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Strong Converses Are Just Edge Removal Properties
Oliver Kosut , Member, IEEE, and Jörg Kliewer , Senior Member, IEEE

Abstract— This paper explores the relationship between two
ideas in the network information theory: edge removal and strong
converses. Edge removal properties state that if an edge of small
capacity is removed from a network, the capacity region does not
change too much. Strong converses state that, for rates outside
the capacity region, the probability of error converges to 1 as the
blocklength goes to infinity. Various notions of edge removal and
strong converse are defined, depending on how edge capacity and
error probability scale with blocklength, and relations between
them are proved. Each class of strong converse implies a specific
class of edge removal. The opposite directions are proved for
deterministic networks. Furthermore, a technique based on a
novel, causal version of the blowing-up lemma is used to prove
that for discrete memoryless networks, the weak edge removal
property—that the capacity region changes continuously as the
capacity of an edge vanishes—is equivalent to the exponentially
strong converse—that outside the capacity region, the probability
of error goes to 1 exponentially fast. This result is used to prove
exponentially strong converses for several examples, including the
discrete two-user interference channel with strong interference,
with only a small variation from traditional weak converse proofs.

Index Terms— Strong converse, edge removal, network
information theory, reduction results, blowing-up lemma.

I. INTRODUCTION

CONSIDER a general network communication scenario
given an arbitrary collection of sources and sinks con-

nected via an arbitrary network channel. The sources are
independent and each source is demanded by a subset of sinks,
where this subset can be different for each sink. A general
interest in network information theory is to determine the
capacity of such networks, defined as the set of achievable
rates for each source. As this problem is known to be chal-
lenging, we consider the simpler problem of how the capacity
of these networks change if only a single edge is removed from
the network. This problem has first been studied by [1] and [2].
The authors have shown that for acyclic noiseless networks
and a variety of demand types for which the cut-set bound is
tight, removing an edge of capacity δ reduces the capacity of
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each min-cut by at most δ in each dimension. Further, in [3]
it has been shown for a noiseless multiple multicast demand
that this edge removal property also holds for generalized
network sharing outer bound [4]; for the linear programming
outer bound [3], [5] shows that removing an edge of capacity
δ reduces the capacity by at most K δ, where K depends
only on the network. In addition, the existence of the edge
removal property has for example been tied to the problem
whether a network coding instance allows a reconstruction
with � or zero error [6], [7], respectively. Another example
is the connection of edge removal to the equivalency between
a network coding instance and a corresponding index coding
problem [8]. Recently, it has been shown that for a multiple-
access channel with a so called “cooperation facilitator”
[9]–[13] the edge removal property does not hold. In particular,
for this setting the authors show the surprising result that
adding a small capacity edge can lead to a significant increase
in network capacity. These results have also been extended to
networks with state [14] and to edges which can carry only a
single bit over all times under the maximal error criterion [15].
However, despite the significant progress that has been made
to understand scenarios in which the edge removal property
holds, the solution to the general problem is open.

In this work, we address the connection of edge removal
to the existence of strong converses for networks subject to
an average probability of error constraint. As far as we know,
this connection has been explored in the literature only briefly
in [16, Ch. 3, p. 48]. The strong converse theorem states that
the error probability converges to 1 for large blocklengths n
if the rate exceeds the capacity. This is in contrast to a
weak converse which only indicates that the error proba-
bility is bounded away from zero if we operate at a rate
beyond capacity. The benefit of a strong converse is that it
strengthens the interpretation of capacity as a sharp phase
transition in achievable probability of error. It also allows
for the following interesting interpretation: if a strong con-
verse exists for a given network instance, � reliable codes
(i.e., codes which allow reconstruction with � error) must
have rate tuples within the capacity region for � ∈ [0, 1) and
large n. Thus, a strong converse refines a capacity (or first-
order) result, which provides only the limiting behavior as
the probability of error vanishes and the blocklength goes
to infinity. However, a strong converse does not provide as
much refinement as a second-order (or dispersion) result [17],
which clarifies the (usually O(1/

√
n)) backoff from capacity

for small blocklengths and fixed probability of error. There-
fore, strong converses constitute “one-and-a-half-th order”
results. Strong converses have been established for numerous
problems, including point-to-point settings, e.g., for discrete

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4779-0102
https://orcid.org/0000-0003-0942-8006


3316 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

Fig. 1. Diagram showing the relationships between various strong converses
and edge removal properties. Solid black lines represent implications that
always hold (Remarks 3 and 5, and Theorem 5). All the dashed or dotted lines
hold for deterministic networks (Theorem 7) but do not hold in general. The
red dotted line does not hold even for noisy memoryless stationary networks
(Remark 4). The black dash-dotted line holds for discrete memoryless
stationary networks (Theorem 10). The blue dashed line holds for discrete
memoryless stationary networks made up of independent point-to-point links
(Theorem 14), and we conjecture that it holds for all discrete memoryless
stationary networks.

memoryless channels [18] and quantum channels [19], [20].
Recently it has been shown that a strong converse holds for a
discrete memoryless networks with tight cut-set bounds [21].
There has also been work establishing exponentially strong
converses, which state that for any rate vector outside the
asymptotically-zero error capacity region, the error probability
approaches 1 exponentially fast. Exponentially strong con-
verses have been considered for point-to-point channels in [22]
and [23], and for several network problems in [24]–[27].

In the following, we categorize the notions of edge removal
and strong converses into different classes depending on how
edge capacity and error probability, resp., scale with block-
length, and demonstrate relations between these instances.
See Fig. 1 for a summary of our results. In particular, our
contributions are as follows:

1) We show that each specific class of strong converse
always implies a specific class of edge removal. This
implication holds in great generality: whether the net-
work channel model is deterministic or probabilis-
tic, discrete or continuous, or even whether it has
memory.

2) We show that implications in the opposite direction
(edge removal implies strong converse) hold in some
cases. In particular, we show that each opposite direction
holds for deterministic networks. However, these oppo-
site directions do not always hold; for example, for a
simple discrete memoryless point-to-point channel, each
edge removal property holds, but the strongest form of

the strong converse—the extremely strong converse—
does not hold.

3) We further show that for all discrete memoryless sta-
tionary networks, the exponentially strong converse is
equivalent to the weak edge removal property. The weak
edge removal property states that if a small edge with
rate growing sublinear in the blocklength is removed,
the asymptotically-zero error capacity region does not
change. The proof is based on a novel, causal version
of the blowing-up lemma [28].

4) We demonstrate that for networks composed of indepen-
dent point-to-point links with acyclic topology, a similar
equivalence holds for weaker conditions—between the
ordinary strong converse and what we call the very
weak edge removal property, wherein the edge carries
an unbounded number of bits that grows very slowly
with blocklength.

5) These results, particularly the equivalence between weak
edge removal and the exponentially strong converse,
enable us to, without much effort, strengthen many
existing computable outer bounds or weak converses to
prove that they hold in an exponentially strong sense.
We demonstrate this for the cut-set bound, reproducing
the result of [21] to show that for rates outside the
region defined by cut-set bound, the probability of
error converges to 1 exponentially fast. We also prove
exponentially strong converses for discrete broadcast
channels, and for the discrete 2-user interference channel
with strong interference.

All the above mentioned reduction results between edge
removal and strong converses reveal the surprising fact that
for many cases, satisfying edge removal—a condition related
only to first-order capacity—implies a seemingly stronger
“one-and-a-half-th order” property, namely the existence of a
specific version of a strong converse indicated by the leftward
arrows in Fig. 1. This highlights again the power of the edge
removal property.

This paper is organized as follows. We first introduce the
model and definitions of various strong converse and edge
removal properties in Sec. II. After that, in Sec. III we prove
that strong converses imply edge removal properties. The
opposite directions for deterministic networks is then proven
in Sec. IV. Then, in Sec. V we prove one of the main
results in this paper, namely equivalence between weak edge
removal and the exponentially strong converse for discrete
stationary memoryless. We then show equivalence between
very weak edge removal and the ordinary strong converse
for networks of independent point-to-point links in Sec. VI.
After that, in Sec. VII we derive several applications of our
results, including the cut-set bound, broadcast channels, and
interference channel. Finally, Sec. VIII offers the conclusions.

II. MODEL AND DEFINITIONS

We begin by introducing notation to be used throughout
the paper. Subsequently we introduce our network model,
and formally define the notions of strong converse and edge
removal that will be the main focus, while proving some
simple properties of these definitions. There are number of
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TABLE I

SUMMARY OF CAPACITY REGION DEFINITIONS

).

s.

y.

).

subtly different definitions of rate regions: we summarize them
in Table I for convenience.

Notation: For an integer k we define [1 : k] = {1, . . . , k}.
All logarithms and exponentials have base 2. The nota-
tion (an)n represents an infinite sequence of values an for
each positive integer n. For sequences (an)n, (bn)n , we write
an

.= bn if log(an)/n and log(bn)/n have the same limit as
n → ∞. Given two probability distributions P and Q
on the same alphabet X , the relative entropy (for discrete
distributions) is given by

D(P�Q) =
∑

x∈X
P(x) log

P(x)

Q(x)
. (1)

Given conditional distributions PY |X and QY |X , and marginal
distribution RX , the conditional relative entropy is given by

D(PY |X �QY |X |RX ) =
∑

x,y

RX (x)PY |X (y|x) log
PY |X (y|x)
QY |X (y|x) .

(2)

The total variational distance (for discrete distributions) is
given by

dTV(P, Q) = 1

2

∑

x∈X
|P(x)− Q(x)|. (3)

The Hamming distance between two sequences xn, yn ∈ X n

is denoted

dH(x
n, yn) = |{t ∈ [1 : n] : xt �= yt }|. (4)

For a set A ⊆ R
n , A indicates the closure of A with respect

to the Euclidean distance. We denote the set of nonnegative
real numbers by R+. Given a vector x = (x1, . . . , xn) ∈ R

n

and a scalar γ ∈ R, we denote the vector-scalar sum as

x + γ = (x1 + γ, . . . , xn + γ ). (5)

Given a sets A,B ⊆ R
n we denote the set sum as

A + B = {x + y : x ∈ A, y ∈ B}. (6)

A. Network Model

We begin with a network model for an arbitrary causal
network channel. Many of our results apply only for discrete
memoryless networks or deterministic networks, but some
basic results apply in much more generality.

Consider a network consisting of d nodes, where node
i ∈ [1 : d] wishes to convey a message Wi at rate Ri to a
set of destination nodes Di ⊆ [1 : d].1 The channel model
consists of:

• An input alphabet Xi for each i ∈ [1 : d],
• An output alphabet Yi for each i ∈ [1 : d],
• For each time step t , a conditional probability measure

PY1t ,...,Ydt |Y t−1
1 ,...,Y t−1

d ,Xt
1,...,X

t
d
. (7)

Note that the channel outputs at time t depend on all previous
inputs up to time t , and all previous outputs up to time t − 1.

Definition 1: A network is memoryless and stationary if the
probability measure in (7) can be written as

PY1t ,...,Ydt |X1t ,...,Xdt (8)

and these distributions are the same for all t .
Definition 2: A network is deterministic if the channel

outputs at time t are fixed given the channel inputs up to
time t ; i.e., the conditional probability distribution in (7) takes
values only in {0, 1}.

Definition 3: A network is discrete if all input and output
alphabets are finite sets.2

For any R = (R1, . . . , Rd ) ∈ R
d+, an (R, n) code consists

of:

• For each node i ∈ [1 : d] and time t ∈ [1 : n],
an encoding function

φit : [1 : 2nRi ] × Y t−1
i → Xi , (9)

• For each i, j ∈ [1 : d] where j ∈ Di , a decoding function

ψi j : [1 : 2nR j ] × Yn
j → [1 : 2nRi ]. (10)

Assume messages Wi for i = 1, . . . , d are independent and
each uniformly distributed over [1 : 2nRi ]. The channel input
from node i at time t is given by Xit = φit (Wi ,Y t−1

i ). For
j ∈ Di , the estimate of Wi at node j is given by Ŵi j =
ψi j (W j ,Y n

j ). We write W for the complete vector of messages,

and Ŵ for the complete vector of message estimates. Given
an (R, n) code, the average probability of error is

P(n)e = P(Ŵ �= W) (11)

where Ŵ �= W denotes the event that there exists a node i
and a message index j such that node i decodes message j
incorrectly; that is, Ŵi j �= W j for any i ∈ [1 : d], j ∈ Di . For
blocklength n and � ∈ [0, 1], let R(N , n, �) ⊆ R

d+ be the set
of rates R for which there exists an (R, n) code with average

1We assume for simplicity that at most one message originates at each
node; all results can be easily generalized to the scenario in which multiple
messages originate at each node.

2While this is technically an incorrect use of “discrete”, we use it to mean
“finite alphabet” as this is the usual convention in the literature; see for
example [29, p. 39].
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probability of error at most �.3 Given a sequence (�n)n where
�n ∈ [0, 1] for all n ∈ N, we say a rate vector R is achievable
with respect to (�n)n if there exists an integer n0 such that for
all n ≥ n0, R ∈ R(N , n, �n). The capacity region C(N , (�n)n)
is given by the closure of the set of all achievable rate vectors
with respect to (�n)n . Alternatively, we may define

C(N , (�n)n) =
⋃

n0∈N

⋂

n≥n0

R(N , n, �n). (12)

Throughout the paper, we use R to denote a finite block-
length region, and C to denote an asymptotic region.
(Table I summarizes this notation.) Note that R(N , n, �)
is defined as a function of the single value �, whereas
C(N , (�n)n) is a function of the infinite sequence (�n)n .

In principle C(N , (�n)n) is defined for any sequence (�n)n .
However, it will be useful to restrict ourselves to sequences for
which − 1

n log(1 − �n) has a limit; the following proposition,
proved in Appendix A, shows that we may do this without
loss of generality for memoryless stationary networks.

Proposition 1: Let N be any memoryless stationary net-
work. For any α > 0, let (�n)n and (�̃n)n be two sequences
where

α = lim inf
n→∞ − 1

n
log(1 − �n) = lim inf

n→∞ − 1

n
log(1 − �̃n). (13)

Then C(N , (�n)n) = C(N , (�̃n)n).
As consequence of Proposition 1, for any sequence (�n)n

where α = lim infn→∞ − 1
n log(1 − �n) > 0, C(N , (�n)n) =

C(N , (1 − exp{−nα})n). Thus, it is enough to focus on
sequences (�n)n where either �n = 1 − exp{−nα} for some
α > 0, or − log(1 − �n) = o(n). Note that the latter includes
any sequence converging to a constant in [0, 1).

For fixed �, C(N , (�)n) denotes the capacity region with
asymptotic error probability �. With some abuse of notation,
define the usual asymptotically-zero-error capacity region as

C(N , 0+) =
⋂

�>0

C(N , (�)n). (14)

Equivalently we may write

C(N , 0+) =
⋃

�n=o(1)

C(N , (�n)n). (15)

Remark 1: Using average probability of error rather than
maximal probability of error in our definition of capacity
region is not merely convenient; it is critical to many of our
results. Indeed, it is illustrated in [13] and [15] that edge
removal characteristics are very different with maximal prob-
ability of error rather than average, and thus the relationship
between edge removal and strong converses in the maximal
probability of error context is likely to be different.

We proceed to define 7 different properties: 3 notions of a
strong converse and 4 notions of the edge removal property.
The relationships that we will prove among these properties
are shown in Fig. 1.

3We allow for any � ∈ [0, 1] in our definitions for maximum generality,
even though � = 1 is a trivial case in which the rate region is unbounded.

B. Strong Converses

Definition 4: Strong converses are defined in terms of
whether, for a given constant γ > 0 and a sequence (�n)n ,

C(N , (�n)n) ⊆ C(N , 0+)+ [0, γ ]d . (16)

We say network N satisfies:
• the extremely strong converse if for all γ > 0, (16) holds

if − log(1 − �n) = γ n
K , where K is a positive constant

depending only on the network.
• the exponentially strong converse if for all γ > 0, (16)

holds for some (�n)n where − log(1 − �n) = �(n).
• the strong converse if for all γ > 0, (16) holds for

some (�n)n where − log(1 − �n) → ∞.
Remark 2: Statements similar to (16) will occur throughout

this paper; this condition may be alternatively written as
follows: for any R ∈ C(N , (�n)n), there exists R
 ∈ C(N , 0+)
such that Ri ≤ R


i + γ for all i ∈ [1 : d].
Remark 3: One can see immediately that the strong con-

verses are ordered by strength; i.e., the extremely strong
converse implies the exponentially strong converse, which in
turn implies the ordinary strong converse.

The following proposition gives some equivalent definitions
for each of these strong converse properties. It is proved
in Appendix B.

Proposition 2:
1) Network N satisfies the extremely strong converse if

and only if there exists a constant K depending only
on N such that either of the following hold:

a) For any R /∈ C(N , 0+), any sequence of (R, n)
codes has probability of error (�n)n satisfying

lim inf
n→∞ − 1

n
log(1 − �n) ≥ β

K
(17)

where β is the smallest number such that
R ∈ C(N , 0+)+ β.

b) For any sequence (�n)n where 1 − �n
.= 2−nα ,

C(N , (�n)n) ⊆ C(N , 0+)+ [0, Kα]d .
2) Network N satisfies the exponentially strong converse

if and only if either of the following hold:
a) For all R /∈ C(N , 0+), any sequence of (R, n)

codes has probability of error approaching 1 expo-
nentially fast.

b) For any sequence (�n)n for which − log(1 − �n) =
o(n), C(N , (�n)n) ⊆ C(N , 0+).

3) Network N satisfies the strong converse if and only if
any of the following hold:

a) For all R /∈ C(N , 0+), any sequence of (R, n)
codes has probability of error approaching 1 as
n → ∞.

b) For all � ∈ (0, 1), C(N , (�)n) = C(N , 0+).
c) There exists a sequence (�n)n where �n → 1 and

C(N , (�n)n) = C(N , 0+).
Remark 4: Exponential bounds on the probability of suc-

cess for rates above capacity for point-to-point channels were
first considered in [22]. Later, [23] exactly characterized the
optimal exponent of the success probability for rates above
capacity. Similar results have been found for network problems
in [24]–[27]. For point-to-point channels, [23] showed that
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for a discrete-memoryless point-to-point channel PY |X with
capacity C , for all R > C the optimal probability of error �n

satisfies 1 − �n
.= 2−α(R)n where

α(R)= min
Q X,Y

[
D
(
QY |X �PY |X |QX

)+ |R − IQ X,Y (X; Y )|+
]

(18)

where QX and QY |X are the marginal and conditional dis-
tributions derived from QX,Y respectively, IQ X,Y (X; Y ) is the
mutual information between X and Y where (X,Y ) ∼ QX,Y ,
and | · |+ represents the positive part. Intuitively, QY |X repre-
sents an empirical conditional distribution; correct decoding is
possible if the channel behaves like one with capacity greater
than R (i.e., when the second term in (18) is zero), and the
first term in (18) is the exponential rate of the probability that
channel PY |X behaves like QY |X with input distribution QX .

This result constitutes an exponentially strong converse
in our terminology, since α(R) > 0 for all R > C , but
interestingly it is not an extremely strong converse for many
noisy channels. Note that an extremely strong converse is
equivalent to dα(R)

d R

∣∣
R=C > 0. However, as we show in the

following proposition (proved in Appendix C) this holds only
for very specialized channels.

Proposition 3: Consider a discrete-memoryless point-to-
point channel PY |X with capacity C . Let PY be the (unique)
capacity-achieving output distribution. If

log
PY |X (y|x)

PY (y)
≤ C for all x, y (19)

then α(R) = R − C . Otherwise, dα(R)
d R

∣∣
R=C = 0.

Examples of point-to-point channels that satisfy (19) include:

• essentially noiseless channels, i.e., where the capacity is
C = log min{|X |, |Y|},

• completely noisy channels, i.e., where Y is independent
of X ,

• noisy typewriter channels, i.e., where Y = X + Z with
summation over some group G, where Z is uniform on a
subset of G and independent of X .

Note also that (19) implies that the channel dispersion is 0
(cf. [17, Th. 49]), but the converse is not true. In particular,
the channel dispersion is 0 if and only if there exists a capacity-
achieving input distribution PX such that log PY |X (y|x)

PY (y)
≤ C for

all y and all x with PX (x) > 0. However, (19) can fail to hold
if log PY |X (y|x)

PY (y)
> C for some pair x, y even if PX (x) = 0 for

all capacity-achieving input distributions PX . (For example,
this is the case for channels termed exotic in [17].)

However, most channels of interest do not satisfy (19),
including binary symmetric channels and binary erasure chan-
nels. Thus, while we are able to show equivalence between the
extremely strong converse and the strong edge removal prop-
erty for deterministic networks (see Fig. 1), this equivalence
cannot hold for many noisy networks, as the extremely strong
converse simply does not hold.

C. Edge Removal Properties

For a subset of nodes V ⊆ [1 : d] and an integer k,
we define a modified network N (V, k), illustrated in Fig. 2,

Fig. 2. The modified network for edge removal properties. Nodes a and b are
connected to nodes in V (usually V is the set of all nodes) by infinite capacity
links, while the link between them is limited to only k bits. Edge removal
properties hold when the capacity region of this network is unchanged when
the link between a and b is removed.

as follows: Start with N , and add two nodes denoted a and b.4

For each node i ∈ V , add an infinite capacity link from i
to a, and an infinite capacity link from b to i . Finally, add a
bit-pipe from a to b that can noiselessly transmit k bits total
across the n-length coding block. In the case that k is not
an integer multiple of n, this bit-pipe cannot be modeled as
a stationary memoryless channel. Instead, we assume that the
k bits are scheduled such that after t timesteps, 
 k

n t� have been
transmitted; that is, at time t , the link is allowed to transmit
exactly ⌊

k

n
t

⌋
−
⌊

k

n
(t − 1)

⌋
(20)

bits.5 Let RV (N , n, �, k) be the set of rate vectors R such that
there exists an (R, n) code on N (V, k) with average probabil-
ity at most �. That is, RV (N , n, �, k) = R(N (V, k), n, �).
Given sequences (�n)n and (kn)n where �n ∈ [0, 1] and
kn ∈ N, we define CV (N , (�n)n, (kn)n) to be the capac-
ity region of the sequence of networks (N (V, kn))n where
(kn)n determines the dependence between the capacity of the
edge (a, b) and the blocklength. Formally, we define

CV (N , (�n)n, (kn)n) =
⋃

n0∈N

⋂

n≥n0

RV (N , n, �n , kn). (21)

For the most part we are interested in the case that V = [1 : d],
so we define for convenience

R(N , n, �, k) = R[1:d](N , n, �, k), (22)

C(N , (�n)n, (kn)n) = C[1:d](N , (�n)n, (kn)n). (23)

We further define CV (N , 0+, (kn)n) and C(N , 0+, (kn)n)
analogously to (14)–(15). For any (kn)n , it is certainly
true that C(N , (�n)n) ⊆ C(N , (�n)n, (kn)n). Note also that
C(N , (�n)n, (0)n) = C(N , (�n)n).

4These are special nodes in that messages do not originate at them. Thus
the capacity region of N (V, k) has the same dimension as that of N .

5One could imagine other models, such as where the bit transmission
schedule is flexible but chosen in advance by the code, or where the schedule
can be chosen at run-time. These model variations are unlikely to impact
results, but here we adopt the more restrictive model.
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Roughly, edge removal properties state that for small k,
the capacity of network N (V, k) is not too different from that
of N . To be precise, we define four different versions of this
property as follows.

Definition 5: Edge removal properties are defined in terms
of whether, for a given constant γ > 0 and a sequence (kn)n ,

C(N , 0+, (kn)n) ⊆ C(N , 0+)+ [0, γ ]d . (24)

We say network N satisfies:

• the strong edge removal property if for all γ > 0,
(24) holds for kn = γ n

K , where K is a positive constant
depending only on the network.

• the weak edge removal property if for all γ > 0,
(24) holds for some kn = �(n).

• the very weak edge removal property if for all γ > 0,
(24) holds for some kn → ∞.

• the extremely weak edge removal property if for all
γ > 0, (24) holds for all bounded kn .

Remark 5: One can again see immediately that the edge
removal properties are ordered by strength; i.e., the strong
property implies the weak property, which implies the very
weak property, which implies the extremely weak property.

The following proposition gives several alternative defin-
itions of each of the edge removal properties. It is proved
in Appendix D.

Proposition 4:
1) The strong edge removal property holds if and only if

there exists a finite positive constant K depending only
on the network N such that for all δ > 0,

C(N , 0+, (δn)n) ⊆ C(N , 0+)+ [0, K δ]d . (25)

2) The weak edge removal property holds if and only if,
⋂

δ>0

C(N , 0+, (δn)n) = C(N , 0+) (26)

and also if and only if
⋃

kn=o(n)

C(N , 0+, (kn)n) = C(N , 0+). (27)

3) The very weak edge removal property holds if and only
if ⋂

kn :kn→∞
C(N , 0+, (kn)n) = C(N , 0+) (28)

and also if and only if
⋂

�>0

⋃

k∈N

C(N , (�)n, (k)n) = C(N , 0+). (29)

4) The extremely weak edge removal property holds if and
only if ⋃

k∈N

C(N , 0+, (k)n)= C(N , 0+). (30)

Remark 6: Most works on the edge removal problem
(e.g., [1], [2]) consider removing an arbitrary edge from the
network, rather than the specific topology shown in Fig. 2.
Most similar to this topology is the notion of a super-source
network in [30], which was defined for source coding problems
as a network containing a node that can view all sources,

and has links to each other node. Another similar notion from
the literature is that of the cooperation facilitator [9]–[14],
which connects to the transmitting nodes (but not the receiving
node) in a multiple-access network. We choose the topology
in Fig. 2 because it ensures that the link that is added/removed
is at least as useful as any other link. That is, when V = [1 : d],
then node a has complete knowledge of every signal sent in
the network, so the link (a, b) can be used to simulate any
other small-capacity link. In particular, for any network N 

consisting of N supplemented by a link (or multiple links)
with total capacity at most kn bits, then C(N 
, (�n)n) ⊆
C(N , (�n)n, (kn)n). One example of such a network N 
 is
one that allows for rate-limited feedback. For this reason,
one consequence of edge removal results are outer bounds
on networks with rate-limited feedback.

Remark 7: The extremely weak edge removal property,
wherein the extra edge carries a bounded number of bits as
the blocklength grows, appears in none of our results prov-
ing relationships to strong converses. Nevertheless, we have
chosen to include this definition because it is a natural one,
and indeed the property seems tantalizingly likely to be true
for all realistic systems. However, it was shown in [15]
that for maximal error probability, there exists a network
where the extremely weak property does not hold. This again
points to the contrast between average and maximal error
probability. In light of our other results, the extremely weak
property also presents an interesting question: namely, is it
equivalent to some version of a strong converse? Based on our
results that for some networks, the very weak edge removal
property is equivalent to the ordinary strong converse, if there
is an equivalent converse to the extremely weak property,
it appears that it would need to be weaker than the ordinary
strong converse, but perhaps stronger than the ordinary weak
converse. No such property has occurred to us.

III. DERIVING EDGE REMOVAL PROPERTIES

FROM STRONG CONVERSES

The following theorem states that each of the three strong
converse properties implies one of the edge removal properties.
This result holds for any causal network channel given by (7).

Theorem 5: For any network N , the following hold:
1) The strong converse implies very weak edge removal.
2) The exponentially strong converse implies weak edge

removal.
3) The extremely strong converse implies strong edge

removal.
Statement (2) of this theorem was proved for noiseless

networks in [16, Sec. 3.3]. Our proof uses essentially the same
principle as theirs, namely converting a code on a network
with an extra edge to a code on a network without one by
fixing a value sent along this edge, and assuming at all other
nodes that this value was sent. The following lemma provides
a refined version of this argument, relating the achievable rate
regions for the network with and without the extra edge at
finite blocklengths.

Lemma 6: For any integers n and k and any � ∈ [0, 1],
R(N , n, �, k) ⊆ R(N , n, 1 − (1 − �)2−k). (31)
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Proof: Let R ∈ R(N , n, �, k), so there is an n-length
code with rate vector R and probability of error at most �
on network N ([1 : d], k). We convert this code to one on
network N as follows. Under the code on N ([1 : d], k), let
Xab be the message sent on the link from node a to node b.
Recall that Xab ∈ {0, 1}k . Let E be the overall error event for
network N ([1 : d], k). We have

1 − � ≤ P(Ec) =
∑

xab∈{0,1}k

P(Xab = xab)P(Ec|Xab = xab).

(32)

There must be some x∗
ab ∈ {0, 1}k for which

P(Xab = x∗
ab)P(Ec|Xab = x∗

ab) ≥ (1 − �)2−k . (33)

Construct a code for network N that behaves exactly like the
original code on network N ([1 : d], k), except that all nodes
assume that node b received the signal x∗

ab. Let Pe be the
probability of error for this code. Note that with probability
P(Xab = x∗

ab), the code’s behavior will be just as if the code
on N ([1 : d], k) were in effect. Thus

1−Pe ≥P(Xab = x∗
ab)P(Ec|Xab = x∗

ab)≥ (1 − �)2−k . (34)

Therefore R ∈ R(N , n, 1 − (1 − �)2−k).
Proof of Theorem 5: We first show statement (1). Assume

the strong converse holds. Thus
⋂

�>0

⋃

k∈N

C(N , (�)n, (k)n)

⊆
⋂

�∈(0,1)

⋃

k∈N

C(N , (1 − (1 − �)2−k)n) (35)

=
⋂

�>0

⋃

k∈N

C(N , 0+) (36)

= C(N , 0+) (37)

where (35) follows from Lemma 6; (36) follows from the
strong converse, because 1 − (1 − �)2−k ∈ (0, 1) for any
� ∈ (0, 1) and k ∈ N; and (37) follows because C(N , 0+)
is closed. Therefore, very weak edge removal holds by the
equivalent definition in (29) of Proposition 4.

We now prove statement (2). Assume the exponentially
strong converse holds. For any kn = o(n), we have

C(N , 0+, (kn)n) =
⋂

�>0

C(N , (�)n, (kn)n) (38)

⊆
⋂

�>0

C(N , (1 − (1 − �)2−kn )n) (39)

⊆
⋃

�n :− log(1−�n)=o(n)

C(N , (�n)n) (40)

⊆ C(N , 0+) (41)

where (39) follows from Lemma 6, (40) from the fact that
kn = o(n), and (41) from the exponentially strong converse.
Therefore weak edge removal holds.

We now prove statement (3). Assume the extremely strong
converse holds. For any δ > 0 we have

C(N , 0+, (δn)n) =
⋂

�>0

C(N , (�)n, (δn)n) (42)

⊆
⋂

�>0

C(N , (1 − (1 − �)2−δn)n) (43)

where (43) follows from Lemma 6. Note that (1 − �)2−δn .=
2−δn . Thus if R ∈ C(N , 0+, δn), then, by the extremely strong
converse, R− K δ ∈ C(N , 0+) for some constant K . Therefore
strong edge removal holds.

IV. DETERMINISTIC NETWORKS

The following theorem states that for deterministic net-
works, each implication of Theorem 5 is also an equivalence.

Theorem 7: For any deterministic network N , the following
hold:

1) The very weak edge removal property holds if and only
if the strong converse holds.

2) The weak edge removal property holds if and only if
the exponentially strong converse holds.

3) The strong edge removal property holds if and only if
the extremely strong converse holds.

To prove Theorem 7, we begin with several lemmas. The
first is the well-known reverse Markov inequality, which will
be instrumental in proving that edge removal properties imply
strong converses.

Lemma 8: Let X be a real-valued random variable where
X ≤ xmax a.s. For any τ ≤ EX ,

P(X > τ) ≥ EX − τ

xmax − τ
. (44)

The following lemma provides the core result that is
needed to prove Theorem 7. The proof is adapted from that
of [31, Lemma 2].

Lemma 9: Let N be a deterministic network. For any
� ∈ [0, 1), any n ∈ N, and any �̃ ∈ (0, 1),

R(N , n, �) ⊆ R(N , n, �̃, η(�̃, d)− 3d log(1 − �)) (45)

where

η(�̃, d) = 3d(d + 1)+ 3d log ln
4d

�̃
. (46)

Proof: Let R ∈ R(N , n, �). That is, there exists a code
with rate vector R and blocklength n achieving probability of
error �. The key to the proof is to show that if the rates are
reduced slightly from those in R, then an extra edge allows
achieving arbitrarily small probability of error. In particular,
given a target probability of error �̃, define a rate vector
R̃ = (R̃1, . . . , R̃d ) given by

R̃i =
{

Ri − k
n , Ri ≥ 2k

n

0, Ri <
2k
n

(47)

where we choose with hindsight (recall d is the number of
messages in the network)

k =
⌈

d + log ln
4d

�̃
− log(1 − �)

⌉
. (48)

We will proceed prove that

R̃ ∈ R(N , n, �̃, dk) (49)

by constructing a code of rate R̃ on network N ([1 : d], dk).
However, to prove the lemma we need to show that R, rather
than R̃, is contained in the right-hand side (RHS) of (45).
Given (49) and that n Ri − n R̃i ≤ 2k, we may simply expand
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the edge from node a to b to carry 2dk additional bits, adding
2k bits for each message, which implies

R ∈ R(N , n, �̃, 3dk). (50)

This is now enough to prove the lemma, since 3dk ≤ η(�̃, d)−
3d log(1 − �) where η(�̃, d) is defined in (46).

We now prove (49). For i = 1, . . . , d , let Wi = [2nRi ] be
the message set for the i th message of the original code of
rate R and probability of error �, and let

W =
d∏

i=1

Wi (51)

be the set of complete message vectors w = (w1, . . . , wd). Let
R = ∑

i Ri , so |W| = 2nR . Since the network is deterministic
and the code is fixed, whether or not an error occurs depends
entirely on the message vector w ∈ W that is chosen. Let
� be the subset of W of message vectors that do not lead to
errors. Thus the probability of error is precisely 1 − 2−nR |�|.
By the assumption that the probability of error is at most �,
we have that

|�| ≥ |W|(1 − �) = 2nR(1 − �). (52)

Recall that R̃i = 0 if n Ri < 2k, so this message is not
significant. For ease of notation, we assume for now that
n Ri ≥ 2k for all messages i , so that R̃i = Ri − k

n . We employ
a version of a random binning argument. For each i , randomly
choose the sets

Pi (1), . . . ,Pi (2nR̃i ) (53)

to be a partition of Wi where |Pi (w̃i )| = 2k for all w̃i ∈
[1 : 2nR̃i ], such that all such partitions are equally likely.
Furthermore, let P(w̃) for w̃ = (w̃1, . . . , w̃d ) be the set of
message vectors w ∈ W such that wi ∈ Pi (w̃i ) for all
i ∈ [1 : d]. Given these partitions, the code proceeds as
follows. Messages W̃1, . . . , W̃d are all transmitted to node a.
Node a then chooses a message vector W = (W1, . . . ,Wd )
from the set � ∩ P(W̃) in an arbitrary manner. If this set is
empty, then we declare an error. For each i , let Ii ∈ {1, . . . , 2k}
be the index of Wi in the set Pi (W̃i ). Node a determines Ii

for each i and transmits (I1, . . . , Id ) to node b. Note that the
number of bits required is dk.

At the originating source node for message i , Wi can be
determined from W̃i and Ii . Subsequently, the code proceeds
as if W were the true message vector. When a destination
node j produces a message estimate Ŵi j , it constructs the

final message estimate as the ̂̃W ij ∈ [1 : 2nR̃i ] such that

Ŵi j ∈ Pi

(̂̃W ij

)
. Since by assumption W ∈ �, there is no

error as long as � ∩ P(W̃) is not empty.
For w̃ = (w̃1, . . . , w̃d ) let

q(w̃) � P (� ∩ P(w̃) = ∅) (54)

where the probability is with respect to the random choice of
partitions Pi . We proceed to show that q(w̃) ≤ �̃ for all w̃.
Thus, the probability of error averaged over both the message
vector W and the random choice of partitions is at most �̃.
This proves that there exists at least one deterministic code
with average probability of error �̃.

For each i ∈ [1 : d −1], define for all w1, . . . , wi−1, the set

Ai (w1, . . . , wi−1)

=
{
wi : |{(wi+1, . . . , wd ) : (w1, . . . , wd ) ∈ �}|
≥ (1 − �)2n(Ri+1+···+Rd )−i

}
. (55)

Moreover, define

Ad (w1, . . . , wd−1) = {wd : (w1, . . . , wd ) ∈ �}. (56)

We claim that for all i ∈ [1 : d], if w1, . . . , wi−1 is such that
wi−1 ∈ Ai−1(w1, . . . , wi−2), then

|Ai (w1, . . . , wi−1)| ≥ (1 − �)2nRi −i . (57)

To prove this for i ∈ [1 : d − 1], assume wi−1 ∈
Ai−1(w1, . . . , wi−2). Define the random variable

X (w1, . . . , wi−1) = |{(wi+1, . . . , wd ) :
(w1, . . . , wi−1,Wi , wi+1, . . . , wd )∈�}|.

(58)

where as usual Wi is uniformly distributed on [1 : 2nRi ]. Note
that

EX (w1, . . . , wi−1)

= 2−nRi
∑

wi

|{(wi+1, . . . , wd ) : (w1, . . . , wd )∈�}| (59)

= 2−nRi |{(wi , . . . , wd) : (w1, . . . , wd ) ∈ �}| (60)
≥ (1 − �)2n(Ri+1+···+Rd )−(i−1) (61)

where the inequality follows from the assumption that wi−1 ∈
Ai−1(w1, . . . , wi−2). Hence,

|Ai (w1, . . . , wi−1)|
= 2nRi P

(
X (w1, . . . , wi−1) ≥ (1 − �)2n(Ri+1+···+Rd )−i

)

(62)

≥ 2nRi
EX (w1, . . . , wi−1)− (1 − �)2n(Ri+1+···+Rd )−i

2n(Ri+1+···+Rd ) − (1 − �)2n(Ri+1+···+Rd )−i
(63)

≥ 2nRi
(1 − �)2n(Ri+1+···+Rd )−i

2n(Ri+1+···+Rd )
(64)

= (1 − �)2nRi −i (65)

where (63) follows from Lemma 8 and the fact that X (·) ≤
2n(Ri+1+···+Rd ), and (64) follows from (61). This proves (57)
for i ∈ [1 : d − 1]. For i = d , note that if wd−1 ∈
Ad−1(w1, . . . , wd−2), then by the definitions of Ad−1 and Ad ,

|Ad (w1, . . . , wd−1)| = |{wd : (w1, . . . , wd ) ∈ �}| (66)

≥ (1 − �)2nRd−(d−1) (67)

> (1 − �)2nRd−d . (68)

This proves (57) for i = d .
Fix w̃ = (w̃1, . . . , w̃d). For each i = 1, . . . , d , define

Qi = {(w1, . . . , wi ) : w j ∈ P j (w̃ j ) ∩ A j (w1, . . . , w j−1)

for all j ≤ i}. (69)

Note that for w ∈ Qd , certainly wi ∈ Pi (w̃i ) for all i ∈ [1 :
d], so w ∈ P(w̃). Moreover, since wd ∈ Ad (w1, . . . , wd−1),
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by definition w ∈ �. Thus Qd ⊆ � ∩ P(w̃), so

q(w̃) ≤ P(Qd = ∅) ≤
d∑

i=1

P(Qi = ∅|Qi−1 �= ∅). (70)

To upper bound P(Qi = ∅|Qi−1 �= ∅), suppose Qi−1 �= ∅,
so there exists some (w1, . . . , wi−1) ∈ Qi−1. If Qi is empty,
then Pi (w̃i )∩Ai (w1, . . . , wi−1) = ∅. Recall that Pi (w̃i ) is one
set of a random partition of Wi , which is chosen independently
of w1, . . . , wi−1. In particular, Pi (w̃i ) is chosen uniformly
among all subsets of Wi = [1 : 2nRi ] of size 2k , so

P(Pi (w̃i ) ∩ Ai (w1, . . . , wi−1) = ∅) =
(2nRi −|Ai (w1,...,wi−1)|

2k

)

(2nRi

2k

) .

(71)
Since by assumption (w1, . . . , wi−1) ∈ Qi−1, we have wi−1 ∈
Ai−1(w1, . . . , wi−2), so we may apply (57) to bound

P(Qi = ∅|Qi−1 �= ∅) ≤
(2nRi −(1−�)2nRi −i

2k

)

(2nRi

2k

) . (72)

Thus

q(w̃) ≤
d∑

i=1

(2nRi −(1−�)2nRi −i

2k

)

(2nRi

2k

) (73)

=
d∑

i=1

(2nRi − (1 − �)2nRi −i )!
(2nRi − (1 − �)2nRi −i − 2k)! · (2

nRi − 2k)!
(2nRi )!

(74)

≤
d∑

i=1

(2nRi − (1 − �)2nRi −i )2
k

(2nRi − 2k)2
k (75)

=
d∑

i=1

(1 − (1 − �)2−i )2
k

(1 − 2k−nRi )2
k (76)

≤
d∑

i=1

e−(1−�)2k−d

(1 − 2k−nRi )2
k (77)

≤
d∑

i=1

�̃

4d
(1 − 2k−nRi )−2k

(78)

≤
d∑

i=1

�̃

4d
(1 − 2−k)−2k

(79)

≤ �̃ (80)

where (75) follows since a!/b! ≤ aa−b for integers a, b, (77)
follows since (1 + k) ≤ ex , (78) follows from the choice of k
in (48), (79) follows by the assumption that Ri ≥ 2k

n for all i ,

and (80) follows since (1 − 2−k)−2k ≤ 4 for any k ≥ 1. This
last fact can be seen by noting that f (x) = −x ln(1 − x−1) is
decreasing in x , which holds because its derivative is given by

f 
(x) = − ln(1 − x−1)− 1

x − 1
(81)

= ln

(
1 + 1

x − 1

)
− 1

x − 1
(82)

≤ 0. (83)

Proof of Theorem 7: Theorem 5 proves that each strong
converse property implies the corresponding edge removal
property, so we only need to prove the opposite directions.

Suppose the very weak edge removal property holds. For
any constant �, applying Lemma 9 gives

C(N , (�)n) ⊆
⋂

�̃>0

C(N , (�̃)n, (η(�̃, d)−3d log(1−�))n) (84)

⊆
⋂

�̃>0

⋃

k∈N

C(N , (�̃)n, (k)n). (85)

= C(N , 0+) (86)

where the last equality holds by very weak edge removal.
Therefore the strong converse holds.

Now suppose the weak edge removal property holds. For
any sequence (�n)n where − log(1 − �n) = o(n), applying
Lemma 9 gives

C(N , (�n)n) ⊆
⋂

�̃>0

C(N , (�̃)n, (η(�̃, d)− 3d log(1 − �n))n)

(87)

⊆
⋂

�̃>0

C(N , (�̃)n, (
√

n − 3d log(1 − �n))n)

(88)

= C(N , 0+, (
√

n − 3d log(1 − �n))n) (89)

= C(N , 0+) (90)

where (88) follows since for any �̃ and d , η(�̃, d) ≤ √
n for

sufficiently large n; and (90) follows from weak edge removal,
since

√
n −3d log(1−�n) = o(n). Therefore the exponentially

strong converse holds.
Finally, suppose the strong edge removal property holds. For

any α > 0, let �n where 1 − �n
.= 2−nα . Applying Lemma 9

gives

C(N , (�n)n) = C(N , (1 − 2−nα)n) (91)

⊆
⋂

�̃>0

C(N , (�̃)n, (η(�̃, d)+ 3dαn)n) (92)

⊆
⋂

�̃>0

C(N , (�̃)n, ((3d + 1)αn)n) (93)

= C(N , 0+, ((3d + 1)αn)n) (94)

⊆ C(N , 0+)+ [0, K (3d + 1)α]d (95)

where (91) follows from Prop. 1, (92) follows from
Lemma 9, (93) follows because η(�̃, d) ≤ αn for sufficiently
large n, (94) follows by the definition of C(N , 0+, (kn)n),
and (95) follows by the equivalent form of the strong edge
removal property in (25), where K is a finite positive con-
stant depending only on the network. Therefore, this network
satisfies equivalent form of the extremely strong converse in
Prop. 2 part (1b).

V. DISCRETE STATIONARY MEMORYLESS NETWORKS

The following is our main theorem for discrete stationary
memoryless networks, connecting the exponentially strong
converse to the weak edge removal property. In addition,
we show that both these properties are equivalent to an even
weaker form of the weak edge removal property—namely,
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where the nodes a and b connect only to transmitting nodes;
i.e., those nodes i where Xi �= ∅. (Recall the definition
CV (N , (�n)n, (kn)n) being the capacity region of the network
with nodes a and b connected only to nodes in V .) This
is a generalization of the “cooperation facilitator” model
from [9]–[14], which connected only to the transmitters in
a multiple-access channel, but not the receiver. The intuition
behind connecting only to transmitting nodes is that the extra
edge is useful when encoding but not decoding. The reason is
that when decoding, a node attempts to reconstruct a message,
which is available exactly at the message’s source node. Thus,
any small amount of information sent from the omniscient
node a could equally well be sent from the source node.
However, when encoding, the “ideal” transmission may be
a function of multiple messages, which are simultaneously
available only at the ominscient node a. Therefore, even a
small capacity link from a to b could in principle provide
significant rate gain by connecting to an encoding node.
However, if a node does not transmit, it only decodes and
never encodes, so the connection from nodes a and b is not
helpful.

Theorem 10: For any discrete stationary memoryless net-
work N , the following three statements are equivalent:

1) The exponentially strong converse holds.
2) The weak edge removal property holds.
3) For all γ > 0,

CV (N , 0+, (kn)n) ⊆ C(N , 0+)+ [0, γ ]d (96)

for some sequence kn = �(n), where V is the set of
nodes i such that Xi �= ∅.

Observe that statement 1 of the theorem implies statement 2
by Theorem 5. Note that statement 3 is identical to the
definition of the weak edge removal, except that the left-
hand side (LHS) of (96) is CV (N , 0+, (kn)n) instead of
C(N , 0+, (kn)n) as in (24); i.e., in the modified network,
nodes a and b connect only to the set V of transmitting
nodes rather than all nodes. Since for any V ⊆ [1 : d],
CV (N , 0+, (kn)n) ⊆ C(N , 0+, (kn)n), statement 2 of the
theorem implies statement 3. Hence it remains only to show
that statement 3 implies statement 1. The main tool in doing
so will be a modified version of the blowing-up lemma. The
blowing-up lemma, originally proved in [32] (see also [28]
and [33]), has been used in the proof of numerous strong
converse results. In some sense our result is a generalization
of this technique. The traditional blowing-up lemma is stated
as follows.

Lemma 11: Let Xn ∈ X n be a sequence of independent
random variables. Fix A ⊆ X n where PXn (A) = exp{−nγn}
for a sequence γn → 0. For any 
, define the blown-up version
of A as

A
 = {
xn : dH(x

n, yn) ≤ 
 for some yn ∈ A
}

(97)

where dH is the Hamming distance. There exists a sequence
δn → 0 where

PXn (Anδn ) → 1. (98)

The following is a causal version of the blowing-up lemma.
It is stronger than the usual blowing-up lemma, but it follows

from a slight modification of Marton’s proof of the blowing-up
lemma in [28]. One may view this lemma as a causal version
of a transportation-cost inequality [33].

Lemma 12: Let Xn ∈ X n be a random sequence, not
necessarily independent. Fix A ⊆ X n . There exists a sequence
of conditional distributions PZt |Yt ,Zt−1 for t = 1, . . . , n such
that, if we let Y n ∈ X n, Zn ∈ X n have joint distribution

PY n ,Zn(yn, zn)

=
n∏

t=1

PXt |Xt−1(yt |zt−1)PZt |Yt ,Zt−1(zt |yt , zt−1) (99)

then Zn ∈ A almost surely, and

EdH(Y
n, Zn) ≤

√
n

2 log e
log

1

PXn (A) . (100)

Proof: Let X̃n be a random sequence with distribution
that of Xn conditioned on the set A. That is,

PX̃n (xn) =
{

PXn (xn)
PXn (A) xn ∈ A,

0 xn /∈ A.
(101)

For any t ∈ [1 : n] and zt−1 ∈ X t−1, by [34, Th. 1]
there exists a pair of random variables Xt (zt−1), X̃t (zt−1)
with joint distribution PXt (zt−1),X̃t (zt−1) such that the marginal
distributions satisfy

PXt (zt−1) = PXt |Xt−1=zt−1, (102)

PX̃t (zt−1) = PX̃t |X̃ t−1=zt−1 (103)

and their joint distribution satisfies

P(Xt (z
t−1) �= X̃t (z

t−1))

= dTV
(
PXt |Xt−1=zt−1, PX̃t |X̃ t−1=zt−1

)
. (104)

We now define

PZt |Yt ,Zt−1(zt |yt , zt−1) = PX̃t (zt−1)|Xt (zt−1)(zt |yt). (105)

Let Y n, Zn have distribution given by (99), where PZt |Yt ,Zt−1

is defined in (105). Note that

PYt ,Zt |Zt−1(yt , zt |zt−1)

= PXt |Xt−1(yt |zt−1)PZt |Yt ,Zt−1(zt |yt , zt−1) (106)

= PXt (zt−1)(yt )PX̃t (zt−1)|Xt (zt−1)(zt |yt ) (107)

= PXt (zt−1),X̃t (zt−1)(yt , zt ) (108)

where (106) follows from (99), (107) follows from (102)
and (105), and (108) follows from simple rules about joint
distributions. Thus

PZt |Zt−1(zt |zt−1) =
∑

yt

PYt ,Zt |Zt−1(yt , zt |zt−1) (109)

=
∑

yt

PXt (zt−1),X̃t (zt−1)(yt , zt ) (110)

= PX̃t (zt−1)(zt ) (111)

= PX̃t |X̃ t−1(zt |zt−1) (112)

where (110) holds by (108), (111) holds simply because
the summation in (110) represents the marginal distribution
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of X̃t (zt−1), and (112) holds by (103). Thus Zn and X̃n

have the same distribution. In particular, since by construction
X̃n ∈ A almost surely, also Zn ∈ A almost surely. We now
have

EdH(Y
n, Zn)

=
n∑

t=1

P(Yt �= Zt ) (113)

=
n∑

t=1

∑

zt−1

PZt−1(zt−1)
∑

yt �=zt

PYt ,Zt |Zt−1(yt , zt |zt−1) (114)

=
n∑

t=1

∑

zt−1

PZt−1(zt−1)
∑

yt �=zt

PXt (zt−1),X̃t (zt−1)(yt , zt ) (115)

=
n∑

t=1

∑

zt−1

PZt−1(zt−1)P(Xt (z
t−1) �= X̃t (z

t−1)) (116)

=
n∑

t=1

∑

zt−1

PZt−1(zt−1)

· dTV
(
PXt |Xt−1=zt−1, PX̃t |X̃ t−1=zt−1

)
(117)

≤
n∑

t=1

∑

zt−1

PZt−1(zt−1)

·
[

1

2 log e
D(PX̃t |X̃ t−1=zt−1�PXt |Xt−1=zt−1)

]1/2

(118)

≤ n

[
1

(2 log e)n

n∑

t=1

∑

zt−1

PZt−1(zt−1)

· D(PX̃t |X̃ t−1=zt−1�PXt |Xt−1=zt−1)

]1/2

(119)

=
[

n

2 log e

n∑

t=1

∑

zt−1

PX̃t−1(zt−1)

· D(PX̃t |X̃ t−1=zt−1�PXt |Xt−1=zt−1)

]1/2

(120)

=
[

n

2 log e
D(PX̃n �PXn )

]1/2

(121)

=
[

n

2 log e
log

1

PXn (A)

]1/2

(122)

where (115) holds by (108), (117) holds by (104), (118)
holds by Pinsker’s inequality, (119) holds by concavity of the
square root, (120) holds because Zn and X̃n have the same
distribution, (121) holds by the chain rule for relative entropy,
and (122) holds because, by (101),

PX̃n (X̃n)

PXn (X̃n)
= 1

PXn (A) a.s. (123)

Remark 8: Lemma 11 can be derived from Lemma 12 as
follows. If in Lemma 12, Xn is a sequence of independent
random variables, then by (99), Y n has the same distribution
as Xn . Thus

PXn (A
) = PY n (A
) (124)

≥ P(dH(Y
n, Zn) ≤ 
) (125)

≥ 1 − 1



EdH(Y

n, Zn) (126)

≥ 1 − 1




√
n

2 log e
log

1

PXn (A) (127)

where (125) holds because Zn ∈ A almost surely, (126) holds
by Markov’s inequality, and in (127) we have applied (100).
Assuming PXn (A) = exp{−nγn} where γn → 0, if we choose,
for example, δn = γ

1/4
n , we have δn → 0 and

PXn (Anδn ) ≥ 1 − γ
1/4
n√

2 log e
→ 1. (128)

This proves Lemma 11.
With Lemma 12 in hand, we complete the proof of

Theorem 10 with the following lemma.
Lemma 13: For any discrete stationary memoryless net-

work N , statement 3 of Theorem 10 implies statement 1.
Proof: By the same argument as in the proof of

Proposition 4, statement 3 of Theorem 10 is equivalent to
⋂

δ>0

CV (N , 0+, (δn)n) = C(N , 0+) (129)

where again V is the set of transmitting nodes.
By Proposition 2, the exponentially strong converse
holds if and only if, for any sequence (�n)n where
− log(1 − �n) = o(n), C(N , (�n)n) ⊆ C(N , 0+). Thus,
to prove the lemma it is enough to show that for any
(�n)n where − log(1 − �n) = o(n), and any δ > 0,
C(N , (�n)n) ⊆ CV (N , 0+, (δn)n). Let R be achievable with
respect to �n . Thus for sufficiently large n there exists an
n-length code with average probability of error at most �n .
Let (φit , ψi j ) be the encoding/decoding functions for this
code (see (9)–(10)). We describe a new code, illustrated
in Fig. 3, achieving the same rate vector with vanishing
probability of error on the network N (V, δn). Note that for
any i ∈ Vc, we have Xi = ∅, so if Ri > 0 the probability
of success would be exponentially small; thus we must have
Ri = 0.

1) Network Stacking: We adopt the notion of network stack-
ing from [35]. The motivation for our use of network stacking
is that it allows us to convert an arbitrary coding operation
at a single time instance into a coding operation across a
long block, thereby taking advantage of the law of large
numbers. In particular, we construct N independent copies
of the original n-length code, each with its own messages,
using a total of nN channel uses. Each copy is referred to
as a “layer”, indexed by an integer 
 ∈ [1 : N]. Unlike a
block Markov approach [36], in which one would transmit an
n-length block corresponding to the original code in sequence,
in the network stacking approach we transmit N copies of a
single time instance t ∈ [1 : n] of the original code before
moving on to the next one. Thus coding can be done “across
the layers”, using the fact that the N copies of any symbol
are i.i.d., while maintaining the causal structure of the original
code.

We use underlines to indicate symbols on the stacked
network. In particular, X it (
) is the transmitted symbol from
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Fig. 3. Summary of the procedure to convert a code with probability of
error �n to one with vanishing probability of error on the network with
an extra edge. Each timestep of the original code is copied N times into
a transmission phase, followed by a subsequent correction phase that replaces
some of the received signals. Prior to the n transmission and correction phases,
a message coordination phase ensures that only “good” message vectors are
used; subsequently a hashing phase is used to ensure all nodes can decode.

node i at time t in layer 
; X n
i (
) refers to the n-length

sequence of symbols in layer 
; X it refers to the N-length
sequence of symbols at time t in all layers; Xn

i refers to
the full nN-length sequence of all layers and time instances.
We define Y it (
), etc. similarly. Moreover, W i (
) is the
message originating at node i in layer 
, and W i is the
complete vector of messages originating at node i across all
N layers.

2) Code Phases: Given the original n-length code, we con-
struct an N-fold stacked code as follows, where the pre-
cise dependence between n and N is to be determined.
The code consists of 2n + 2 phases, each consisting of a
number of timesteps. These phases are visualized in Fig. 3.
First we have a message coordination phase, followed
by n transmission phases alternating with n correction
phases, and concluded with a hashing phase. In the mes-
sage coordination phase, nodes coordinate to choose a mes-
sage vector in each layer with a relatively large proba-
bility of success; this is done in exactly the same man-
ner as for deterministic networks in Lemma 9. Each trans-
mission phase corresponds to one timestep t ∈ [1 : n]
in the original code: the layers act independently, each per-
forming the coding functions from the original code at time t .
In the following correction phase, node a transmits data to
node b, describing replacements for certain received data in
sub-network V . Node b then disperses this data to the nodes
in V ; in subsequent transmission phases, nodes in V use this
replaced data in their coding operations. In the final hashing
phase, hashes of all messages are dispersed to all nodes, which
allows nodes in Vc to decode. This last phase is necessary

because nodes a and b do not connect directly to nodes in Vc;
thus the correction approach applied to the rest of the network
does not work here, since node a does not know what signals
were received in Vc. Instead, hashes are used to correct any
remaining errors in messages decoded in Vc.

The message coordination phase consists of O(N(− log(1−
�n) + log n)) timesteps. Each transmission phase consists of
exactly N timesteps, since each layer transmits exactly once.
Correction phases have variable lengths, depending on how
much correction data is required, but a total of Nnγn timesteps
are allocated for all correction phases, where

γn =
(

− log 1−�n
4

n

)1/4

. (130)

The hashing phase consists of O(
√
γnnN) timesteps. Note

that in total, the transmission phases consist of nN timesteps.
Recalling that − log(1−�n) = o(n), γn → 0 as n → ∞, so all
other phases consist of a negligible number of timesteps.

3) Message Coordination Phase: For each message vector
w of the original code, let Pc(w) be the probability of correctly
decoding w. Let

� =
{

w : Pc(w) ≥ 1 − �n

2

}
. (131)

Defining R = ∑d
i=1 Ri , we may lower bound the cardinality

of � by

|�| = 2nR
P

(
Pc(W) ≥ 1 − �n

2

)
(132)

≥ 2nR EPc(W)− 1−�n
2

1 − 1−�n
2

(133)

≥ 2nR
[
(1 − �n)− 1 − �n

2

]
(134)

= 2nR 1 − �n

2
(135)

where (133) holds by Lemma 8 and the fact that Pc(W) ≤ 1,
and (134) holds since the average probability of error is at
most �n .

In the message coordination phase, we use an identical outer
code as in Lemma 9 to ensure that, with high probability, only
message vectors in � are ever used. By the same binning
argument as in the proof of Lemma 9, this requires only
O(− log(1− �n)+ log n) bits on the link (a, b) for each layer.
Note that nodes a and b are only required to contact the nodes
in V , since nodes in Vc have no message originating at them.
We may therefore assume throughout the rest of this argument
that W(
) ∈ � for each 
 ∈ [1 : N].

4) Correction Codebook: Let Pc(w, yn
V ) be the probability

of correct decoding given message vector w, and channel
outputs yn

V at nodes V . That is,

Pc(w, yn
V ) = P(Ŵ = w|W = w,Y n

V = yn
V) (136)

where again Ŵ is the complete vector of message estimates.
Since encoding and decoding functions are assumed to be
deterministic (cf. (9)–(10)), channel inputs Xn

V are determin-
istic functions of Y n

V and W. Thus, the only randomness in
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the probability in (136) are the channel outputs Y n
Vc given

the inputs Xn
V . Recalling that Xi = ∅ for i ∈ Vc, Y n

Vc is an
independent sequence given Xn

V . For each message vector w
of the original n-length code, let

Q(w) =
{

yn
V : Pc(w, yn

V ) ≥ 1 − �

4

}
. (137)

Note that for any w ∈ �,

E(Pc(w,Y n
V )|W = w) = P(Ŵ = w|W = w) (138)

= Pc(w) (139)

≥ 1 − �n

2
. (140)

Thus, applying Lemma 8 to the random variable Pc(w,Y n
V )

gives

PY n
V |W=w(Q(w)) ≥ 1 − �n

4
. (141)

We now apply Lemma 12 to the distribution PY n
V |W=w and

the set Q(w) to find conditional distributions PZV,t |YV,t ,ZV,t
for all t = [1 : n]. Note that these distributions depend on
the message vector w. For each yV ,t ∈ YV and zt−1 ∈ Y t−1

V ,
independently draw

ft (w, yV ,t , zt−1
V ) ∼ PZV,t |YV,t ,Zt−1

V
. (142)

These functions constitute a codebook known to all nodes.
5) Hashing Codebook: For each i ∈ V and each wi ∈ [1 :

2nRi ]N , independently and uniformly draw gi (wi ) from [1 :
2nN

√
γn ]. These hashing functions also constitute a codebook

known to all nodes.
6) Transmission Phases: Before the transmission phase at

time t , each node i ∈ V has determined Zt−1
i ∈ Y t−1

i , which
represent the corrected versions of its received signals (see
description below of the correction phases). For each 
 ∈ [1 :
N], node i determines and transmits

Xi,t (
) = φit (W i (
), Zt−1
i ). (143)

For each i ∈ [1 : d], let Y i,t (
) be the corresponding received
signals.

7) Correction Phases: In the correction phase after the
transmission phase at time t , node a learns Y i,t from each
i ∈ V , and determines, for each 
 ∈ [1 : N],

ZV ,t(
) = ft (W(
),YV ,t(
), Zt−1
V (
)). (144)

For each 
 for which ZV ,t (
) �= YV ,t(
), node a transmits
to node b a bit string with 0 followed by �log N |Y|� bits
identifying the layer 
 ∈ [1 : N] as well as the value
of ZV ,t (
) ∈ YV . After doing this for each layer where
ZV ,t(
) �= YV ,t(
), node a transmits the stop bit 1, signaling
that all nodes should proceed to the next transmission phase.
Node b then forwards this data to each node i ∈ V . For all
layers 
 for which no correcting signal was sent, each node
i ∈ V simply sets Zit (
) = Y it (
).

8) Hashing Phase: Node a computes gi = gi (wi ) for
all i ∈ V , and transmits these values to node b, which
subsequently disperses them to nodes in V .6 Note that these
hashes consist of a total of d

√
γnnN bits, which is sub-linear

in nN . Thus they can be transmitted over the link (a, b) as long
as δ > 0. For each node i ∈ Vc, if there exists a node j ∈ V
where the point-to-point channel from X j to Yi has positive
capacity, then we use a point-to-point channel code to transmit
the hashes from node j to node i . If there is no such node
j ∈ V , then all received signals at node i are independent of
the rest of the network, so node i cannot decode any messages;
in particular, if i ∈ Dk for any k ∈ [1 : d], it must be that
Rk = 0. Since the hashes occupy a sub-linear number of bits,
transmitting these hashes to each node in Vc takes a sub-linear
number of timesteps, and can be done with arbitrarily small
probability of error.

9) Decoding: For each i, j ∈ V where j ∈ Di and each

 ∈ [1 : N], node j determines

Ŵ i j (
) = ψi j (W j (
), Zn
j (
)). (145)

Now consider i ∈ [1 : d] and j ∈ Vc ∩Di and each i ∈ [1 : d]
where j ∈ Di . Given Y n

j and gi , find the unique ŵi where
gi = gi (ŵi ) and there exists ỹn

i
where ψi j (W j (
), ỹn

j
(
)) =

ŵi (
) for each 
 ∈ [1 : N] and

dH(Y
n
j , ỹn

j
) ≤ Nnγn . (146)

If there is no such ŵi or more than one, declare an error.
10) Probability of Error Analysis: Consider the following

error events

E1 = {number of timesteps used in correction phases

exceeds Nnγn} (147)

and, for i ∈ [1 : d] and j ∈ Vc ∩ Di ,

E2i j = {
ψi j (W j (
), ỹn

j
(
)) �= W i (
) for some 
 ∈ [1 : N],

for all ỹn
j

where dH(Y
n
j , ỹn

j
) ≤ Nnγn

}
, (148)

E3i j = {
ψi j (W j (
), ỹn

j
(
)) = w


i (
) for all 
 ∈ [1 : N],
for some w


i �= W i where gi (w


i ) = gi(W i )

and ỹn
j

where dH(Y
n
j , ỹn

j
) ≤ Nnγn

}
. (149)

Note that as long as E1 does not occur, then by Lemma 12,
Zn
V (
) ∈ Q(W(
)) for all 
. By the definition of Q(w), this

ensures that W ji = wi for all j ∈ [1 : d] and i ∈ V . Events
E2i j , E3i j cover all errors that can occur at nodes in Vc. Hence
the probability of error of the overall code, averaged over
random coding choices, is

Pe ≤ P

⎛

⎝E1 ∪
⋃

i∈[1:d], j∈Vc∩Di

(E2i j ∪ E3i j )

⎞

⎠ (150)

≤ P(E1)+
∑

i∈[1:d], j∈Vc∩Di

[
P(E2i j |Ec

1)+ P(E3i j |Ec
1 )
]
. (151)

6One could also compute the hash for message i directly at node i , and
distribute the hash to all decoder nodes from there. We choose to compute
the hash at node a makes merely to make distribution of the hashes simpler
to describe.
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We first consider E1. The number of bits transmitted across
link (a, b) during the correction phase at time t is

dH(YV ,t , ZV ,t )(�log N |YV |� + 1)+ 1 (152)

where the final +1 accounts for the stop bit. Thus the number
of bits transmitted during all n correction phases is

dH(Y
n
V , Zn

V )(�log N |YV |� + 1)+ n. (153)

Recall link (a, b) has capacity δ > 0, meaning it can transmit
a bit roughly every 1/δ timesteps (cf. (20)). Thus we can
bound E1 by

P(E1)

= P

(
1

δ

[
dH(Y

n
V , Zn

V )(�log N |YV |�+ 1)+ n
]
>Nnγn

)

(154)

≤
∑N

=1 EdH(Y n

V (
), Zn
V (
))(�log N |YV |� + 1)+ n

δNnγn
(155)

≤
∑N

=1 E

√−n log Pc(W(
))(�log N |YV |�+1)+ n

δNnγn
(156)

≤
N
√

−n log 1−�n
2 (�log N |YV |� + 1)+ n

δNnγn
(157)

≤ 1

δ
γn(�log N |YV |� + 1)+ 1

δNγn
(158)

where (155) follows from Markov’s inequality, (156) follows
from Lemma 12, where we have dropped the constant 1

2 log e
since it is less than 1, (157) from the assumption that W(
) ∈
� for all 
, and (158) from the definition of γn in (130). If we
choose N = γ−2

n , then

P(E1) ≤ 1

δ
γn

(⌈
log

1

γ 2
n

|Y|
⌉

+ 1

)
+ γn

δ
(159)

≤ γn

δ
(−2 log γn + log |Y| + 3) (160)

which vanishes since −γn log γn → 0 as γn → 0.
Now we consider events E2i j , E3i j . Recall that if E1 does

not occur, then Zn
V (
) ∈ Q(W(
)) for all 
. By the definition

of Q(w) in (137), we have, for any yn
V ∈ Q(w)

1 − �n

4
≤ Pc(w, yn

V ) (161)

=
∑

yn
Vc

PY n
Vc |Y n

V=yn
V ,W=w(yVc)

· 1(ψi j (y
n
j ) = wi for all i ∈ V, j ∈ Vc ∩ Di ).

(162)

Note that given Y n
V = yn

V and W = w, Xn
V is determined

since coding functions are deterministic. Since Xi = ∅ for
all i ∈ Vc, this conditioning also determines Xn

1:d . Thus,
the distribution PY n

Vc |Y n
V=yn

V ,W=w is independent. Applying the
blowing-up lemma to this distribution and the set of yVc that
cause all messages to be decoded correctly in Vc, there exists
a random sequence Zn

Vc ∈ Yn
Vc that causes all messages to be

decoded correctly, and

EdH(Y
n
Vc , Zn

Vc) ≤
√

−n log
1 − �n

4
= nγ 2

n . (163)

In particular, if we produce N copies of this Zn
Vc sequence for

each layer, then Markov’s inequality gives

P
(
dH(Y

n
Vc, Z n

Vc) > Nnγn
) ≤ Nnγ 2

n

Nnγn
= γn. (164)

In particular, for each i ∈ [1 : d] and j ∈ Vc ∩ Di , with
probability at least 1 − γn , there exists ỹn

j
that satisfies the

Hamming distance condition (146), and is decoded correctly
to wi . Thus P(E2i j |Ec

1) vanishes. We now consider E3i j . The
number of messages w


j that are considered is upper bounded
by the number of sequences ỹn satisfying (146), which is given
by


Nnγn�∑

k=0

(
Nn

k

)
|Yi |k ≤ exp{nN(H (γn)+ γn log |Yi |)} (165)

where H (·) is the binary entropy function. The probability
that any given w


j �= W j agrees with the hash value g j is
2−nN

√
γn , so

P(E3i j |Ec
1) ≤ exp{nN(H (γn)+ γn log |Yi |)− nN

√
γn}

(166)

≤ exp{−nN
√
γn/2} (167)

= exp{−nγ−3/2/2} (168)

where (167) holds for sufficiently large n, since γn → 0
and lim p→0 H (p)/

√
p = 0, and (168) holds again by the

choice N = γ−2
n . Since nγ−3/2 → ∞ as n → ∞, P(E3i j |Ec

1)
vanishes.

Remark 9: The blowing-up lemma does not appear to be
strong enough to prove that the very weak edge removal
property implies the ordinary strong converse. Were we to
apply the same argument above to the case �n = � ∈ (0, 1),
in the key application of the blowing-up lemma in (156),
we would have

EdH(Y
n
V , Zn

V ) ≤
√

−n

2
log

1 − �

2
. (169)

This suggests that at least O(
√

n) bits per layer would be
required on the extra link. However, very weak edge removal
requires that we achieve the same capacity region using any
kn sequence of bits converging to infinity, which includes
sequences growing smaller than

√
n.

VI. NETWORKS OF INDEPENDENT POINT-TO-POINT LINKS

We now consider the setting of network equivalence [35], in
which N consists of a stationary memoryless network made up
of independent point-to-point (noisy) links. Let N̄ be the same
network in which each noisy point-to-point link is replaced
by a noiseless bit-pipe of the same capacity. The basic result
of network equivalence states that C(N , 0+) = C(N̄ , 0+).
Theorem 10 already asserts that for such networks, the weak
edge removal property holds if and only if the exponentially
strong converse holds. The following theorem proves that,
for such networks with acyclic topology, the same holds for
the “lower level” in Fig. 1; i.e., the very weak edge removal
property and the ordinary strong converse. The proof, given in
Appendix E, makes use of the network equivalence principle
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to connect codes on N to codes on N̄ , and then applies
Theorem 7 on N̄ . In [37, Lemma 19], the strong converse is
proved for networks consisting of independent point-to-point
links wherein each destination node decodes the same set of
messages. This is a simpler situation in the sense that the
capacity is known to coincide with the cut-set bound (our
result holds even if the capacity is unknown), but the proof in
[37] similarly invokes network equivalence.

Theorem 14: For a discrete stationary memoryless network
N consisting of independent point-to-point links with acyclic
topology, the very weak edge removal property holds if and
only if the strong converse holds.

VII. APPLICATIONS

A. Outer Bounds

Consider any outer bound Rout(N ) for the memoryless
stationary network N ; i.e., where C(N , 0+) ⊆ Rout(N ).
Suppose we could show

⋃

kn=o(n)

CV (N , 0+, (kn)n) ⊆ Rout(N ) (170)

where as usual V is the set of nodes i where Xi �= ∅. In other
words, the outer bound is continuous with respect to the
capacity of the extra edge; that is, the outer bound satisfies
a weak edge removal property. Then, applying Lemma 13,
we immediately find

⋃

�n :− log(1−�n)=o(n)

C(N , (�n)n) ⊆ Rout(N ). (171)

This suggests that the outer bound holds in an exponentially
strong sense; that is, for any rate vector outside Rout(N ),
the probability of error approaches 1 exponentially fast.

An outer bound may also satisfy a strong edge removal
property, meaning that for some constant K and any δ,

C(N , 0+, (δn)n) ⊆ Rout(N )+ [0, K δ]. (172)

We have no equivalence between the strong edge removal
property and the extremely strong converse for general noisy
networks, but we do for deterministic networks. Thus, apply-
ing Lemma 9, if a deterministic network satisfies (172), then
the outer bound holds in an extremely strong sense; that is,
for any rate vector outside Rout(N ), the probability of error
approaches 1 at an exponential rate linear in the distance to
the outer bound.

For many outer bounds (indeed, almost every computable
outer bound that we know of), (170) can be proved without
much difficulty, and in some cases the stronger statement (172)
can be proved as well. This implies that most outer bounds for
discrete memoryless networks hold in an exponentially strong
sense, and many outer bounds for deterministic networks hold
in an extremely strong sense. We illustrate this for several
outer bounds (or weak converse arguments) in the next few
subsections.

B. Cut-Set Bound

Recall that the cut-set outer bound [38] is given by
C(N , 0+) ⊆ Rcut-set(N ) where

Rcut-set(N ) =
⋃

PX1,...,Xd

{
R :

∑

i∈S :
Di∩Sc �=∅

Ri ≤ I (XS ; YSc |XSc)

for all S ⊆ [1 : d]
}
. (173)

In the following, we prove (172) for this bound. This allows
us to reproduce the result of [21], that the cut-set bound holds
in an exponentially strong sense: that is, for any rate vector
outside Rcut-set(N ), the probability of error goes to 1 exponen-
tially fast. This further implies that any network with a tight
cut-set bound (i.e., where C(N , 0+) = Rcut-set(N )) satisfies
the exponentially strong converse. Furthermore, we conclude
that for deterministic networks, the cut-set bound holds in an
extremely strong sense.

Fix some sequence (kn)n , and let R ∈ C(N , 0+, (kn)n).
Consider a code achieving this rate vector, and let Zt be the
symbol sent along edge (a, b) at time t , or ∅ if there is no
symbol at time t . Note H (Zn) ≤ kn . Fix any cut set S ⊆
[1 : d], and let Sc = [1 : d] \ S. Also let T be the set of
message flows that cross the cut; that is, the set of i ∈ S
where Di ∩ Sc �= ∅. We may write

∑

i∈T
Ri

= H (MT ) (174)

≤ I (MT ; Y n
Sc , Zn)+ n�n (175)

=
n∑

t=1

I (MT ; YSc,t , Zt |Y t−1
Sc , Zt−1)+ n�n (176)

=
n∑

t=1

I (MT ; YSc,t , Zt |Y t−1
Sc , Zt−1, XSc,t )+ n�n (177)

≤
n∑

t=1

I (MT ,Y t−1
Sc , XS,t ; YSc,t , Zt |Zt−1, XSc,t )+ n�n

(178)

≤
n∑

t=1

[
I (MT ,Y t−1

Sc , XS,t ; YSc,t |Zt−1, XSc,t )

+ H (Zt |Zt−1)
]+ n�n (179)

≤
n∑

t=1

I (XS,t ; YSc,t |XSc,t )+ H (Zn)+ n�n (180)

≤ nI (XS ; YSc |XSc , Q)+ kn + n�n (181)

≤ nI (XS ; YSc |XSc)+ kn + n�n (182)

where (175) follows from Fano’s inequality, where �n → 0 as
n → ∞; (177) follows since XSc,t is a function of Y t−1

Sc and
Zt−1; (180) follows from the memorylessness and causality
of the network model; and (181) follows by defining Q ∼
Unif[1 : n], Xi = Xi,Q , and Yi = Yi,Q , and by the fact that
H (Zn) ≤ kn . Recalling that �n → 0, we have

CV (N , 0+, (kn)n) ⊆ Rcut-set(N )+
[

0, lim
n→∞

kn

n

]d

. (183)
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In particular, (172) holds with K = 1. This in turn
implies (170). Therefore, for discrete memoryless stationary
networks, the cut-set bound holds in an exponentially strong
sense, and for deterministic networks, the cut-set bound holds
in an extremely strong sense.

These facts allow us to immediately derive strong converse
results for various problems for which the cut-set bound is
tight. For example:

1) since the cut-set bound is tight for relay channels
that are degraded, reversely degraded [36], or semi-
deterministic [39], the exponentially strong converse
holds.

2) since the cut-set bound is tight for linear finite-field
deterministic multicast networks [40], the extremely
strong converse holds.

C. Broadcast Channel

A broadcast channel is a network where Y1 = ∅, Xi = ∅
for all i > 1, and we allow multiple messages to originate at
node 1, each to be decoded at a subset of nodes in [2 : d].
Note that this model includes scenarios where there are private
messages, public messages, and/or messages intended for
some decoders but not all. We claim that the weak edge
removal property and the exponentially strong converse hold
for discrete memoryless broadcast channels. Indeed, the V set
in Theorem 10 is simply {1}. Thus, for any sequence (kn)n
(whether or not it is o(n)), C{1}(N , 0+, (kn)n) = C(N , 0+),
simply because if the extra nodes a and b can only commu-
nicate with node 1, then any processing done at nodes a and
b can simply be reproduced internally at node 1. Theorem 10
immediately proves the claim.

For degraded broadcast channels, the strong converse was
proved in [32], and the exponentially strong converse in [41].
However, since the capacity of the broadcast channel in
general is unknown, strong converses for general broadcast
channels have received little attention. As far as we know,
this is the first strong (or exponentially strong) converse that
has been proved for a problem for which the capacity region
has no known single-letter characterization. In [42], a strong
converse was established for a common randomness gener-
ation problem for which a single-letter characterization was
established in [43]; this strong converse generalizes to non-
discrete alphabets, including sources where the single-letter
characterization has no known computable characterization,
because of an auxiliary random variable. Both the result
of [42] and our result on the broadcast channel are exam-
ples of strong converses for problems with no known com-
putable rate region. The simplicity of the above proof on the
broadcast channel, once we have Theorem 10, is particularly
noteworthy.

D. Discrete 2-User Interference Channel With
Strong Interference

A 2-user interference channel, illustrated in Fig. 4, is a
network with 4 nodes, where Y1 = Y2 = X3 = X4 = ∅,
D1 = {3}, and D2 = {4}. Note that, to be consistent with the
notation in the rest of the paper, the received symbol by the

Fig. 4. The 2-user interference channel.

node decoding the first message is Y3, rather than Y1, as it is
typically denoted.

Recall that an interference channel has strong
interference [44] if

I (X1; Y3|X2) ≤ I (X1; Y4|X2), (184)

I (X2; Y4|X1) ≤ I (X2; Y3|X1) (185)

for all PX1(x1)PX2(x2). The capacity region of the interference
channel in this regime was found in [45] to be the set of rate
pairs (R1, R2) such that

R1 ≤ I (X1; Y3|X2, Q), (186)

R2 ≤ I (X2; Y4|X1, Q), (187)

R1+ R2 ≤ min{I (X1, X2; Y3|Q), I (X1, X2,Y4|Q)} (188)

for some PQ(q)PX1|Q(x1|q)PX2|Q(x2|q) with |Q| ≤ 4.
The following proposition establishes the exponentially

strong converse under strong interference. The strong converse
for the interference channel with very strong interference
(in addition to fixed-error second-order results) was derived
in [46]. The strong converse for the Gaussian interference
channel with strong interference was proved in [47].

Proposition 15: For an interference channel with strong
interference, weak edge removal and the exponentially strong
converse hold.

Proof: Note that the only nodes i in an interference
channel where Xi �= ∅ are the encoder nodes, i.e., nodes 1
and 2. Thus, by Theorem 10, to prove the proposition it is
enough to show that for any kn = o(n), C{1,2}(N , 0+, (kn)n) ⊆
C(N , 0+), where C(N , 0+) is the region defined
in (186)–(188).

We claim that an interference channel with strong inter-
ference also satisfies (184)–(185) for any joint distribution
PX1,X2 , even when X1, X2 are not independent. Consider any
joint distribution PX1,X2 . For fixed x2, define X̃1, X̃2 where
X̃1 ∼ PX1|X2=x2 and X̃2 = x2 deterministically. Since X̃2 is
deterministic, X̃1 and X̃2 are trivially independent, so by (184)
we have

I (X̃1; Ỹ3|X̃2) ≤ I (X̃1; Ỹ4|X̃2) (189)

where Ỹ3, Ỹ4 represent the outputs of the channel with X̃1, X̃2
as inputs. Note that PX̃1,Ỹ3,Ỹ4

= PX1,X3,Y4|X2=x2 . Thus

I (X̃1; Ỹ3|X̃2) = I (X1; Y3|X2 = x2) and I (X̃1; Ỹ4|X̃2) =
I (X1; Y4|X2 = x2), so by (189)

I (X1; Y3|X2 = x2) ≤ I (X1; Y4|X2 = x2). (190)

Since (190) holds for any x2, we have

I (X1; Y3|X2) =
∑

x2

PX2(x2)I (X1; Y3|X2 = x2) (191)



KOSUT AND KLIEWER: STRONG CONVERSES ARE JUST EDGE REMOVAL PROPERTIES 3331

≤
∑

x2

PX2(x2)I (X1; Y4|X2 = x2) (192)

= I (X1; Y4|X2). (193)

Similar reasoning establishes (185) for any PX1,X2 . This
proves the claim.

Now, by the same proof as the lemma in [45] for the
independent case, for any PXn

1 ,X
n
2
,

I (Xn
1 ; Y n

3 |Xn
2 ) ≤ I (Xn

1 ; Y n
4 |Xn

2 ), (194)

I (Xn
2 ; Y n

4 |Xn
1 ) ≤ I (Xn

2 ; Y n
3 |Xn

1 ) (195)

where

PY n
1 ,Y

n
2 |Xn

1 ,X
n
2
(yn

1 , yn
2 |xn

1 , xn
2 )

=
n∏

t=1

PY1,Y2|X1,X2(y1,t , y2,t |x1,t , x2,t ). (196)

Consider (R1, R2) ∈ C{1,2}(N , 0+, (kn)n) where kn = o(n).
Thus, there exists a sequence of codes with rates (R1, R2),
with vanishing probability of error, on the modified network
with an extra edge carrying kn bits as a function of the
blocklength n. Given a code of blocklength n, let Zt be the
signal sent on the edge (a, b) at time t ∈ [1 : n]. Note that,
since kn = o(n), for most values of t ∈ [1 : n], no bit
is transmitted across (a, b) at time t (cf. the transmission
schedule in (20)); for these t we simply take Zt to be null.
Certainly H (Zn) ≤ kn . Since for j = 1, 2, Xn

j is a function
of message W j and Zn , we have

I (Xn
1 ; Xn

2 |Zn) ≤ I (W1; W2|Zn) (197)

≤ I (W1; W2, Zn) (198)

= I (W1; W2)+ I (W1; Zn|W2) (199)

≤ H (Zn) (200)

≤ kn (201)

where (200) follows since the messages are assumed to be
independent. Since node a only has access to W1,W2, we have
the Markov chain

(W1,W2, Zn) → (Xn
1 , Xn

2 ) → (Y n
3 ,Y n

4 ). (202)

We now write

n R1 = H (W1|W2) (203)

= I (W1; Y n
3 , Zn |W2)+ H (W1|Y n

3 ,W2, Zn) (204)

≤ I (W1; Y n
3 |W2, Zn)+ kn + n�n (205)

≤ I (W1,W2, Xn
1 ; Y n

3 |Xn
2 , Zn)+ kn + n�n (206)

≤ I (Xn
1 ; Y n

3 |Xn
2 , Zn)+ kn + n�n (207)

where in (205) we have used the fact that H (Zn) ≤ kn , and
Fano’s inequality, where �n → 0 as n → ∞, and (207) holds
by the Markov chain in (202). Similarly

n R2 ≤ nI (Xn
2 ; Y n

4 |Xn
1 , Zn)+ kn + n�n . (208)

We also have

n R1 = H (W1) (209)

≤ I (W1; Y n
3 , Zn)+ n�n (210)

≤ I (W1; Y n
3 |Zn)+ kn + n�n (211)

≤ I (W1, Xn
1 ; Y n

3 |Zn)+ kn + n�n (212)

= I (Xn
1 ; Y n

3 |Zn)+ I (W1; Y n
3 |Xn

1 , Zn)+ kn + n�n (213)

≤ I (Xn
1 ; Y n

3 |Zn)+ I (W1; Y n
3 , Xn

2 |Xn
1 , Zn)+ kn + n�n

(214)

= I (Xn
1 ; Y n

3 |Zn)+ I (W1; Xn
2 |Xn

1 , Zn)+ kn + n�n (215)

≤ I (Xn
1 ; Y n

3 |Zn)+ I (W1; W2|Zn)+ kn + n�n (216)

≤ I (Xn
1 ; Y n

3 |Zn)+ 2kn + n�n (217)

where in (215) we have again used the Markov chain in (202).
Combining (208) with (217) gives

n(R1 + R2)

≤ I (Xn
1 ; Y n

3 |Zn)+ I (Xn
2 ; Y n

4 |Zn, Xn
1 )+ 3kn+ n2�n (218)

≤ I (Xn
1 ; Y n

3 |Zn)+ I (Xn
2 ; Y n

3 |Zn, Xn
1 )+ 3kn+ n2�n (219)

= I (Xn
1 , Xn

2 ; Y n
3 |Zn)+ 3kn + n2�n (220)

where (219) follows from (195). We may also repeat this
argument to find (220) with Y3 replaced by Y4. To summarize,

n R1 ≤ I (Xn
1 ; Y n

3 |Xn
2 , Zn)+ kn + n�n, (221)

n R2 ≤ I (Xn
2 ; Y n

4 |Xn
1 , Zn)+ kn + n�n, (222)

n(R1 + R2) ≤ min{I (Xn
1 , Xn

2 ; Y n
3 |Zn),

I (Xn
1 , Xn

2 ; Y n
4 |Zn)} + 3kn + n2�n, (223)

kn ≥ I (Xn
1 ; Xn

2 |Zn). (224)

One can see that this is precisely the region for the interference
channel when both messages are required to be decoded at
both decoders, except that we have close-to-independence
instead of exact independence. The difficulty with
condition (224) is not just that Xn

1 , Xn
2 are not perfectly

independent, but that the dependence between individual
letters X1,t , X2,t may vary depending on t . The method
of Dueck in [48] (also similar to Ahlswede’s “wringing”
technique [49]) allows us to show that for most t ∈ [1 : n],
the letters X1,t , X2,t are nearly independent. This will allow
single-letterization of the region in (221)–(224). In particular,
there exist some m ≤ √

nkn and t1, . . . , tm ∈ [1 : n], where
for all t ∈ [1 : n]

I (X1,t ; X2,t |Q
) ≤
√

kn

n
(225)

where

Q
 = (Zn, X1,t1, . . . , X1,tm , X2,t1, . . . , X2,tm ). (226)

We reproduce the essential proof of this fact from [48] as
follows. First, let

T1 =
{

t ∈ [1 : n] : I (X1,t ; X2,t |Zn) >

√
kn

n

}
(227)

If T1 is empty, then we may take m = 0 and we are done.
Otherwise, let t1 be any element of T1. We may write

I (Xn
1 ; Xn

2 |Zn, X1,t1, X2,t1)

= I (Xn
1 ; Xn

2 |Zn)− I (Xn
1 ; X2,t1|Zn)

− I (X1,t1; Xn
2 |Zn, X2,t1) (228)
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≤ I (Xn
1 ; Xn

2 |Zn)− I (X1,t1; X2,t1|Zn) (229)

≤ kn −
√

kn

n
(230)

where (230) follows from (224) and the fact that t1 ∈ T1 as
defined in (227). Next, let

T2 =
{

t ∈ [1 : n] : I (X1,t ; X2,t |Zn, X1,t1, X2,t1) >

√
kn

n

}
.

(231)

If T2 is empty, then we may take m = 1 and again we are
done. Otherwise, take t2 to be any element of T2, and proceed
as above. This process must terminate after a finite number
(say m) of steps, at which point (225) must hold for all t .
By a similar argument as in (228)–(230), for each i ∈ [1 : m]
I (Xn

1 ; Xn
2 |Zn, X1,t1, . . . , X1,ti , X2,t1, . . . , X2,ti )

≤ kn − i

√
kn

n
(232)

and in particular

I (Xn
1 ; Xn

2 |Q
) ≤ kn − m

√
kn

n
. (233)

Since the mutual information is nonnegative, we have
m ≤ √

nkn .
We now have

I (Xn
1 ; Y n

3 |Xn
2 , Zn)

≤ I (Xn
1 ; Y n

3 |Xn
2 , Q
)

+ H (X1,t1, . . . , X1,tm , X2,t1, . . . , X2,tm ) (234)

≤ I (Xn
1 ; Y n

3 |Xn
2 , Q
)+ m log |X1| · |X2| (235)

≤ I (Xn
1 ; Y n

3 |Xn
2 , Q
)+√

nkn log |X1| · |X2| (236)

=
n∑

t=1

I (Xn
1 ; Y3,t |Y t−1

3 , Xn
2 , Q
)+ n

√
nkn log |X1| · |X2|

(237)

≤
n∑

t=1

I (X1t ; Y3,t |X2,t , Q
)+ n
√

nkn log |X1| · |X2| (238)

= nI (X1; Y3|X2, Q) + n
√

nkn log |X1| · |X2| (239)

where

Q

 ∼ Unif[1 : n], Q = (Q
, Q

), (240)

X1 = X1,Q 

, X2 = X2,Q 

, (241)

Y3 = Y3,Q 

, Y4 = Y4,Q 

 . (242)

Applying (221), and performing similar analyses
for (222)–(223), combined with (225), we have

R1 ≤ I (X1; Y3|X2, Q)+ kn

n
+ �n

+
√

kn

n
log |X1| · |X2|, (243)

R2 ≤ I (X2; Y4|X1, Q)+ kn

n
+ �n

+
√

kn

n
log |X1| · |X2|, (244)

R1 + R2 ≤ min{I (X1, X2; Y3|Q), I (X1, X2,Y4|Q)}
+ 3kn

n
+ 2�n +

√
kn

n
log |X1| · |X2|, (245)

√
kn

n
≥ I (X1; X2|Q). (246)

Using standard tools to bound the cardinality of auxiliary
random variables (e.g., [29, Appendix C]), for each n, there
exists a joint distribution P(n)Q X1 X2

with |Q| ≤ 5 that preserves
the value of each mutual information quantity in (243)–(246).
Recall that we started with a different code for each block-
length n, so the above procedure results in a different joint
distribution P(n)Q X1 X2

for each n. This constitutes a sequence
of joint distributions on a compact set, so there exists a
convergent subsequence, with limit PQ X1 X2 . Since kn = o(n),
�n → 0, and mutual information is continuous for fixed
alphabets, this limiting distribution must satisfy (186)–(188);
moreover, in the limit (246) implies that I (X1; X2|Q) = 0,
we may factor the joint distribution as PQ PX1|Q PX2|Q . Finally,
we may further reduce the cardinality of the auxiliary random
variable in (186)–(188) to |Q| ≤ 4.

VIII. CONCLUSIONS

This paper explored the relationship between edge removal
properties and strong converses. Our main results are summa-
rized in Fig. 1. We found three main levels of properties for
both edge removal and strong converse, and showed that for
a very large class of networks, the strong converse property
implies the corresponding edge removal property. Implications
in the opposite direction hold for deterministic networks and
sometimes for memoryless stationary networks.

Our strongest results are those for the “middle” level
in Fig. 1, connecting the weak edge removal property to
the exponentially strong converse. In particular, we showed
that these properties are equivalent for all discrete memo-
ryless stationary networks. Thus, if an existing weak con-
verse or outer bound can be strengthened to show that it still
holds in the presence of an extra link carrying a sub-linear
number of bits, then the converse or outer bound also holds
in an exponentially strong sense, meaning that for any rate
vector outside the region, the probability of error converges to
1 exponentially fast. It appears that many existing arguments
can be strengthened in this sense with relatively little effort,
thereby proving exponentially strong results. We believe that
this middle level deserves more focus than it has received
so far, because exponentially strong converses and weak
edge removal properties seem to hold for so many problems
(at least under average probability of error). Therefore, one
should always ask whether a given converse proof can be
strengthened in this sense.

Several open problems remain:
1) The most important question is whether edge removal

and strong converse properties hold in general. In par-
ticular, we know of no memoryless stationary network
for which the weak edge removal property or the expo-
nentially strong converse does not hold under average
probability of error. The techniques of Sec. VII seem
to allow one to prove a weak edge removal property
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(and thus an exponentially strong converse) for most
(perhaps all) existing single-letter outer bounds, but there
is no apparent way to do this without an existing single-
letter result. Our observation that the properties hold for
the discrete broadcast channel suggest that it may be
possible to prove such results even for problems without
known single-letter characterizations of the capacity
region, but we know of no other cases for which this
has been done.

2) Many of our results (particularly those showing that
edge removal implies a strong converse) apply only
for discrete channel coding problems; generalizing these
results to continuous systems, channel cost constraints,
source coding contexts, and random channel state would
allow applicability to many other important network
information theory problems.

3) We conjecture that an equivalence holds for discrete
memoryless networks on the “lower layer” in Fig. 1,
between very weak edge removal and the ordinary strong
converse, but we have only been able to prove this
result for deterministic networks and acyclic networks
of independent point-to-point links.

4) Finally, it would be interesting to find a strong converse
property equivalent to the extremely weak edge removal
property.

APPENDIX A
PROOF OF PROPOSITION 1

We will show that C(N , (�n)n) ⊆ C(N , (�̃n)n); the opposite
direction follows by reversing the roles of �n and �̃n . Fix any
rate vector

R ∈
⋃

n0∈N

⋂

n≥n0

R(N , n, �n). (247)

We aim to show that R ∈ C(N , (�̃n)n). There exists n0 ∈ N

such that for all n ≥ n0, R ∈ R(N , n, �n). By the assumption
of the lemma, there exists a subsequence ni such that

lim
i→∞ − 1

ni
log(1 − �ni ) = α. (248)

For sufficiently large i , we have ni ≥ n0, so R ∈
R(N , ni , �ni ). That is, there exists an ni -length code with
rate R and probability of error at most �ni . Fix integer N ,
and form a new code on network N of length ni N and rate
N−2

N R as follows. Roughly, reduce the overall probability of
error by repeating the original code N times, and introduc-
ing a small amount of error correction in the form of an
outer maximum distance separable (MDS) code [50, Ch. 4].
In particular, for each node v ∈ [1 : d] where Rv > 0, form
a (N, N − 2) MDS code on symbols from the finite field of
order 2
ni Rv�. This code exists for sufficiently large i (e.g.,
a Reed-Solomon code [50, Ch. 5]). Let the MDS codeword
be denoted by (Wv (1), . . . ,Wv (N)). Repeat the original code
N times, where on the 
th repetition Wv (
) is treated as the
message originating at node v. Because each outer code is
MDS, one error can be corrected, so if it most one of the
N repetitions results in an error, the full code will decode
correctly. Because the network is memoryless and stationary,

each repetition is independent and results in error with proba-
bility �ni , so the probability of error for the full code is given
by

Pe = 1 − (1 − �ni )
N − N�ni (1 − �ni )

N−1 (249)

= 1 − (1 − �ni )
N−1 [1 − �ni + N�ni

]
. (250)

Note that (248) and the assumption that α > 0 imply that
�ni → 1, meaning 1 − �ni + N�ni → N . Thus

lim
i→∞

1

ni
log(1 − Pe) = lim

i→∞
1

ni

[
(N − 1) log(1 − �ni )+ N

]

(251)

= −(N − 1)α. (252)

In particular, for sufficiently large i , we have

1 − Pe ≥ exp{−ni (N − 1/2)α}. (253)

Hence, for any N and sufficiently large i ,

N − 2

N
R ∈ R(N , ni N, 1 − exp{−ni (N − 1/2)α}). (254)

Consider any blocklength m where ni N ≤ m ≤ ni (N + 1).
We may convert a code with blocklength ni N to one with
blocklength m simply by ignoring the additional m − ni N
symbols. This reduces the rate by a factor of ni N

m ≥ N
N+1 , but

does not change the probability of error. Thus we have

N − 2

N + 1
R ∈ R(N ,m, 1 − exp{−ni (N − 1/2)α}). (255)

By the liminf assumption on �̃n in (13), for sufficiently large m
we have

− 1

m
log(1 − �̃m) ≥ N − 1/2

N
α. (256)

Thus, if m ≥ ni N , we have

�̃m ≥ 1 − exp

{
−m

N − 1/2

N
α

}
(257)

≥ 1 − exp{−ni (N − 1/2)α} (258)

where (257) holds by (256) for sufficiently large i . Hence, for
any N , for all m sufficiently large we have

N − 2

N + 1
R ∈ R(N ,m, �̃m ). (259)

Thus
N − 2

N + 1
R ∈ C(N , (�̃n)n). (260)

Since (260) holds for all N , and C(N , (�̃n)n) is closed,
we have R ∈ C(N , (�̃n)n). Note that both i and N must go to
infinity, but i converges to infinity first for fixed N in (252).

APPENDIX B
PROOF OF PROPOSITION 2

Extremely strong converse ⇔ (1b): By taking γ = Kα,
the extremely strong converse holds if and only if, for any
α ≥ 0,

C(N , (1 − 2−nα)n) ⊆ C(N , 0+)+ [0, Kα]. (261)
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By Proposition 1, C(N , (�n)n) = C(N , (1 − 2−nα)n) if
1−�n

.= 2−nα . This proves that the extremely strong converse
is equivalent to the condition in (1b).

(1a) ⇒ (1b). Consider any �n where 1 − �n
.= 2−nα , and

any R ∈ C(N , (�n)n). If R ∈ C(N , 0+), then obviously R ∈
C(N , 0+) + [0, Kα]d . If R /∈ C(N , 0+), then by condition
(1a) we have α ≥ β/K , and R ∈ C(N , 0+) + [0, β]d . Thus
R ∈ C(N , 0+)+ [0, Kα]d . This proves (1b).

(1b) ⇒ (1a). Consider any R /∈ C(N , 0+), and any sequence
of (R, n) codes with probability of error �n . By Proposition 1,
this implies R ∈ C(N , (1 − 2−nα)n), where

α = lim inf
n→∞ − 1

n
log(1 − �n). (262)

Hence, by condition (1b), R ∈ C(N , 0+) + [0, Kα]d . If β is
the smallest number such that R ∈ C(N , 0+) + [0, β]d , then
we have β ≤ Kα. This proves (17), and hence (1c).

Exponentially strong converse ⇒ (2b). Let �n be a sequence
where − log(1 − �n) = o(n). By the exponentially strong
converse, for any γ > 0 there exists �


n where − log(1−�

n) =

�(n) where (16) holds. For sufficiently large n, − log(1 −
�n) ≤ − log(1 − �


n), meaning �n ≤ �

n . Thus

C(N , (�n)n) ⊆ C(N , (�

n)n) ⊆ C(N , 0+)+ [0, γ ]d . (263)

As this holds for all γ > 0, we have C(N , (�n)n) ⊆ C(N , 0+).
This proves condition (2b).

(2b) ⇒ Exponentially strong converse. Specifically,
we prove that if the exponentially strong converse does not
hold, then condition (2b) does not hold. Suppose there exist
γ > 0 such that for all �n where − log(1 − �n) = �(n),
C(N , (�n)n) �⊆ C(N , 0+) + [0, γ ]d . Specifically, for any
integer r , C(N , (1 − exp{−n/r})n) �⊆ C(N , 0+) + [0, γ ]d .
Since the sets C(N , (1 − exp{−n/r})n) are sorted (decreasing
as r grows), there exists R in the interior of C(N , (1 −
exp{−n/r})n) for all integers r such that R /∈ C(N , 0+). For
all r , there exists n0(r) such that for all n ≥ n0(r),

R ∈ R(N , n, 1 − exp{−n/r}). (264)

Define a sequence

�n = min
r :n≥n0(r)

1 − exp{−n/r}. (265)

Note that − log(1 − �n) ≤ n/r for n ≥ n0(r), so − log(1 −
�n) = o(n). Moreover, for any n, there is some r such that n ≥
n0(r) and �n = 1− exp{−n/r}, so by (264), R ∈ R(N , n, �n)
for all n. Thus R ∈ C(N , (�n)n). But since R /∈ C(N , 0+),
(2b) does not hold.

(2a) ⇒ (2b). By (2a), for any R /∈ C(N , 0+), the probability
of correct decoding must vanish exponentially fast, so R /∈
C(N , (�n)n) for any sequence �n such that − log(1 − �n) =
o(n). Therefore C(N , (�n)n) ⊆ C(N , 0+), which proves (2b).

(2b) ⇒ (2a). For any R /∈ C(N , 0+) and any sequence �n

for which R ∈ C(N , (�n)n), it cannot be that − log(1 − �n) =
o(n), or else by (2b) we would have R ∈ C(N , 0+). Therefore
�n must approach 1 exponentially fast, which proves (2a).

Strong converse ⇒ (3b). Note that the condition in the
definition of the strong converse that − log(1 − �n) → ∞ can
be more simply written as �n → 1. Consider any � ∈ (0, 1).

By the strong converse, for any γ > 0, there exists a sequence
�n → 1 where C(N , (�n)n) ⊆ C(N , 0+) + [0, γ ]d . Noting
that � ≤ �n for sufficiently large n, we have C(N , (�)n) ⊆
C(N , (�n)n) ⊆ C(N , 0+)+[0, γ ]d . As this holds for all γ > 0,
we have C(N , (�)n) = C(N , 0+), which proves (3b).

(3b) ⇒ (3c). By (3b), for any integer r , C(N , (1−1/r)n) =
C(N , 0+). In particular, there exists n0(r) such that for all
n ≥ n0(r),

R
(
N , n, 1 − 1

r

)
⊆ C(N , 0+)+

[
0,

1

r

]d

. (266)

Define a sequence

�n = sup
r :n≥n0(r)

1 − 1

r
. (267)

Certainly �n ≥ 1 − 1/r for n ≥ n0(r), meaning �n → 1.
Moreover, if n, r are such that �n = 1 − 1

r , then

R(N , n, �n) = R
(
N , n, 1 − 1

r

)
(268)

⊆ C(N , 0+)+
[

0,
1

r

]d

(269)

= C(N , 0+)+ [0, 1 − �n]d . (270)

Since 1 − �n → 0, we have

C(N , (�n)n) = C(N , 0+). (271)

This proves (3c).
(3c) ⇒ Strong converse. By (3c), there exists a sequence

�n → 1 where C(N , (�n)n) = C(N , 0+) ⊆ C(N , 0+)+[0, γ ]d

for all γ > 0. This proves the strong converse.
(3c) ⇒ (3a). By (3c), there exists �n → 1 where R /∈

C(N , (�n)n) for any R /∈ C(N , 0+). This implies that any
sequence of (R, n) codes must have probability of error
exceeding �n for sufficiently large n, so the probability of error
must approach 1, which proves (3a).

(3a) ⇒ (3b). For any � ∈ (0, 1), by (3a) any R /∈ C(N , 0+)
has probability of error approaching 1, so R /∈ C(N , (�)n).
Therefore, C(N , (�)n) = C(N , 0+), which proves (3b).

APPENDIX C
PROOF OF PROPOSITION 3

Consider a channel where (19) holds. For any QX,Y , we may
write

D(QY |X �PY |X |QX )

=
∑

x,y

QX,Y (x, y) log
QY |X (y|x)
PY |X (y|x) (272)

=
∑

x,y

QX,Y (x, y)

[
log

QY |X (y|x)
QY (y)

− log
PY |X (y|x)

PY (y)

+ log
QY (y)

PY (y)

]
(273)

= IQ X,Y (X; Y )−
∑

x,y

QX,Y (x, y) log
PY |X (y|x)

PY (y)

+ D(QY �PY ) (274)

≥ IQ X,Y (X; Y )− C (275)
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where (275) follows from (19), and the fact that relative
entropy is non-negative. Thus, we may lower bound α(R) by

α(R) ≥ min
Q X,Y

[
IQ X,Y (X; Y )− C + |R − IQ X,Y (X; Y )|+

]
(276)

≥ R − C (277)

where (277) holds because x + |y − x |+ ≥ y for any real
numbers x, y. This lower bound is achievable by setting
QX,Y = PX × PY |X , where PX is any capacity-achieving input
distribution, so indeed α(R) = R − C .

Now consider a channel where (19) does not hold. That is,
there exists some x0, y0 where

log
PY |X (y0|x0)

PY (y0)
> C. (278)

Let PX be any capacity-achieving input distribution. Thus,
∑

x,y

PX (x)PY |X (y|x) log
PY |X (y|x)

PY (y)
= C. (279)

In particular, there exists some x1, y1 where

log
PY |X (y1|x1)

PY (y1)
≤ C (280)

and PX (x1)PY |X (y1|x1) > 0. For parameter λ ≥ 0, define a
joint distribution Q(λ)

X,Y where

Q(λ)
X,Y (x, y) = PX (x)PY |X (y|x)+ λ1(x = x0, y = y0)

− λ1(x = x1, y = y1). (281)

As long as 0 ≤ λ ≤ PX (x1)PY |X (y1|x1), this is a valid
distribution. If we marginalize out X , we see that

Q(λ)
Y (y) = PY (y)+ λ1(y = y0)− λ1(y = y1). (282)

By [51, Lemma 17.3.3], the first term in the Taylor expansion
for D(Q(λ)

Y �PY ) around λ = 0 is

1

2

∑

y

(Q(λ)
Y (y)− PY (y))2

PY (y)
= λ2

2

(
1

PY (y0)
+ 1

PY (y1)

)
.

(283)

By [52, Sec. 4.5, Corollary 1], PY (y) > 0 for all y that are
reachable from some input symbol. Note that (278) implies
that PY |X (y0|x0)>0, and also by assumption PY |X (y1|x1)>0.
That is, both y0 and y1 are reachable output symbols,
so PY (y0), PY (y1) > 0. Thus in (283) the coefficient on λ2 is
finite, and so

d

dλ
D(Q(λ)

Y �PY )
∣∣∣
λ=0

= 0. (284)

Noting that

∂

∂QXY (x, y)
IQ XY (X; Y ) = log

QY |X (y|x)
QY (y)

− 1 (285)

we have

ζ := d

dλ
I

Q(λ)
X,Y
(X; Y )

∣∣∣
λ=0

(286)

= log
PY |X (y0|x0)

PY (y0)
− log

PY |X (y1|x1)

PY (y1)
(287)

> 0 (288)

where (288) follows from (278) and (280). Applying the
derivation in (272)–(274), we have

d

dλ
D(Q(λ)

Y |X �PY |X |Q(λ)
X )

∣∣∣
λ=0

(289)

= d

dλ

[
I

Q(λ)
X,Y
(X; Y )−

∑

x,y

Q(λ)
X,Y (x, y) log

PY |X (y|x)
PY (y)

+ D(Q(λ)
Y �PY )

]

λ=0

(290)

= 0 (291)

where we have used (284), the definition of ζ in (286), and the
fact that ζ is also the derivative of the second term in (290).
Given λ small enough so that Q(λ)

X,Y is a valid distribution,
we may upper bound

α(C + ζλ) ≤ D(Q(λ)
Y |X �PY |X |Q(λ)

X )+ |C
+ ζλ− I

Q(λ)
X,Y
(X; Y )|+. (292)

Thus,

dα(R)

d R

∣∣∣
R=C

= lim
λ→0

α(C + ζλ)

ζλ
(293)

≤ lim
λ→0

1

ζλ

[
D(Q(λ)

Y |X �PY |X |Q(λ)
Y )

+ |C + ζλ− I
Q(λ)

X,Y
(X; Y )|+

]
(294)

= 1

ζ

d

dλ
D(Q(λ)

Y |X �PY |X |Q(λ)
Y )

∣∣∣
λ=0

+
∣∣∣∣1 − 1

ζ

d

dλ
I

Q(λ)
X,Y
(X; Y )

∣∣∣
λ=0

∣∣∣∣
+

(295)

= 0 (296)

where in (295) we have used the fact that Q(0)
X,Y = PX × PY |X ,

so I
Q(0)

X,Y
(X; Y ) = C; and (296) follows from the definition of

ζ in (286), as well as (291). Note also that this derivation is
valid only because ζ > 0, as shown in (288). Since α(R) is
non-decreasing in R, we must have dα(R)

d R

∣∣
R=C = 0.

APPENDIX D
PROOF OF PROPOSITION 4

Statement 1 follows immediately from the definition of the
strong edge removal property.

We now prove statement 2. Suppose the weak edge removal
property holds. Thus, for any γ > 0, there exists a sequence
kn = �(n) satisfying (24). Let

δ
 = lim inf
n→∞

kn

n
. (297)

Note that δ
, and so for any 0 < δ < δ
, we have δn ≤ kn for
sufficiently large n. Thus

C(N , 0+, (δn)n) ⊆ C(N , 0+, (kn)n) ⊆ C(N , 0+)+ [0, γ ]d .

(298)

Hence, the LHS of (26) is contained in C(N , 0+) + [0, γ ]d .
Since this holds for all γ > 0, this proves (26).

Now we show that (26) implies the weak edge removal
property. For any γ > 0, by (26) there exists δ > 0 such that
C(N , 0+, (δn)n) = C(N , 0+)+[0, γ ]d . Thus, setting kn = δn
satisfies (24). This proves the weak edge removal property.
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To prove that the weak edge removal property is also
equivalent to (27), we will show that

⋃

kn=o(n)

C(N , 0+, (kn)n) =
⋂

δ>0

C(N , 0+, (δn)n). (299)

To show ⊆ in (299), we need to show that for all kn = o(n),
C(N , 0+, (kn)n) is contained in the RHS of (299), or that
C(N , 0+, (kn)n) ⊆ C(N , 0+, (δn)n) for all δ > 0. Indeed this
holds because for any kn = o(n) and any δ > 0, kn ≤ δn for
sufficiently large n. To show ⊇ in (299), let R be in the RHS
of (299). Thus, for all �, δ, γ > 0, for sufficiently large n we
have R ∈ R(N , n, �, nδ)+[0, γ ]d . In particular, for any fixed
integer r , we may let � = δ = γ = 1/r , so there exists n0(r)
such that for all n ≥ n0(r) we have

R ∈ R
(
N , n,

1

r
,

n

r

)
+
[

0,
1

r

]d

. (300)

Let
rn = max{r : n0(r) ≤ n}. (301)

By (300), for any n we have

R ∈ R
(
N , n,

1

rn
,

n

rn

)
+
[

0,
1

rn

]d

. (302)

Letting kn = n
rn

, we may rewrite (302) as

R ∈ R
(
N , n,

kn

n
, kn

)
+
[

0,
kn

n

]d

. (303)

Note that for any integer r , if n ≥ n0(r), then rn ≥ r , so
kn ≤ n/r . Thus kn/n → 0; i.e., kn = o(n). From (303),
we have R ∈ C(N , 0+, (kn)n). This proves ⊇ in (299).

We now prove statement 3. Note that the very weak edge
removal property is equivalent to the statement that for all
γ > 0,

⋂

kn :kn→∞
C(N , 0+, (kn)n) ⊆ C(N , 0+)+ [0, γ ]d . (304)

This is easily seen to be equivalent to (28).
To show that the very weak edge removal property is also

equivalent to (29), we show that

⋂

kn :kn→∞
C(N , 0+, (kn)n) =

⋂

�>0

⋃

k∈N

C(N , (�)n, (k)n). (305)

Noting that
⋂

kn :kn→∞
C(N , 0+, (kn)n)

=
⋂

kn :kn→∞

⋂

�>0

C(N , (�)n, (kn)n) (306)

=
⋂

�>0

⋂

kn :kn→∞
C(N , (�)n, (kn)n) (307)

it is enough to show that for all � > 0,

⋂

kn :kn→∞
C(N , (�)n, (kn)n) =

⋃

k∈N

C(N , (�)n, (k)n). (308)

For any k ∈ N and any sequence kn → ∞, k ≤ kn for
sufficiently large n. Thus

⋂

kn :kn→∞
C(N , (�)n, (kn)n) ⊇

⋃

k∈N

C(N , (�)n, (k)n). (309)

Taking a closure yields ⊇ in (308), since the LHS of (308)
is already closed. To prove the opposite direction, let γk be a
positive sequence where limk→∞ γk → 0. For fixed � ∈ (0, 1)
and k ∈ N, by the definition of C(N , (�)n, (k)n) in (21), there
exists n0(k) such that for all n ≥ n0(k), we have

R(N , n, �, k) ⊆ C(N , (�)n, (k)n)+ [0, γk]d . (310)

Now define a sequence

kn = max{k : n ≥ n0(k)}. (311)

Note that for any k ∈ N, kn ≥ k for all n ≥ n0(k), so kn → ∞
as n → ∞, because for any k, kn ≥ k for all n ≥ n0(k). Thus
the LHS of (308) is contained in C(N , (�)n, (kn)n). Moreover

C(N , (�)n, (kn)n)

=
⋃

n0∈N

⋂

n
≥n0

R(N , n
, �, kn
 ) (312)

⊆
⋃

n0∈N

⋂

n
≥n0

(
C(N , (�)n, (kn
)n)+ γkn


)
(313)

=
⋃

n0∈N

⋂

n
≥n0

C(N , (�)n, (kn
)n) (314)

⊆
⋃

k∈N

C(N , (�)n, (k)n) (315)

where (312) holds by definition, (313) follows from (310),
(314) holds because γk → 0, and (315) holds because for any
n
, kn
 is some integer. This proves ⊆ in (308).

We now prove statement 4. The definition of the extremely
weak edge removal property may be equivalently written

⋃

bounded kn

C(N , 0+, (kn)n) ⊆
⋂

γ>0

C(N , 0+)+ [0, γ ]d . (316)

Note that for any bounded kn ,

C(N , 0+, (kn)n) ⊆ C(N , 0+, (k)n) (317)

for some constant integer k. Thus the LHS (316) can be written
⋃

k∈N

C(N , 0+, (k)n). (318)

Moreover, the RHS of (316) is simply C(N , 0+). There-
fore the extremely weak edge removal property is equivalent
to (30).

APPENDIX E
PROOF OF THEOREM 14

A significant technical tool in proving network equivalence
(cf. see the discussion in Sec. VI, and the original result
in [35]) is the idea of channel simulation, in which a point-
to-point channel is accurately simulated by any other with
higher capacity. This idea was at the heart of the proof in [35].
A version of this idea was stated in [53] as the universal
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channel simulation lemma, stated as follows. This lemma
states that two nodes with shared randomness (represented
by U ) can use a noiseless link to accurately simulate a noisy
channel, as long as the capacity of the noiseless link is greater
than the capacity of the noisy channel. While [53] did not
provide a proof, we presented a proof in the appendix of [54].

Lemma 16: Let (X , QY |X ,Y) be a discrete memoryless
channel with capacity C . Given a rate R > C , a channel
simulation code ( f, g) consists of

• f : X n × [0, 1] → {0, 1}nR ,
• g : {0, 1}nR × [0, 1] → Yn .

Let PY n |Xn be the conditional pmf of Y n given Xn where
U ∼ Unif[0, 1] and

Y n = g( f (Xn ,U),U). (319)

There exists a sequence of length-n simulation codes where

lim
n→∞ max

xn
dTV(PY n |Xn=xn , QY n |Xn=xn ) = 0. (320)

We now proceed to prove Theorem 14. By Theorem 5,
we only need to show that the very weak edge removal
property implies the ordinary strong converse. The basic
approach is to use network equivalence to convert a code for
noisy network N into a code on the noiseless version, then
apply Lemma 9 on this noiseless network, and then again use
network equivalence to convert back to the noisy network.

Let E ⊂ [1 : d] × [1 : d] be the set of pairs
of nodes connected by point-to-point links. Recall that by
assumption, the directed graph ([1 : d], E) is acyclic. Thus,
by [55, Propostion 19.1] we may assign each node i a distinct
integer πi ∈ [1 : d] where πi < π j if (i, j) ∈ E . For any
(i, j) ∈ E , let Ci→ j be the capacity of the link from i to
j . Assume without loss of generality that Ci→ j > 0 for
all (i, j) ∈ E . Let Cmin = min(i, j )∈E Ci→ j , so in particular
Cmin > 0. Denote Xi→ j and Yi→ j as the input and output
respectively of the link (i, j). Thus the transmitted symbol
from node i can be written

Xi = (Xi→ j : (i, j) ∈ E) (321)

and the received symbol at node j can be written

Y j = (Yi→ j : (i, j) ∈ E). (322)

Let R be achievable with respect to fixed � ∈ (0, 1). Thus,
for sufficiently large n, there exists a length-n code for network
N with rate R and probability of error �. By (9)–(10), this code
is defined by encoding functions φit for each node i ∈ [1 : d]
and time t ∈ [1 : n], and decoding functions ψi for each node
i ∈ [1 : d]. It will be useful to work with coding functions on
n-length blocks rather than single time instances, so we define
the block-wise encoding function at node i

φn
i : [1 : 2nRi ] × Yn

i → X n
i (323)

as

φn
i (wi , yn

i ) = (φi1(wi ), φi2(wi , yi1), . . . , φin(wi , yn−1
i )).

(324)

Using the notation in (322), we may notate the arguments to
this function as

φn
i (wi , yn

k→i : (k, i) ∈ E). (325)

Due to the network being acyclic, we may form a pipelined
block-Markov version of this code as follows. Given integer N ,
we form a code with length n(N + d) and rate N

N+d R. The
outer blocklength N serves a similar function as it did for
network stacking, but here it represents the number of message
blocks transmitted subsequently, rather than the number of
stacks. Note that message i consists of Nn Ri bits, which
we denote Wi (1), . . . ,Wi (N), each consisting of n Ri bits.
We then pipeline N copies of the original code, encoding n-
length blocks at a time. In particular, we introduce notation

Xn(N+d)
j = (Xn

j (1), . . . , Xn
j (N + d)), (326)

Y n(N+d)
i→ j = (Y n

i→ j (1), . . . ,Y n
i→ j (N + d)). (327)

Now, we define the coding operations at node j by, for
all 
 ∈ [1 : N],

Xn
j (
+ π j ) = φn

j (W j (
),Y n
i→ j (
+ πi ) : (i, j) ∈ E). (328)

Recall that if (i, j) ∈ E , then πi < π j , meaning that the
arguments of φn

j in (328) are causally available. Note that
(328) does not specify all channel inputs, namely Xn

j (


) for



 ∈ [1 : π j ] ∪ [N + π j + 1 : N + d]; these channel inputs
can be arbitrary, as the corresponding channel outputs will be
ignored. To decode at node i , for all 
 ∈ [1 : N] let

(Ŵ j i (
) : i ∈ D j ) = ψi (Wi (
),Y n
k→i (
+ πk) : (k, i) ∈ E).

(329)

Observe that the variables associated with a given index 
 ∈
[1 : N] associate only with themselves, and behave exactly
like the original n-length code. Thus, an error occurs on this
pipelined code if and only if any of the N copies make an
error, so the probability of error is

1 − (1 − �)N . (330)

Thus we have

N

N + d
R ∈ R(N , n(N + d), 1 − (1 − �)N ). (331)

Note that in this pipelined code, encoding operations are
performed on n-length blocks at a time. Thus, the pipelined
code on N can be converted to one on a deterministic
network using channel simulation codes. In particular, fix
� ∈ (0,Cmin) and let N̄� be the network of noiseless links
where link (i, j) is replaced by a noiseless link with capacity
Ci→ j + �. By Lemma 16, for each link (i, j) there exists a
channel simulation code for link (i, j) of rate Ci→ j +� and
total variational distance at most d(i→ j )

n , where d(i→ j )
n → 0

as n → ∞. For each link (i, j) ∈ E , we use N copies of the
associated channel simulation code to simulate the behavior of
link (i, j) in network N using the corresponding link on N̄�.
We analyze the impact on the overall probability of error
from replacing these noisy channels by channel simulation
codes as follows. Let PX,Y,W,Ŵ by the joint distribution
of all channel inputs X, channel outputs Y, messages W,
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and message estimates Ŵ for the pipelined code on noisy
network N . Similarly, let QX,Y,W,Ŵ be the joint distribution
of the same random variables on the code on noiseless network
N̄� constructed out of channel simulation codes. Note that in
the latter, X and Y are not real channel inputs and outputs, but
rather simulated inputs and outputs that feed into the channel
simulation codes, used to simulate noisy links with noiseless
links. Since each channel simulation code used on an n-length
block for link (i, j) results in total variational distance at
most d(i→ j )

n , we may bound

dTV(PX,Y,W,Ŵ, QX,Y,W,Ŵ) ≤
∑

(i, j )∈E
Nd(i→ j )

n . (332)

The probability of error for the code on the noiseless network
N̄� differs from that on the original noisy network by at most
the quantity in (332). Because total variational distance is an
upper bound on the difference in the probability of any event
between the two distributions, the probability of error of the
resulting code on N̄� is at most

1 − (1 − �)N +
∑

(i, j )∈E
Nd(i→ j )

n ≤ 1 − 1

2
(1 − �)N (333)

where the inequality holds for sufficiently large n, since each
sequence d(i→ j )

n vanishes with n. Recall that the channel
simulation codes described in Lemma 16 employ common
randomness U between the transmitter and receiver of each
link. Thus, a direct application of Lemma 16 implies only the
existence of a code achieving the probability in (333) if nodes
are allowed common randomness. However, we may treat this
common randomness as a randomized codebook, and employ
a usual random coding argument to show that there exists
at least one deterministic code achieving (333). Hence, for
sufficiently large n,

N

N + d
R ∈ R

(
N̄�, n(N + d), 1 − 1

2
(1 − �)N

)
. (334)

We now apply Lemma 9 on N̄�, to find that for any �̃ > 0
and for sufficiently large n, we have

N

N + d
R ∈R(N̄�, n(N +d), �̃, η(�̃, d)−3d N log(1−�)+3d)

(335)

where η(�̃, d) is defined in (46).
Let N̄−� be the noiseless network where each link (i, j) is

replaced by a noiseless one with capacity Ci→ j −�. By the
assumption that � < Cmin, we always have Ci→ j − � > 0.
We may convert the code on N̄� to one on N̄−� by stretching
each block of n to one of length

n
 = Cmin +�

Cmin −�
n. (336)

Thus

N

N + d
· Cmin −�

Cmin +�
R ∈ R(N̄−�, n
(N + d), �̃, η(�̃, d)

− 3d N log(1 − �)+ 3d). (337)

Now we use ordinary noisy channel codes to convert this code
back to one on N , again one block (now of length n
) at a

time. For any N and sufficiently large n, the probability of an
error occurring on any of these channel codes can be made at
most �̃. Thus we have

N

N + d
· Cmin −�

Cmin +�
R ∈ R(N , n
(N + d), 2�̃, η(�̃, d)

− 3d N log(1 − �)+ 3d). (338)

As the above holds for any �̃ > 0, we may write

N

N + d
· Cmin −�

Cmin +�
R

∈
⋂

�̃>0

C(N , (2�̃)n, (η(�̃, d)− 3d N log(1−�)+ 3d)n) (339)

⊆
⋂

�̃>0

⋃

k∈N

C(N , (�̃)n, (k)n). (340)

Since we may take N to be arbitrarily large, and � arbitrarily
small, and we chose R to be any achievable vector with respect
to �, by closure we have

C(N , (�)n) ⊆
⋂

�̃>0

⋃

k∈N

C(N , (�̃)n, (k)n). (341)

By the equivalent form of the very weak edge removal property
in (29) of Proposition 4, if very weak edge removal holds, then
the RHS of (341) equals C(N , 0+), so the strong converse
holds.
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