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ABSTRACT

In this paper we present a new error correction approach
for a simple peak-to-average power ratio (PAR) reduction
scheme for discrete multi-tone (DMT) systems based on
coefficient clipping. The proposed method utilizes exist-
ing or intentionally placed redundancy in the frequency do-
main in form of unused subcarriers. Compared to exist-
ing PAR reduction algorithms, all signal processing is per-
formed at the receiver after the transmit signal has been
simply clipped to a desired maximum amplitude at the
front end of the transmitter. The introduced frequency-
domain redundancy allows to consider each output vector
of the IDFT in the DMT transmitter as codeword of a Bose-
Chaudhuri-Hocquenghem (BCH) block code over the field
of real numbers. The decoding operation is carried out by a
low-complexity linear reconstruction. Simulation results for
noisy transmission show that by using the proposed method
clipping does not lead to significant errors in the received
data if a reasonable amount of redundancy is provided.

1. INTRODUCTION

The basic block structure of a discrete multi-tone (DMT)
system as used for high data rate transmission via telephone
lines is shown in Fig. 1. M complex quadrature amplitude
modulation (QAM) symbols u ��� k � , ��� 0 �	�
�
��� M � 1, are
modulated on equidistant subcarriers by using the Inverse
Discrete Fourier Transform (IDFT) and transmitted in par-
allel. The insertion of a guard interval (GI) of L samples
allows an easy equalization at the receiver: as long as the
channel impulse response is shorter than L  2 samples, the
distortion inserted by the channel can be ideally equalized
in the frequency domain (i.e. after the DFT at the receiver
side) by one complex multiplication per subcarrier.

If the M QAM symbols u � � k � , ��� 0 �
�	�
�
� M � 1, at the
transceiver add together constructively in the IDFT the peak
envelope power of the transmit symbols v � � k � in Fig. 1 may
be as much as M times the mean power. This results in

the need for high resolution analog-to-digital converters and
costly power amplifiers with a large linear range. Simple
clipping of high amplitudes at the transmitter causes an un-
acceptable increase of the bit-error rate (BER) since it af-
fects all subcarriers after modulation into the frequency do-
main through the receiver DFT.

Several approaches have been presented in literature in
order to reduce the peak-to-average power ratio (PAR) (see
e.g. [1–4]), where a subset is given by those methods which
exploit unused subcarriers for PAR reduction [3, 4]. Com-
mon to the methods in [3, 4] is the fact that the PAR re-
duction is performed at the transmitter. Whenever a trans-
mit amplitude exceeds the clipping level, symbols in un-
used subcarriers are introduced at the transmitter in such a
way that they reduce the maximum amplitude of the trans-
mit symbol. At the receiver, no additional signal processing
is needed. It has been shown though, that this method works
best if the unused subcarriers are spread randomly over the
available frequency range and are not all located in high fre-
quency ranges, as it is often the case in DMT scenarios [4].

In this paper we present a simple algorithm for reduc-
ing the bit errors after DMT transmission due to clipping
the DMT-encoded data symbols prior to transmission. The
proposed approach utilizes frequency domain redundancy
in form of subcarriers, which are allocated as unused or
being intentionally left unallocated. Since unused subcar-
riers correspond to vectors with zero entries at the IDFT
input in a DMT transmitter, the resulting IDFT output vec-
tors can be interpreted as codewords of a Bose-Chaudhuri-
Hocquenghem (BCH) block channel code over the field of
real numbers [5, 6]. Since the positions of the symbol er-
rors due to clipping can be retrieved at the receiver, only a
low-complexity matrix-vector multiplication is required to
perform the calculation of the corrected samples.

Combining the new PAR reduction algorithm with any
one of [1–4, 7] allows the performance of all additional sig-
nal processing for bidirectional data transmission at one side
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Figure 1: DMT transmission scheme

of the transceiver. This is preferable in applications where
the available computational power at the transceiver termi-
nals is asymmetrically distributed.

2. ESTIMATION OF THE CLIPPED SAMPLES

In this section we propose a reconstruction technique
for the clipped samples at the receiver by exploiting the
redundancy introduced by the unused subcarriers. In
the following clipping of the vector elements in v � k � ��
v0
� k � � v1

� k � �	�
�	��� vM � 1
� k ��� T is carried out according to

v �� � k � � sgn � v � � k �
��� min � Tclip �	� v � � k �
� � � � � 0 �
�	�
��� M � 1 �
at the transmitter front end, where Tclip denotes a given clip-
ping threshold and sgn � � � the signum function. For the sake
of simplicity we restrict ourselves to an even number M of
subcarriers, however, an extension to odd M can be carried
out in a straightforward way. The presented method uses
the framework of real-valued BCH codes [5,6,8], where the
transmit vector v � k ��� IRM in Fig. 1 is used as the code-
word. We here exploit the fact that for BCH codes the
DFT of the codeword DFT  v � k ��� � WM v � k � � u � k ��� M
with

�
WM � i � � � e j 2π i

���
M exhibits a certain number of zeros

due to unused subcarriers.
Note that in the noiseless case (i.e. for r � n � � 0) the num-

ber and the positions of the inserted zero values are pre-
served by the DMT transmission system. In case of additive
channel noise, the positions of the unused subcarriers con-
tain values depending on the channel noise power instead of
zero values.

2.1. Correction of the clipping errors
(a) Ideal channel impulse response. In order to derive the
reconstruction technique for the clipped samples first the
case of an ideal flat transmission channel with c � n � � δ � n �
is considered. We assume that E consecutive subcarriers
are unused in the lower part of the DMT spectrum up to
the Nyquist frequency. Since real-valued transmit data is
required, the input vector u � k � should have conjugate com-
plex symmetry. Then, u � k � in total contains 2E unallocated

channels, due to the symmetry condition

u � � k � � u �M � � � k ��� u0
� k � � uM

�
2
� k ��� IR �

� � 0 �
�
�	�
� M � 1, for an even number M of subchannels.
Considering just the 2E unused channels in the transmit-
ter IDFT v � k � � W �M � M � u � k � at the receiver leads to the
condition

W2E � M � y � k � !� 02E (1)

with y � k � � �
y0
� k � � y1

� k ���
�	�
� � yM � 1
� k ��� T at the DMT re-

ceiver input, where the term W2E � M y � k � is called syn-
drome. W2E � M denotes the 2E � M submatrix of the DFT
matrix WM which only contains the rows corresponding to
the positions of the unused subcarriers.

Note that (1) corresponds to an error-free transmission
(i.e. no clipping has occurred at all) in the noiseless chan-
nel case. Analog to the decoding of BCH codes the idea is
now to determine the erroneous values (i.e. the clipped val-
ues for negligible channel error probabilities) in y � k � from
the correct ones such that the condition (1) is approximated
as close as possible in a certain error sense. In the follow-
ing we assume that the clipping threshold Tclip is already
known as a-priori information at the receiver. Then, the po-
sition of the clipped values can be obtained by searching for
values in the time-domain receive signal y � k � that are close
to the clipping threshold, where especially in the noiseless
case a clipped value is received unchanged. Thus, we are
able to partition y � k � into two subvectors ye

� k ��� IRMe and
yc
� k ��� IRMc , resp., where the former vector contains all er-

roneous entries affected by clipping and the latter all un-
modified elements of y � k � . The parameter Me denotes the
number of errors created by clipping with M � Mc  Me.
From (1) we obtain by decomposition of the DFT subma-
trix W2E � M

W2E � Mc � yc
� k �  W2E � Me � ye

� k � !� 02E � (2)

An approximation ŷe
� k � for the clipped coefficients ye

� k �
can now be obtained by using the linear reconstruction

ŷe
� k � � � �

W2E � Me � † W2E � Mc yc
� k � � (3)



with
�
W2E � Me � † denoting the pseudo-inverse of W2E � Me . It

can be shown that W2E � Me has the rank R � min � 2E � Me � ,
where the proof is omitted here due to space limitations.

Since W2E � Me has maximal rank the solution in (3) sat-
isfies the condition [9]

ŷe
� k � � argmin

ye � k �
� � W2E � Mc � yc

� k �� ��� �
� :b � k �

� W2E � Me � ye
� k � � � 2 � (4)

Herein, the vector W2E � Me ye
� k � is an element of a Me-

dimensional subspace of IR2E spanned by the columns of
W2E � Me . Since the vector b � k � � W2E � Mc yc

� k � is an ele-
ment of IR2E we can observe from (4) that (3) projects the
vector b � k � to a subspace W2E � Me � IRMe by choosing the
proper vector ye

� k � , which minimizes the resulting error in
the least-squares error sense. If Me � 2E the obtained so-
lution for ŷe

� k � is unique, however, for Me 	 2E the vec-
tor b � k � is ”projected” to a larger vector space, where we
get Me � 2E additional degrees of freedom for the solution.
In the latter case (3) then yields the solution with minimal
norm � � ŷe

� k �
� � . This corresponds to the results for BCH
codes over finite fields, where a code with minimum dis-
tance D � 2E  1 is able to correct up to 2E erasures.

(b) Nonideal channel impulse response (Lc 
 L  2). For
an arbitrary impulse response c � n � of length Lc it is not pos-
sible to determine the positions of the clipped samples di-
rectly from y � k � . Due to convolution with the channel im-
pulse response all elements of y � k � are affected when even
only one sample is clipped in the transmitted vector v � k � .
However, a solution is to apply the above reconstruction
technique to the equalized receive vector

y � � k � � W �M û � k � � W �M EWM y � k � (5)

with û � k � � WM y � k � (cmp. Fig. 1) in order to elimi-
nate the influence of the non-flat transmission channel.
The matrix E in (5) represents the block equalizer ma-
trix E � diag

�
e0 � e1 �
�	�
��� eM � 1 � with ei � 1 � C � e j2πi

�
M � for

i � 0 �
�	�
��� M � 1, where C � e jω � denotes the frequency re-
sponse of the transmission channel. Then, the clipped sam-
ples with amplitude Tclip can be identified in the equalized
receive vector y � � k � , and an approximation of the clipped
coefficients is obtained analog to (3) as

ŷ �e � k � � � �
W2E � Me � † W2E � Mc y �c � k ��� (6)

Herein, similar to (3) the subvectors y �c � k � and y �e � k � cor-
respond to the unmodified and clipped entries of y � � k � , re-
spectively.

2.2. Overall reconstruction algorithm
We can now state the overall reconstruction algorithm at the
receiver as follows:

1. Calculate an equalized version y � � k � of the receive vec-
tor y � k � from Fig. 1 according to (5).

2. Estimate the position of the clipped samples in y � � k � :
If � y �� � k � � � �

Tclip � σr � Tclip  σr � , the sample y �� � k � ,
� � 0 �
�	�
��� M � 1, is assumed to be modified by clip-
ping at the transmitter, where for the case of a noisy
transmission σ2

r denotes the power of an additive white
Gaussian channel noise (AWGN channel).

3. Obtain an approximation for the clipped coefficients
from (6).

4. Calculate the corrected vector û � � k � at the output of
the DMT receiver via û � � k � � WM ŷ � � k � where ŷ � � k � is
obtained from y � � k � by replacing the clipped elements
with the corrected ones from (6).

3. SIMULATION RESULTS

In order to assess the performance of the proposed re-
construction technique, simulations are carried out for
the DMT system from Fig. 1. The inputs ui

� k � ,
i � 0 �	�
�	�
� M � 1, of all M � 64 subchannels contain com-
plex 16-QAM symbols normalized to an average power
of one. We assume an AWGN transmission chan-
nel and a lowpass channel impulse response of c � n � �� 5δ � n �  4δ � n � 1 �  3δ � n � 2 �  2δ � n � 3 �  δ � n � 4 �
�
� 15.

Fig. 2 shows the results for a channel SNR of 30 dB and
E �  2 � 4 � 8 � consecutively unused subcarriers located in
the ”stopband” region of the channel frequency response,
where the DFT indices of the unused subcarriers up to the
Nyquist frequency are given in the vector µµµc. The recon-
struction approach from Section 2 is marked with ”(+ rec.)”
in the following. In Fig. 2(a) the mean-squares error (MSE)
� � u � k � � û � � k �
� � 2 averaged over 500 simulated transmissions
of 100 QAM symbols in each subchannel is displayed ver-
sus the clipping threshold Tclip. Clearly, it can be observed
that by increasing the number of unused subchannels 2E
it is possible to further reduce the clipping threshold with-
out a significant increase in MSE. For example, for E � 8
and Tclip � 2 we gain a reduction in MSE over three or-
ders of magnitude compared to using the (unmodified) re-
ceiver without employing the above reconstruction tech-
nique. Note that the remaining non-zero MSE on the right-
hand side of the ”waterfall” region is due to the noisy trans-
mission channel. In this case the average number of erasures
is smaller than or equal to the number of unallocated sub-
carriers (i.e. Me � 2E in average), and the estimation of the
clipped values yields an optimal result in the least-squares
error sense (see Section 2). However, a further decrease of
the clipping threshold towards the ”waterfall” region leads
to a drastic increase in MSE which for small clipping thresh-
olds also exceeds that for the unmodified receiver. Here, it
becomes more likely that Me 	 2E, and (6) in this case may
only yield the suboptimal minimum-norm solution, which
could be worse compared to the solution obtained from the
unmodified receiver.
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Figure 2: Simulation results for the proposed estimation
approach (AWGN channel with 30 dB SNR): (a) Mean-
squares error (MSE) � � u � k � � û � � k �
� � 2 vs. clipping threshold
Tclip, (b) bit-error rate (BER) vs. Tclip, Gray mapping for the
16-QAM signal points.

Fig. 2(b) depicts the BER versus the clipping threshold
after mapping the reconstructed vector û � � k � back to the
binary QAM information word. Only results are shown
for those clipping thresholds where at least three bit er-
rors have occurred for all 5 � 104 DMT input vectors used
for averaging. In order to reduce the number of erroneous
bits for small reconstruction errors a Gray mapping is used
for the QAM symbols. We can see from Fig. 2(b) that for
E � 2 the added redundancy is not sufficient to outperform
the unmodified case. Despite Fig. 2(a) shows a smaller
MSE for Tclip 	 2 � 3 compared to the unmodified case this
does not lead to a lower BER automatically: since the pro-
posed reconstruction technique exhibits a strong MSE in-
crease if Me 	 2E � 4 (cmp. Fig. 2(a)), it is more likely
that � u � � k � � û �� � k �
� , � � 0 �	�
�	�
� M � 1, is larger than half the
distance between adjacent QAM signal points, which then
leads to a QAM symbol error (and thus to at least one bit
error). However, for both E � 4 and E � 8 a performance
gain can be observed: for example for E � 8 and Tclip � 1 � 6

the BER is reduced by two orders of magnitude compared
to the unmodified case.

4. CONCLUSION

We have shown as a new result that unused subcarriers
in a DMT transmission system can be utilized for reduc-
ing the effects of a simple peak-to-average power ratio re-
duction based on clipping large values prior to transmis-
sion. This can be obtained by interpreting the redundancy in
the frequency domain introduced by (existing or intention-
ally) unallocated subcarriers as a real-valued BCH channel
code, where the clipping error correction at the receiver con-
sists of a simple linear reconstruction based on the pseudo-
inverse of a full-rank DFT submatrix. Furthermore, the ob-
tained solution is optimal in the least-squares error sense
as long as the number of unused channels is larger than
or equal to the number of clipped values for a single re-
ceived data vector. Simulation results have shown that by
applying the proposed technique to DMT transmission over
noisy channels we may obtain a strong decrease of the over-
all BER while clipping is still present at the transmitter.
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