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Abstract—Nested codes have been employed in a large number
of communication applications as a specific case of superposition
codes, for example to implement binning schemes in the presence
of noise, in joint network-channel coding, or in physical-layer
secrecy. Whereas nested lattice codes have been proposed recently
for continuous-input channels, in this paper we focus on the
construction of nested linear codes for joint channel-network
coding problems based on algebraic protograph LDPC codes. In
particular, over the past few years several constructions of codes
have been proposed that are based on random lifts of suitably
chosen base graphs. More recently, an algebraic analog of this
approach was introduced using the theory of voltage graphs. In
this paper we illustrate how these methods can be used in the
construction of nested codes from algebraic lifts of graphs.

I. INTRODUCTION

Nested codes have been widely used to implement binning
schemes based on coset codes in the presence of noise for
numerous scenarios, for example for the noisy Wyner-Ziv
problem [1] and the dual Gel’fand-Pinsker problem [2]. In
particular, for the case with continuous-input channels, binning
schemes based on nested lattice codes have been proposed
in [3]. Recently, in [4] the authors consider discrete-input
channels and present compound LDGM/LDPC constructions
which are optimal under ML decoding.
While nested codes in these contexts are related to joint

source-channel coding problems, the class of algebraic nested
codes we will address in this paper are defined based on
a joint channel and network coding scenario. Such nested
codes have been originally proposed in [5] for the generalized
broadcast relay problem, where a relay node broadcasts N
packets to several destination nodes, which already know some
of the packets a priori. A related concept was used in [6]
in the context of two-way relaying. The idea is that instead
of information words, codewords of different subcodes C!,
1 ≤ ! ≤ N , are algebraically superimposed via a bitwise
XOR. In contrast to nested codes for the joint source-channel
coding scenario described above, here each subcode and any
arbitrary combination of the subcodes is intended to form a
good channel code. In particular, this also holds for the linear
combination of all subcodes, the global code C. It has been
shown in [7] for a broadcast scenario with side information
that such a construction is able to outperform a scheme based
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on a separation of channel and network coding for non-ergodic
discrete-input fading channels. In these applications we require
the subcodes to be better in threshold and/or in error-floor than
the global code.
In this paper we focus on array-code type constructions [8],

[9] and propose an algebraic design of nested linear codes
based on protograph LDPC codes [10], [11]. In particular,
in [12], [13] a lifting technique based on voltage graphs has
been proposed which has been shown to provide a large girth
of the code graph and thus a good error-floor performance.
In contrast to previous approaches based on concatenated and
random LDGM codes [5], [14] and also to constructions based
on random LDPC codes we show that the advantage of the
above algebraic constructions in the error floor regime also
carries over to the nested code setting.

II. PRELIMINARIES
A. Nested codes
Consider M different information vectors i! of length K!,

! = 1, . . . ,M , which we want to encode jointly in such a way
that each information vector is associated with a codeword
from a different subcode. The overall codeword c is generated
by multiplying the concatenation of all information vectors
with a generator matrix G of the global code C according to

cT = [iT1 , iT2 . . . iTM ]









G1

...
GM









= [iT1 , iT2 . . . iTM ]G =

iT1 G1 ⊕ iT2 G2 ⊕ · · · ⊕ iTM GM , (1)

where each of the subcodes C! with generator G! of rate R! =
K!/N is associated with the corresponding information vector
i! and ⊕ represents a bitwise XOR. The goal is now to find
general systematic design strategies where the subcodes, any
combination of subcodes, and the global code C have good
threshold and/or error floor properties.
For the sake of simplicity we focus on M = 2 and the

binary case in the following. Our aim is to design an LDPC
code such that its generator matrix G satisfies (1), where H ∈
{0, 1}(N−K1−K2)×N represents a corresponding parity check
matrix. If G is not rank deficient, the null space of H of
dimension (N −K1−K2) contains the codewords cT

1 ⊕ cT
2 =

iT1 G1 ⊕ iT2 G2.



Likewise, the columns of the parity check matrices H1,
H2 associated with G1, G2 each form a basis for their null
spaces of dimensions (N − K1) and (N − K2), respectively.
A necessary condition to prevent G from having a rank
smaller than K1 + K2 is that H1, H2 cannot have more than
(N − K1 − K2) linear independent parity check equations
in common. Based on these considerations, we propose the
following design strategy. First, randomly generate a matrix
M ∈ {0, 1}N×N of full rank N , according to a given row
and column degree distribution. This matrix is then partitioned
into three submatrices

M (N×N) =
[

M (N×K2)
1 M (N×K1)

2 M (N×(N−K1−K2))
3

]T

.

(2)
Next, the individual parity check matrices for the nested

code are obtained as

H = [M (N×(N−K1−K2))
3 ]T ,

H((N−K1)×N)
1 =

[

MN×K2

1 M (N×(N−K1−K2))
3

]T

,

H((N−K2)×N)
2 =

[

MN×K1

2 M (N×(N−K1−K2))
3

]T

.

Thus, both H1 and H2 are guaranteed to have a null space
of dimensions (N − K1) and (N − K2), respectively, and H
has (N − K1 − K2) parity check equations that are satisfied
by C1 and C2.
Proposition 1. The nested code property in (1) holds also if
M and thus one or more of the matrices H , H1, and H2 are
(row) rank deficient. For a rank deficit r of the check matrix
H the rate loss for the global code C is given as ∆R ≤ r/N .

Proof: Denote the rank deficit for the matrices M1, M2

as r1 ≥ 0, r2 ≥ 0, respectively. This means that G1 has
now a rank of at least K1 + r + r1, and G2 a rank of at
least K2 + r + r2, resp., which leads to an overall rank of
at least K1 + K2 + r + r1 + r2 for the generator matrix G.
Since both subcodes have at most N − K1 − K2 − r check
equations in common the row rank of G must not be smaller
than K1 + K2 + r to ensure the nested code property which
is satisfied for any r1 ≥ 0, r2 ≥ 0. By setting R′

1 + R′
2 =

(K1 + K2 + r)/N where R′
1 and R′

2 denote the new rates for
the subcodes C1 and C2, a rate loss of ∆R ≤ r/N for the
code C is obtained.
Note that an extension of the above design strategy to M >

2 can be obtained in a straightforward way by modifying the
partitioning and construction of M in (2).

B. Voltage graphs
An algebraic construction of specific covering spaces for

graphs was introduced by Gross and Tucker in the 1970s [15].
For a graph G = (VG , EG), a function α called an ordinary
voltage assignment, maps the positively oriented edges to
elements from a chosen finite group G, called the voltage
group. Each edge in G has a positive and negative orientation,
and the negative orientation is assigned the inverse group
element. The base graph G is called an ordinary voltage graph.
The values of α on the edges are called voltages. A new graph
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Fig. 1. A permutation voltage graph G is shown on the left and its derived
graph Ĝ on the right, where G serves as a protograph for Ĝ. The darker edges
correspond to the connections between the clouds of vertices incident with
the nontrivial labeled edges.

Gα, called the (right) derived graph, is a |G|-degree lift of G
and has vertex set V ×G and edge set E ×G, where if (u, v)
is a positively oriented edge in G with voltage b, then (u, a) is
connected to (v, ab) in Gα. Alternatively, another construction
takes the voltage group to be the symmetric group Sn on n
elements and has α map the positively-oriented edges of G into
Sn. This yields a permutation voltage graph. The permutation
derived graph Gα is a degree n lift (instead of n!) with vertices
V × {1, . . . , n} and edges E × {1, . . . , n}. If π ∈ Sn is a
permutation voltage on the edge e = (u, v) of G, then there
is an edge from (u, i) to (v, π(i)) in Gα for i = 1, 2, . . . , n.
We will represent each vertex (v, i) and each edge (e, i) in
the derived graph by vi and ei, respectively. In both cases, the
labeled base graph (i.e. voltage graph) algebraically determines
a specific lift of the graph. Fig. 1 shows a permutation voltage
graph G = K2,3 with two nontrivial permutation voltages on
its edges to the group S3, and the corresponding degree 3
permutation derived graph.
Henceforth, derived (lifted) graphs will be denoted by Ĝ

since the voltage assignment α should be clear from context.
In this paper we will focus on permutation voltage graphs for
designing nested codes.

III. NESTED CODES FROM PROTOGRAPHS

We now describe a simple method to construct nested
codes from protographs in which the base Tanner graphs
corresponding to small parity-check matrices H1,H2, and H
are lifted to obtain Tanner graphs with corresponding parity-
check matrices Ĥ1, Ĥ2, and Ĥ . The simplicity of our method
is that it involves just one lifting of the base graph GM

corresponding to M .
We start with a small bipartite base graph GM with n left

vertices, denoted by the set L, and n right vertices, denoted
by the set R. The matrix M is the incidence matrix of the
graph GM . The n left vertices are the variable nodes and the
right nodes are the constraint nodes (parity-check nodes) of
the base graph. We partition the set of right nodes R in GM

into three disjoint subsets S1, S2 and T of sizes k1, k2 and
n − k1 − k2, respectively, i.e., S1 ∪ T ∪ S2 = R. We define
the base graphs for the matrices M1,M2, and M3 as follows:

• Let G denote the induced subgraph of T in GM . Note that
G is a bipartite graph with n left vertices of L and (n−
k1 − k2) vertices of T . The corresponding parity-check
matrix of G is M3. Lifting G by a degree m lift gives the



derived graph Ĝ with corresponding parity-check matrix
Ĥ for the code C. The size of Ĥ is m(n−k1−k2)×mn.

• Let G1 denote the induced subgraph of S2 ∪ T in GM .
Note that G1 is a bipartite graph with n left vertices of
L and (n − k1) vertices of S2 ∪ T . The corresponding
parity-check matrix of G1 is the matrix H1. Lifting G1

by a degree m lift gives the derived graph Ĝ1 with cor-
responding parity-check matrix Ĥ1 for the first subcode
C1. The size of Ĥ1 is m(n − k1) × mn.

• Similarly, let G2 denote the induced subgraph of S1 ∪ T
in GM . Note that G2 is a bipartite graph with n left
vertices of L and (n − k2) vertices of S1 ∪ T . The
corresponding parity-check matrix of G2 is the matrixH2.
Lifting G2 by a degree m lift gives the derived graph Ĝ2

with corresponding parity-check matrix Ĥ2 for the second
subcode C2. The size of Ĥ2 is m(n − k2) × mn.

• The lifts of each of the three graphs G1, G2, G can be done
simultaneously by simply lifting the base graph GM by
a degree m lift in an appropriate way.

The blocklength of the lifted nested code is N = nm and
the dimensions of the lifted subcodes are K1 ≥ k1m and
K2 ≥ k2m with equality if and only if Ĥ1 and Ĥ2 are not
rank deficient. This construction approach can be extended
to nested codes having more than two component codes in a
straightforward way.
With the method outlined above, the design problem of

the nested codes reduces to finding a suitable assignment of
permutations (or, more generally, group elements) to the edges
of the base graph GM . Using random permutations is one
avenue, however, we are interested in permutations that are
determined algebraically to obtain an algebraic construction.
In the following we focus on irregular constructions since

by starting from a regular (dv, dc) code C with variable
node degree dv and check node degree dc the corresponding
subcodes will be regular (dv + c, dc) codes with c > 0.
For the binary-input AWGN channel this typically leads to
subcodes with larger thresholds [16] than the code C, which
is not desired. By using irregular constructions for the nested
code we can keep a certain fraction of degree-two variable
nodes in the code to improve the threshold, in particular for
the subcodes.

IV. LIFTED NESTED CODES USING COMMUTING
PERMUTATIONS

In our first construction we combine a variant of the
algebraic construction of LDPC codes presented in [9] with
the lifting technique described in Section III to obtain a family
of quasi-cyclic nested codes. For an integer m, the subset of
integers of the set {0, 1, 2, . . . ,m − 1} that are co-prime to
m forms a multiplicative group Z∗

m. (If m is prime, then the
set {0, 1, . . . ,m− 1} form a Galois field and all the non-zero
elements in this set form a multiplicative group.) Let a and
b be two non-zero elements in this multiplicative group with
multiplicative orders o(a) = k and o(b) = j, respectively.
For j < k, we form the following j × k matrix P with

elements from Z∗
m that has as its (s, t)th element Ps,t = bsat

as follows:

P =







1 a a2 . . . ak−1

b ab a2b . . . ak−1b

. . . . . . . . . . . . . . .

bj−1 abj−1 a2bj−1 . . . ak−1bj−1







.

Let P ′ be any j×j submatrix of P . Let GM be the complete
bipartite graphKj,j on j variable nodes {v0, v1, . . . , vj−1} and
j check nodes {r0, r1, . . . , rj−1}. Let f(·) denote a function
mapping the elements in {0, 1, . . . ,m−1} to the set of permu-
tations in the symmetric group Sm, i.e., set of permutations on
m elements. Specifically, we let f(x) denote the permutation
that maps i (→ x+i mod m, for i = 0, 1, . . . ,m−1. We assign
the permutation f(P ′

s,t) for the edge (rs, vt) in GM and lift the
graph along with their permutation labeled edges by a degree
m lift. We choose three disjoint subsets S1, S2, and T of the
set of check nodes {r0, r1, . . . , rj−1} and obtain the induced
graphs G1, G2, and G, as described in Section 3. The resulting
derived (lifted) graph ĜM also yields the lifted graphs Ĝ1, Ĝ2

and Ĝ and the corresponding parity-check matrices H1,H2,
andH of the nested code. In particular, the matrixM is the all-
ones matrix of size j× j. The corresponding incidence matrix
M̂ for the lifted graph GM is a matrix that is a j × j array of
shifted identity matrices, with the shifts corresponding to the
entries in the matrix P ′. For example, if the first j columns
and j rows of P form the matrix P ′, then

M̂T =







I1 Ia Ia2 . . . I
aj−1

Ib Iab Ia2b . . . I
aj−1b

. . . . . . . . . . . . . . .

I
bj−1 I

abj−1 I
a2bj−1 . . . I

aj−1bj−1







,

where Ix denotes the m×m identity matrix cyclically shifted
to the left by x positions. In a more general array construction
in [8], the shifts in the above construction are chosen randomly
from the set {0, 1, . . . ,m − 1}.
The base graph GM may be viewed as a permutation

voltage graph, and its m-degree lift ĜM as a permutation
derived graph, where the local voltage group consists of the
permutations that map i (→ x+i mod m, for i = 0, . . . ,m−1,
where x can take values in {0, 1, . . . ,m − 1}.

The constructed codes are quasi-cyclic and thus have an
encoding complexity of O(1) per symbol [17]. The codes have
performance comparable to random LDPC codes for short to
moderate blocklengths. However, at large block lengths, the
random codes are expected to outperform this construction as
the distance and girth of these codes are limited. Specifically,
whenever there is a K2,3 subgraph in the base graph, the girth
of the lifted nested codes is at most 12, and the distance is
limited by (j +1)! for a column weight j parity-check matrix
[9], [13], [18]. These limitations motivate the use of non-
commuting voltages in the construction in the next section
to help surpass these girth and distance limitations.



V. LIFTED NESTED CODES USING NONCOMMUTING
PERMUTATIONS

In our second construction we combine the algebraic con-
struction of LDPC codes presented in [12] with the lifting
technique described in Section 3 to obtain a family of nested
codes from lifts using nonabelian voltage groups. When the
permutations assigned are pairwise non-commuting and meet
the cycle structure and connectivity requirements as outlined
in [12], the derived graphs for the nested code and its subcodes
are connected and have improved girth and distance even when
the base graph contains a K2,3 subgraph.
For an edge e, let e− and e+ denote the negative and

positive orientations, respectively, of e. A walk in the ordinary
or permutation voltage graph G may be represented by the
sequence of oriented edges in the order they are traversed, e.g.
W = eσ1

1 eσ2

2 . . . eσn
n where each σi is + or − and e1, . . . , en

are edges in G. In this setting, the net voltage of the walk W is
defined as the voltage group product α(eσ1

1 )α(eσ2

2 ) . . . α(eσn
n )

of the voltages on the edges of W in the order and direction
of the walk. We now have the following theorem [15].

Theorem 2. Let C be a k-cycle in the base graph of a permu-
tation voltage graph with net voltage π, and let (c1, c2, . . . , cn)
be the cycle structure of π. Then the pre-image of C in the
derived graph has c1 + c2 + · · · + cn components, including,
for each j = 1, . . . , n, exactly cj kj-cycles. !

Here we distinguish between a k-cycle in a graph which is
a closed walk of length k, and a cycle of a permutation which
is a closed set of numbers in the cycle representation of the
permutation. The cycle structure of a permutation in Sn is a
vector (c1, . . . , cn) where cj denotes the number of j-cycles
in the cycle decomposition of the permutation.
We choose permutation voltages that do not have fixed

points, and in fact, do not contain cycles of length ≤ 3. This
allows our construction to surpass the girth 12 restriction that
exists in the abelian case, provided that there are no short
products of these voltages that yield permutations with cycles
of size ≤ 3 in their decomposition. We also choose a voltage
group where the only group element with fixed points is the
identity permutation. This eliminates fixed points in the net
voltages of all graph cycles that do not have the identity
permutation as a net voltage. Moreover, G has just one orbit
when acting on {1, 2, . . . ,m} so we will assign permutations
to the base graph that generate G to meet the connectivity
condition [12].
We adapt the approach from [12] to determine the permu-

tation voltage assignment to the edges of GM . We choose
m = pq such that p and q are prime, q < p, and q|(p−1). We
construct the nonabelian group G of order m = pq generated
by elements c and d such that the order of c is p, the order of d
is q, and dc = csd, where s *≡ 1(mod p) and sq ≡ 1(mod p).
Further, we construct the permutation group isomorphic to G

to use as our permutation voltage group, which we will also
denote by G.
We form the following j×k matrix P with j ≤ k and entries

in G as follow. All the entries on 0th row and the 0th column

of P are assigned the identity permutation. The 0th row and
0th column of P correspond to a spanning tree in the base
graph Kj,k. The group G has one subgroup of order p of the
form {1, c, c2, . . . , cp−1} and p subgroups of order q of the
form {1, cid, (cid)2, . . . , (cid)q−1}, for i = 0, 1, . . . , p − 1.
For the remaining entries in P , we assign non-identity per-
mutations, that are mostly chosen from distinct subgroups of
G. If (j − 1)(k − 1) ≤ p + 1, (or in general, the number
of edges outside the spanning tree is at most p + 1), then
there are enough distinct subgroups from which to choose the
permutations. Finally, we ensure that the permutations chosen
in P generate the group G.
Let P ′ be any j × j sub-matrix of P . Then, following the

approach in Section 4, the resulting derived (lifted) graph ĜM

yields the lifted graphs Ĝ1, Ĝ2 and Ĝ and the corresponding
parity-check matrices H1,H2, and H of the nested code. In
particular, the matrixM is the all-ones matrix of size j×j. The
corresponding incidence matrix M̂ for the lifted graph GM is
a matrix that is a j×j array of permutation matrices, with the
permutations corresponding to the entries in the matrix P ′.
This construction and the one in Section 4 can be adapted

to any base graph with j check nodes and k variable nodes,
not just a complete base graph, by simply replacing the entries
corresponding to no edge connections with all zero matrices.
In this way, other degree distributions can be accommodated,
such as in the design example in Section 6. Other spanning
trees can be chosen for the identity permutations, accordingly.
Furthermore, the above construction can be extended in a
natural way even when the matrix MT is an j′ × j matrix
for j′ < j, thereby yielding a rank deficient matrix M̂T as
described in Proposition 1. The design example in the next
section uses such a matrix.

VI. DESIGN EXAMPLE

We start with a base graph with 12 check nodes and
16 variable nodes having the following check to variable
incidence (or, base parity-check) matrix M ′:

M
′T

=



























1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1

0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1

1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0

1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0

0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1

1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1



























The first 10 rows correspond to the base parity-check matrix
of the first subcode C1 and the last 10 rows correspond to the
base parity-check matrix of the second subcode C2 and rows
3-10 correspond to the base parity-check matrix of the global
code C. Using the construction approaches given in Sections 4
and 5, two groups, each of sizem = 305, are chosen. As a first
step, a 12×16 matrixMT having all one entries is considered.
In the first construction described in Section 4, the entries in
MT are replaced with shifted identity matrices (each having



size m×m) to obtain a lifted matrix M̂T of size 3660×4880.
In the second construction, a non-commutative group of order
m = 305 is considered, and the entries in MT are replaced by
m×m permutation matrices corresponding to the permutations
as shown in Section 5.
For each case, a lifted matrix M̂ ′

T
corresponding to the

matrix M ′T above is obtained by multiplying the (i, j)th

block of shifted identity or permutation matrix in M̂T by
the (i, j)th entry in M ′T . The first 10 row blocks represent
the parity check matrix of the first subcode C1, the last 10
row blocks represent the parity check matrix of the second
subcode C2, and the row blocks 3-10 represent the parity-
check matrix of the global code C. C1 and C2 have block length
N = 4880 and code rate R1 = R2 = 0.375 (and thus exhibit
a rate loss) whereas C has block length N = 4880 and code
rate R = 0.5. The choice of M ′ above yields the following
degree distributions and (exact) density evolution thresholds
(in Eb/N0) for the nested codes: a) Code C: λ̄2 = 5

16 , λ̄4 =
8
16 , λ̄4 = 3

16 , ρ̄5 = 2
8 , ρ̄6 = 6

8 , and density evolution threshold
0.688 dB, where λ̄i (resp. ρ̄i) denotes the fraction of variable
(resp. check) nodes of degree i, and b) codes C1, C2: λ̄2 =
4
16 , λ̄3 = 5

16 , λ̄4 = 4
16 , λ̄5 = 3

16 , ρ̄4 = 2
10 , ρ̄5 = 2

10 , ρ̄6 = 6
10 ,

and density evolution threshold 0.914 dB.
Simulation results on the binary-input AWGN channel using

belief propagation decoding are presented in Fig. 2 for the
lifted nested code given in above example. (All simulations
were run for a maximum of 50 decoding iterations. The
performance of C2 is almost identical to that of C1 and
therefore not shown.) The protograph codes from this paper are
compared with randomly designed protograph codes having
identical block lengths, code rates, and degree distributions in
their parity-check matrices.

0 0.5 1 1.5 2 2.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

BE
R

 

 

C, noncomm. perm.
C, comm. perm.
C, random
C1, noncomm. perm.
C1, comm. perm.
C1, random

Fig. 2. BER versus Eb/N0 for the lifted nested codes with commuting and
noncommuting permutations.

We can observe from Fig. 2 that all subcodes perform better
than the corresponding (overall) codes C. Further, the codes
obtained from the nonabelian group perform better in the error

floor regime than those from the abelian group, whereas the
random constructions are penalized by a significant error floor
due to the low girth of their code graphs.

VII. CONCLUSIONS
In this paper, an algebraic construction of graph-based

nested codes is introduced. The method relies on a protograph
design and a lifting technique using algebraic voltage graphs,
and may be applied to other base graphs with other degree dis-
tributions for improved performance. The resulting codes have
compact description, structure that is well-suited for practical
implementation in several applications, and a performance that
is better than that of randomly designed codes.
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