaries, and it also reduces the overall number of di!erent
frame-lengths to be transmitted to the receiver. The bit-allocations for the scalar quantization of the subband
signals are calculated via a psychoacoustical model on a frame-by-frame basis.

The pre-echo suppression capabilities of this experimental audio codec are visualized in Fig. 9. In this
example the number of subbands is chosen as 2M"64, the block-length is allowed to vary between 384 and
1536 samples, and the linear-phase prototype of length N"512 is designed with the method in [9]. Fig. 9(a)
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Fig. 9. (a) Original signal segment and, (b) reconstructed signal segment, coded at 75 kBit/s.

shows a transient part of the castanet signal. The reconstructed signal is displayed in Fig. 9(b), after being
coded at 75 kBit/s. Nearly no pre-echo artifacts are visible in the plot of the reconstructed signal.

7. Conclusion

We have shown that it is possible to "nd symmetric extensions for the 2M-band linear-phase cosine-
modulated "lter bank, which allow us to process "nite-length signals without border distortions. Standard
symmetric extension methods cannot be applied to this "lter bank, because the centers of symmetry for the
sine- and cosine-modulated linear-phase "lters are M samples apart.

We "rst derived the extension method for two special cases with input signal lengths of N
x
"cM, c3N, for

even-length linear-phase prototypes and N
x
"cM#1 for odd-length prototypes, respectively. Based on

these special cases, general solutions for arbitrary-length input signals could be obtained. The method is
based on the insertion of additional values prior decomposition. The necessary modi"cations of the input
signal in#uence the properties of the subband signals, where it is generally advantageous to keep the number
of additional values low. Applications have been presented in audio and image coding. In audio coding it
could be shown that our method allows the e$cient suppression of pre-echoes via separate processing of
"nite-length signal blocks.
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