IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 4, APRIL 1998 941

Oversampled Cosine-Modulated Filter
Banks with Arbitrary System Delay

Jorg Kliewer, Student Member, IEEEand Alfred Mertins,Member, IEEE

Abstract—In this paper, design methods for perfect recon- linear filtering by introducing gain factors in the subbands,
struction (PR) oversampled cosine-modulated filter banks with  critical subsampling is not useful. This is due to the fact that
integer oversampling factors and arbitrary delay are presented. pe main aliasing spectra will no longer cancel in the synthesis

The system delay, which is an important parameter in real- . . g .
time applications, can be chosen independently of the prototype filter bank when the subband signals are modified. These main

lengths. Oversampling gives us additional freedom in the filter @liasing components are not present in the oversampled case,
design process, which can be exploited to find FIR PR prototypes M > N, with sufficiently high oversampling.

for oversampled filter banks with much higher stopband atten- Recently, perfect reconstruction (PR) conditions for over-
uations than for critically subsampled filter banks. It is shown sampled DFT filter banks have been derived, and general
that for a given analysis prototype, the PR synthesis prototype . . :

is not unique. The complete set of solutions is discussed in termsrelatIons b(?tweer'l oversampled filter banks and frame theory
of the nullspace of a matrix operator. For example, oversampling have been investigated [10]-[13]. Due to the modulated nature
allows the design of PR filter banks having unidentical prototypes of DFT and cosine-modulated filter banks, the requirements
(of equal and unequal lengths) for the analysis and synthesis on the prototypes are somewhat related. As will be shown for
stage. Examples demonstrate the increased design freedom due[he biorthogonal case, all PR prototypes for cosine-modulated

to oversampling. Finally, it is shown that PR prototypes being .. . . .
designed for the oversampled case can also serve as almost]fllter banks also give PR in DFT banks. The opposite does not

PR prototypes for critically subsampled cosine-modulated pseudo hold for all PR DFT prototypes.
QMF banks. This paper is organized as follows. In Section Il, we

present the polyphase representation for general (biorthogonal)
oversampled filter banks and show how the polyphase matrices
in the oversampled case with integer oversampling factors can
OVERSAMPLED filter banks have their applications inye optained from the critically subsampled version. Section
those areas of signal processing where one is interesfgdgerives general PR conditions for biorthogonal cosine-
in making modifications to signals in certain frequency bandg;odulated filter banks with integer oversampling rates and
Examples are the simulation of room acoustics by filteringrpitrary overall system delays. We show that by solving the
in subbands, noise reduction in the spectral domain, apg conditions in the oversampled case, we gain additional
equalization via fixed or dynamic (i.e. time-varying) filterinqjesign freedom. The well-known critically subsampled case
of subband signals. In this paper, we develop PR conditioggq the paraunitary oversampled case are regarded as special
for oversampled cosine-modulated filter banks with arbitragg|ytions of our general approach. Finally, relations between
system delay. Especially in real-time applications when theggersampled cosine-modulated and DFT filterbanks will be
is some feedback involved (i.e., echo cancelation for mobifgscussed. In Section IV, we establish the connection to
phones or hearing aids), it is extremely important that thgseudo QMF filter banks and show that PR solutions in the
overall system delay is as low as possible. oversampled case have a partial aliasing cancelation property
Cosine-modulated filter banks are a special subclass of {jgen applied to a critically subsampled filter bank. Section V
general M-channel filter bank depicted in Fig. 1, where thegfers to the prototype design, where examples are given.
analysis and synthesis filtel(z) and Fy(z) are derived  Notation: Boldface letters indicate vectors and matrices.
from prototypesp(n) and q(n), respectively, by cosine mod-Gjven a matrix 4, its transpose is denoted at" and its
ulation. Previous work on PR cosine-modulated filter bank$ermitian or transpose-conjugate b4, respectively. The
[1]-[9] has always addressed the critically subsampled caggie on a (matrix-) functionB(z) is defined asBT(z~1),
(M = N in Fig. 1). This case is very attractive for subbanghere « denotes complex conjugation of the polynomial
coding because it leads to a minimum number of subbapgefficients inB(z). The matriced andJ, stand forQ x Q
coefficients. However, if we simply want to implement SOMRjentity and reverse identity matrices, respectively.

I. INTRODUCTION
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Fig. 1. General analysis and synthesis filter bank with subband processing.
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Fig. 2.

matrix E(X)(z) of size M x N in Fig. 2 is defined as

E(L)(z)
Hy o(2) Hy1(2) Hon_1(2)
_ Hi o(2) Hi1(2) Hin_1(2)
Hy—10(2) Hy—11(2) Hy—1,nv-1(%)

(1)

whereHy, ;(z),j=0,1,---,N —
components of théth analysis fllterhk( )

Hy (2 Z hi(EN +5)z~"

I=—0c0

k=0,---,M—1, j=0,---,N—1.

The synthesis polyphase matrR(L)(z) of size N x M is
defined as

EM—l,o(Z)
Far—11(2)

Frroin-1(2)
®)

Polyphase analysis and synthesis filter bank without subband processing.

where the polyphase componeifs ;(z) of the kth synthesis
filter fi(n) are

Fi (2 Z AN+ 1) == 1)z~

{=—o00

k=0, ,M—-1, j=0,---,

Note that type-2 polyphase components (marked with a bar)
are used on the synthesis side. However, for the description of
oversampled modulated filter banks, it will be more convenient
to describe the synthesis filter bank with type-1 polyphase

N-—1.

1, are the type-1 polyphasecomponentsFy ;(z). The relation between type-1 and type-

2 components can be stated &% n_1—;(2) = F;”( ),
ji=0,---.N -1

For critical subsampling, we achieve quadratic polyphase
matriceskE™)(z) and R (z) of size M x M, whereas in the
oversampled case, the matrices have a rectangular shape of
size M x N and N x M, respectively.

Generally, anL-times oversampled filter bank has the
perfect reconstruction property if

RO ()ED () = 26 Iy ©)

holds, WhereDéL) denotes the delay in the polyphase domain.
Under consideration of the blocking and unblocking delay
chains in Fig. 2, we have an overall delay of

D=N-1+D{"N (4)

samples between(n) and £(n).
We will now derive relations between the polyphase matri-
cesE)(z) and R (z) of a given filter bank for different
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Fig. 3. Polyphase analysis filter batiRf = 4). (a) Critically subsampled. (b) Oversampled by factor 2 and scaledl/kf2. (c) Equivalent structure
to (b) (see text).

oversampling ratiod,, wheread. is restricted to be an integer.with

For this, let us have a look at the example depicted in Fig. 3. g —(L-1)7 1T
In Fig. 3(a), a critically sampled four-channel analysis filter (2) = 1/VL- [,z s Ix]". (10)
bank is shown. Fig. 3(b) shows the same filter bank but with If the critically sampled filter bank has the PR property
oversampling by the factol. = 2 and a prefactorl/v/2, 1) W)y _ —DY

which is introduced in order to compensate the increased B2 (2B (2) = 2 Im (11)
amplification of the complete analysis—synthesis system. Ndéken the corresponding oversampled filter bank obviously also
that the polyphase matrnE(l)( ) from Fig. 3(a) has been guarantees PR, and (3) holds. This can be easily seen from
replaced by the matri¥z*)(22) in Fig. 3(b), which means (8), (9), and (11). We have

that upsampled versions of the polyphase filters are used. R(L)(7)E(L)(7)

Partitioning the polyphase matrix according ESY(22) = i i

—(L—-1) &)
(B (22), B (22)] and rearranging the delay chain and the = 77N ()R (2 EW (1)81)(2)
subsamplers yields the structure in Fig. 3(c), which is equiv- _ Z—(L—l)—Dé”Lg(L)(Z)S(L)(Z)
alent to the one in Fig. 3(b). The system in the gray box i
=z 70 N-

is represented by the polyphase matrix of the oversampled =
system Here, the delay (in the polyphase domain) introduced by the
(2) (1) ) I multiplication of the analysis and synthesis polyphase matrix

B () = \/_[E (%), Bi (= )]{ —112}' ®) amounts toDéL) =L-1+ D(()l)L samples for a given

Likewise, the synthesis polyphase matrix can be given as oversampling ratid.. The overall delayD remains unchanged
R(l) } for all L, and we haveD = M — 1+ Dé M.

1
R¥)(z) = _112712]{ ?1) (6)
V2 [ll. COSINEMODULATED FILTER BANKS
RV (22 WITH ARBITRARY SUBSAMPLING RATE

When we assume that the critically subsampled filter bankUnless otherwise noted, we consider biorthogonal cosine-
has the PR property witlR*)(z)EX)(z) = I, the oversam- modulated filter banks where the analysis filtérgn), k =
pled system also has the PR property 0,---,M — 1 are derived from an FIR prototypg(n) and
the synthesis filtersfx(n),k = 0,---,M — 1 from an FIR

RP(EP(2) =} [2 _112712]{ -1, } =2"'I». (7) prototypeq(n) according to

Since we neither changed the filters (except by fatjoy2) hi(n) = 2p(n) cos [l <k + 1) <n - B) + (/)k}
nor introduced an additional delay into the system, the overall M 2 2
delay of the system must be preserved for all oversampling n=0---,L,-1

ratios. However, the delay caused by the delay chain for the B T 1 D
oversampled case in Fig. 3(c) is reduced by two taps compared k(n) =2q(n) cos AGREY LG BL

with Fig. 3(a). Thus, the delay introduced by multiplication of n=0-,L,—1.
the polyphase analysis and synthesis matrix has to be increased
by the same amount, which explains the additional delay bfe length of the analysis prototypgn) is L,, and the
zLin (7). length of the synthesis prototypgn) is L,. D denotes
As can be easily verified (same arguments as above), thg overall delay of the analysis-synthesis system, where we

generalizations of (5) and (6) t&/-channel filter banks being Will later show thatD normally varies between the minimal
oversampled byl > 2, L € N are delay of2M/ — 1 and a delay ofL,, — 1 samples. The latter

case corresponds to linear-phase prototypes Wijtn) =
hi(L, —n — 1),L, = L,, which are discussed in Section
L)) = ED Ly . gL k\-=p )
EB(z) =B jL) (2) ®) [1-D. A suitable ch0|ce for¢k is given as¢y, = (—1)kw/4
RM(z) =2~ . 57 (z) - RV(2Y) © [2), [Bl.
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In this paper, we restrict ourselves to evihand analysis  2) Oversampled CasetWe use the description of the
and synthesis prototype lengths bf = 2mM,m € N, and polyphase matrices for the critically sampled case and
L, =2m’M,m’ € N. In this case, all polyphase componentssert (12) into the relation (8), thus obtaining a more
of a given prototype have the same length. Note that wgeneral expression for the analysis polyphase matrix in the
consider a general approach with different lengths for tlwversampled case. With the definition of diagonal matrices
analysis and synthesis prototype.

po(z*F) = diag[Pon(—22E), Payi (=225), -

A. Analysis and Synthesis Polyphase Matrices Pmr+(N_1)(—z2L)], £=0,---,2L -1
1) Critically Subsampling:Let P;(z),j = 0,---,2M — a7)
1, denote the type-1 polyphase components of the analysis
prototypep(n) according to this yields for the analysis polyphase matrix
ml (L)) = Lyg(L)
Pi(z) = 3 p(20M + )z, E7(2) =T PSS
—o po(z*7)
. . " 1 Z7py (27F)
The analysis polyphase matrix for the critically sampled =—.T, : . (18)
case(L = 1) can be written as [7], [9] VL :

—(2L-1) 2L
z z
Po(2?) Par—1(2°7)

(1) _
EY(2) =T, |:Z—1P1(22)

} =T.P(z) (12) The synthesis polyphase matrix can be constructed in the

same way. From (15) and (9), we get

where
[To]x,; =2cos [% <k + %) <j - g) + (/)k:| R(L)(Z) :Z;(L_I)S(L)(Z)Q(ZL)TE
k=0, M—1, j=0,---,2M 1 =L R S A Ca VY
(13) R N Cl VNS
and v Ingo (PRI NITE (19)

Po(z*) =diag [Po(=2%), Po(=2%), -+ Pra(=27)] where the matriceg,(z2~) containing the type-1 polyphase
Py(7*) =diag [Pa(=2%), Prargr(=2%), -+, Pav—1(=2%)].  components of the synthesis prototype are definegl GS%)
(14) in (17).
) _ Note that (compared with critical subsampling) the matrices
In the same way, the synthesis prototygie.) is decom- = anq 7, respectively, are unchanged in the oversampled
posed into the polyphase filters case so that the original phase offset in (13) and (16) is

m—1 preserved. The matriR(z%)S")(z) is of size2M x N, where
Qi(z) =Y q(2M +j)z™". N = M/L, and therefore, the polyphase matri¢gd’(z) and
=0 R'Y)(z) are of sizeM x N and N x M, respectively.
Using these type-1 polyphase components, the synthesis
polyphase matrix can now be written as B. PR Conditions
R(l)(z) :[2—1(]]\4(21(22)(]]\47JJWQO(ZQ)JJW]T;F In the integer oversampled case, we have two ways of
:Q(z)T;f (15) satisfying the PR constraint (3). N _

1) The PR prototypes for the critically subsampled filter
where the diagonal matriced,(z*) and @, (»*) are defined bank are also used in the oversampled case, and thus,
in the same way a#(z?) and P1(z?) in (14), and (3) is met for allL > 1 up to the factorL.

T 1 D 2) When theL-times oversampled filter bank is designed
[Ts]x,; = 2cos [M </€ + 5) <2M —-1-j- 5) - ¢k:| in such a way that (3) is satisfied and (11) is not, PR
(16) up to a constant factor is obtained for all oversampling
ratios Ly = cL,c € N. The filter bank designed this
fork=0,---,M—1,7=0,---,2M — 1. way also ensures almost PR for db € N satisfying
For completeness, we also giv&')(z) in terms of type-2 L = cLy,c € N; see Section IV.
components The latter case is the interesting one for the design of

DN — (=13 (2N 7 .2\ T oversampled PR filter banks because we have more degrees
B(2) = [7Q0(27), Qu()IT of freedom for the design process, and thus, the conditions on
where both prototypeg(n) and¢(n) can be relaxed. Therefore, we
0.(22) =diaalO-(—22). 0. (—22).... O _2 focus on the discussion of this point.

80(72) ?ag[go( ? Z’Q_l( ) , ’QM__I( )l , First, we derive conditions for the polyphase components
Q1 (7") =diag[@(=2"), Qur1(=27), -+, Qane—1(=27)]-  in order to satisfy (3) for arbitrary oversampling ratids



KLIEWER AND MERTINS: OVERSAMPLED COSINE-MODULATED FILTER BANKS WITH ARBITRARY SYSTEM DELAY 945

Inserting (18) and (19) into (3) yields In order to simplify the expressions (26) and (27), we first
write (26) as
R () EWP) (2) (26)
_ —(L—I)S(L)( )Q( L)TTT P( L)S(L)( ) L—1
=z z2)Q(z Pl 9% ¥4 z ¢ L L
A 2 [Pren (=27 )Qutren(—27)
=z"P Iy (20) ;
where we use the type-1 polyphase description on the synthesis — Pyrgipen(—2") Qrren(=2")] =0. (28)
side. Choosindl’, as in (13),T’s; as in (16), and writing the
delay D as Note that (28) has the form of a polyphase decomposition of

) some filter (which is identically zero here), and therefore, we
D=2M-(D;1+1)—1, with DieN  (21) can conclude that (28) can be written as a set afdependent

leads to the expression for the prod@& T, [9], [14] equations
TTo = (—1)P12M - Iy +2M - [JM 3 } . (22 Pk+é]?’(z)QM+k+éN(z) = Prrgren(2) Qe ()
o —J M :0 fOr k:07"'7N_1;£:07"'7L—1_ (29)

Inserting this product into (20), we get
Here,— " was replaced by. Equation (27) can be simplified

(L
(-1)P2M - = EDE P ()Q ) PSP (2) by replacing the argument 22 with z and by writing the
. (L) \yi
oM. Z—(L—l)S(L)(Z)Q(ZL) [JM 0 } delay Dy~ with (4) and (21) as
0 —Jy
PSP () £ 23) D" =2LD, +2L -1 (30)

For achieving the PR property, the second term of this equfus resulting in
tion, which contains the antidiagonal terms, must be zero. With

(18) and (19), this can be written as 2L—1
1 Z Proyin(2)Qari—1—k—en(2)
Z Z_L_%JNQL_M(ZQL)p[(ZQL) {=0 | 7_D1
£=0 =z =0.-..- -
. SN for k=0,---,N—1. (32)
- Z 2E T INng (P (PP =0, (24)

To achieve a PR filter bank, we have to fulfill (29) and find
) o o ) ~a feasible solution that also satisfies (31). We will see in the
When this condition is satisfied, we still must constrain thgayt sections that we have different solutions in the critically
first term of (23) to be a simple delay. With (18), (19), andampled and the oversampled case, where in the latter case,

£=0

(23), we then can state the requirement we have less severe constraints for the analysis and synthesis
2L—1 prototypes, which will give us some benefits for the prototype
(_1)D12N.Z—(2L—1) Z INGor 1o (2T npy(22F) filter design.
=0 The overall length of filters of the typd’;(z) - Qi(2)
1 _pw in (31) amounts tomm + m’ — 1 taps, which allows the
=z""0 "Iy. (25)

delay parametet); to vary between O andn + m' — 2.

We now use (17) and express the two PR conditions (ZEP"US, D, can be understood to be a design parameter that
I

and (25) directly with the polyphase componeiitgz) and allows us to choose the overall delay of the analysis-synthesis
Q;(z),j=0,---,2M — 1. This gives the conditions system independently af. We can achieve minimum delay

prototypes forD; = 0 and linear-phase prototypes (with

L—-1 /
B m' = m) for D1 = m — 1.
> 2 Peyen (=2 Quigrpen (—22)
£=0
P (=210 (—21] g (26) C. General Solutions for the Design of PR Prototypes
et . =z . =z =
MARHEN PN We can see that (29) is always fulfilled if the synthesis
and prototype and the analysis prototype are relatedy@g =
9L—1 ¢ p(n —2Mno) with ¢ € R,ng € N; they differ only by a
Z Pk+m(_ZQL)QQM_l_k_m(_ZQL) constant factor and an additional delay. However, in general,
= we have more solutions and more design freedom. In order

to describe the complete set of solutions for the oversampled

7—DéL>+2L—1 - )
o (27) case, we rewrite the linear set of (29) and (31) as

2N
which have to be fulfilled fokx = 0,-.-, N — 1. A-g=0b (32)

=(-1)™-
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The matrix A of dimension V(L + 1) x 2M has a block identical analysis and synthesis prototypes, (29) is always
satisfied. Then, all solutions can be characterized by

diagonal structure

Ay O 0
A f:J 41 f:J @, = pi. + Ci(z ;a@ n) for k=0,---,N—1 (35)
0 0 An_1

into NV smaller linear sets of equations

for

k=0,

N-1. (33)

The following partitioning of the vectorg andb is used.

q:[q07q17"'7

QN—l]Tv

where

where the coefficient/sg) denote theV(L—1) free parameters
Because of this block structure, we can split the whole systémthe above problem. The terni%,(z) are arbitrary (FIR or
IIR) transfer functions. Additionally, we may introduce further
delay such that) e, (z) = z72M"0Q(z),no € N.
Note that the role of the analysis and synthesis prototype
can be interchanged. This can be seen from the PR constraints
in (29) and (31), which still hold whe®;.(z) plays the role of
P,(z) and vice versa. Thus, instead of (35), we can also write

@, = [Qr(2), Qryn(2), -+, Qk+(2L—1)N(z)]T

N -1

Z NOMO

These considerations show that we can construct PR filter
banks with different analysis and synthesis prototypes. The
synthesis filters can be longer or shorter as the analysis filters,
The submatricesl;, k = 0,---, N — 1 have the dimension and in special cases, we can also have unidentical prototypes
(L + 1) x 2L. With the abbreviationS = 2M — 1, they can of the same length. This is demonstrated in the example below.
be written as (34), shown at the bottom of the page. Note thatObviously, if we decompose a signal with our analysis
the first row of (33) is due to (31), whereas the remaining filter bank and we only use a nullspace filter as a synthesis
rows are due to (29). prototype, the output signal will be identically zero. If we
Since the matriced,, are rectangular of size.+1) x 2L, construct the synthesis prototype according to (35), the output
we have N underdetermlned sets of equations with at leaglill be independent of the parametemé) and of the filters
2L — (L +1) = L — 1 free parameters. All solutions to (32)Cy(z). However, it is important to notice that the output signal
can be obtained by taking one solution of the inhomogeneowsly is independent of the nullspace component as long as the
systemAg = b and adding linear combinations of all othesubband signals are directly derived from the analysis filter
solutions from the nullspace ofl (these are the solutionsbank. If the subband signals are modified, which is the case in
of Ag = 0). For the sake of simplicity, let us assume thatal applications, the nullspace component will also influence

and P = q, + Cr(z for k=0,---,

b= [b07 b17 B bN—l]T7 where
b, =[2"P1/(2N),0,0,---,0]7%,
=] /(2N) ]

L zeros

k=0, ,N—1.

the matrixesA;, have maximal rank, that is, rafid;) =
L+1 (otherwise, we would have polyphase componé®)(s)
with zero coefficients). This means we obtdin- 1 linearly

independent basis vectovéi),i =0, -

the output. Therefore, the nullspace filters can be used in order
to modify and optimize the prototypes.
Example: Let us consider the caskf = 4, N = 2. The

,L — 2 for each matrix A is then given by the equation at the bottom of the

nullspaceV{A4;}. Such a set of basis vectors for the nullspaceext page, and the basis vectors for the nullspace afan

will be denoted as

be obtained as

ng) =[N (2), N (), N8y (17, with r—Po(2)[Pa(2) P5(2) + Pu(2) Ps(2)]]
E—0 - N—1 n® _ | D(2)[Ps(2) Pa(2) + Polz) Pr(2)]
T 0 —Py(2)[Pa(2) P5(2) + P1(2)Ps(2)]
whereN;i)(z),j =0,---,2M — 1 stands for the polyphase L Bs(2)[Ps(2) Pa(z) + Po(z) Pr(z)]
components of the corresponding nullspace filter. [—P1(2)[Ps(2) Pa(z) + FPo(2)Pr(2)] T
When we design the analysis prototyg&z) in such a n® | D()[P(2)Ps5(2) + Pr(z)Fo(2)]
way that it satisfies (31) with};(z) = FP;(z), its polyphase ! —P5(2)[Ps(2) Pa(z) + Po(2) Pr(2)]
components serve as a special solution to (33) because for L Pr(2)[P2(2) Ps(2) + Pr(2) Ps(2)]

Ay =
Ps_1(z)  Ps_p—n(2) Ps_y(n-1yn(2) Ps—r—rn(z) Ps_p—r+1)n(?) Ps_y—2p-1)n(2)
—P]\4+k(z) 0 e 0 Pk(z) 0 . 0
0 —Pj\4+k+N(z) e 0 0 Pk_|_N(Z) e 0
0 0 = Prrpt (-1 8 (%) 0 0 Prvz-1n(2)

(34)
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From this expression, we see that the nullspace polyphas&vith L =1 andM = N, (31) and (29) can be written as
componentg\ffz)(z) have a maximum length &m — 2 when

y 27D
the analysis polyphase components are of lengthWith Pu(2)Qons—1-1(2) + Prpan(2)Qpi—1-x(2) == (36)
(35), this leads to analysis and synthesis prototypes of unequal ' 2M
length. However, if Pr(2)Qnrx(2) — Prryr(2)Qi(2) =0 (37)
Py(2)Ps(z) + P(2)Ps(z) =¢ and for k = 0,.---,M — 1. In (36), two products of analysis

and synthesis prototype polyphase components always have
to add up to a delay, which is more restrictive than (31) in

we have the same lengths for both prototypes, but the an'i}:{'I(-a r?verssmplgd ;as:._ in (3 h h
ysis and synthesis prototypes do not have to be identica),| "€ Submatrice g’ h_O’,'a'_’_J(\j/[_ll in (34) now ave the
These conditions can be satisfied by designing the ang|[nen5|on2 x 2, and theM individual systems are given as

Py(2)Py(z) + Po(2)Pr(2) =¢, c€R

ysis prototype for the critically subsampled case [accord- Pori—1-i(2) Pr—1—1(2) Qu(z)
ing to (31) with @Q;(2) = Fj(2),N = M = 4,Dy = [ —Pryi(2) Py(z) } |:Qk+M(Z):|
0]. When we scale this analysis prototype hy\/2 and ~ ~ ~ ~
apply it to an oversampled filter bank withh = 2, we A, 4
can construct the corresponding PR synthesis prototypes via _ 1 2P
(35). In this case, the two nullspace basis vectors reduce to ToM | O |
n{” = ¢ [~Po(2), Pa(2), = Ps(2), Ps(2)]" and ) = c- e

k

[—Pl(z),Pg(Z), —P5(Z),P7(Z)]T and with Co(z) = C’l(z) =

1,0480) # O,alo # 0, we obtain unidentical analysis andSince A is now quadratic and is assumed to have full rank,

synthesis prototypes of the same length. the nullspaceV{A;} is just the null vector. This means that
Fig. 4 shows an example for the nullspace solution whegéven the analysis prototype and the delay paramBterwe

the analysis prototype of lengily, = 48 is designed fo); = have only one solution for the synthesis prototype, which can

0. The magnitude frequency response of the analysis prototyge written in closed form as

is depicted in Fig. 4(a). For the choi@éoo) = 20,a§0) = 20, —Dy p

and Cy(z) = Ci(z) = 1, the frequency response of the { @) } = 27[}, k(2) }

nullspace filter is shown in Fig. 4(b). Thus, the nullspace Qrn1(2) 2M - det {Ap} [Prsna(2)

impulse response has a length 28/ - (3m — 2) = 128.  An FIR solution for the synthesis filter is obtained if

Note that the passband of the nullspace filter is located within

the stopband of the analysis prototype. This gives a vivid det {Ax} = Ponr—1-1(2) P (2) + Prra(2) Pr—1-1(2)

explanation of the properties of a nullspace filter. However, v 2701

since we have the free choice foufj) and Cy(z), such a ~ oM

behavior must not be found in all nullspace filters. . . )
A synthesis prototype was obtained as the sum of tHdlch is exactly the same condition as (36) with(z) =

analysis and the nullspace filter. Fig. 4(c) depicts the corrb:(#)- In other words, an FIR solution for the cage= 1

sponding magnitude frequency response, which qualitativ&?sentia”y requires analysis and synthesis pr_ototypes with
oyphase components being equal up to a scaling factor.

looks like the sum of the responses in Fig. 4(a) and (b). X X X i i
2) Paraunitary Case:The paraunitary case is characterized

more constructive solution is depicted in Fig. 4(d). In this case, X ) i
the polyphase components of the analysis and the nullsp5’(¥ethe fact that the sum of the energies of all subband signals is

filters are linearly combined in such a way that the stopbaffgu@! to the energy of the input signal. This may be expressed

attenuation of the resulting synthesis filter is increased.  @S|[9ll = [l[| Y& with [lz|| <o, wherez(z) is theLponphase
vector of a finite-energy input signal, agt:z) = EX)(2)z(z)

is the vector of subband signal$. || denotes the Euclidean
norm.

1) Critically Subsampled Casein the following, it is As can be easily verified, filter banks (oversampled and
shown how the results for the critically subsampled case agtically sampled) are paraunitary if
stated in literature [7], [9] are related to the general solution

k=0, [M/2] - 1

D. PR Solution for Special Cases

presented in the last section. E(L)(z)E(L)(z) =1y (38)
P7(Z) P5(Z) Pg(Z) Pl(Z) 0 0 0 0
—Py(2) 0  Polz) O 0 0 0 0
a—| 0 —Ps(z) 0 Py(2) 0 0 0 0
o 0 0 0 0 P(;(Z) P4(Z) PQ(Z) Po(Z)
0 0 0 0 —Ps(2) 0 P((z) 0
0 0 0 0 0 -P(z) 0 P2
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Fig. 4. Examples for magnitude frequency responses = 4, N = 2,D; = 0). (a) Analysis prototype. (b) Nullspace filtéhgo) = a§°> = 20,
Co(z) = Ci(z) = 1). (c) Synthesis prototype according to (35) wifﬁlﬁ,o) = ozﬁo) = 20,Co(z) = Ci(z) = 1. (d) Synthesis prototype according
to (35) with a{”) = —1,0!” = 1,Co(z) = Ci(2) = 1.

holds. From this equation, we may conclude that For identical linear-phase analysis and synthesis prototypes,
. Q;(z) = Pj(z), from (40) and (31), it follows that
RV (z) ==LV () L ND)(,), where _— :
NOHED () =0 (39) ; Pryin(2)Poyen(z) = o7 fork=0, -, [ﬂ -1
yields a PR synthesis filter bank. The delay in (39) is in- (41)
troduced in order to achieve causal synthesis filters. The ) )
polyphase matrix®¥“)(z) contains the solutions from the ThiS result was already established in [15].

nullspace, which have been introduced in Section III-C. Equation (41) states thail, polyphase components always
In the following, we restrict ourselves tN(L)(z) — . have to be power complementary in the oversampled case.

From (39), we then see that the synthesis filters are timfe" increasingl, this condition on the prototype becomes less
reversed versions of the analysis filters, that fig(n) = restrictive, and the design freedom increases. Note that (41) is

hx(L, —n — 1). As in the critically sampled case [14], thisthe only condition on the analysis prototype for paraunitary

is fulfilled when we choose linear-phase prototypga) = oversampled filter banks because wifin) = p(n), the

p(L, —n — 1) andg(n) = p(n). For the overall delayD, this condition (29) is always fulfilled.

means thaD is fixed toD = L,—1 = 2mM—1,m € N. The _ _

delay parameter®; andD§" can be identified a®, =m-1 E- Relation to DFT Filter Banks

and D((JL) = 2mL — 1, respectively. In DFT filter banks, the analysis and synthesis filtésgn)
Due to the linear-phase propertyfz) and its length being and fi(n), respectively, are obtained by complex modulation

an integer multiple of23/, two polyphase components argrom given prototypes. The literature [10], [11], [13] covers

N

always related as only the paraunitary case, where the same prototype is used
B for analysis and synthesis. However, for relating DFT filter
Pi(z) = z_(m_l)PgM_j_l(z) for j=0,---,M—1. banks to the cosine-modulated banks derived in this paper, it

(40) is useful to consider two different prototypeg#) andq(n))
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also for DFT banks. Thus(n) = p(n)e! "/M*n=D/2) and  oversampling ratial, as an almost PR solution fdk < L,
fu(n) = q(n)ed(7/Mk(n=D/2) I — o ... 2M — 1. Note that with L, = cL,c € N. These solutions have the interesting
we consider2M-band DFT andM-band cosine-modulated property that every,,/Lth aliasing spectrum is canceled.
filter banks so that the subbands are of equal spectral widthl) Partial Aliasing Cancelation:We first state some gen-
in both cases. eral results and consider an arbitraby-channel filter bank
In the critically subsampled case, the analysis and synthesith oversampling ratial. and subband sampling raf€, as
polyphase matrices for the DFT filter bank can be writteit is depicted in Fig. 1. The analysis modulation (which is
with D as in (21) and the diagonal matri with elements also called the aliasing component) matrix of si¥ex M is

(K = e/ (7/MED/2 g defined as
EY)(z) = KW diag[Po(2), P.(2), - -, Pani—1(2)] H(z) =
=K"WHPp(2) (42) Ho(2) Hi(z) e Hy ()
RY(2) =diag[Qarr—1(2), -+, Qu(2), Qo(2)IWK Ho(zWx)  Hi(zWn) oo Hua (W)
—Q,(-)WK. (43) : : :
Ho(zWR ™) Hi(zW{ ™) -+ Hua(zW{™H)

Here, W denotes the2M x 2M DFT matrix and the
Pi(2),Q;(2),5=0,---,2M — 1, the type-1 polyphase com-
ponents of the analysis and synthesis prototype, respectively.
Similar to the derivation for the cosine-modulated filtefNere W = ¢ _
bank in Section III-B, the PR constraints for thd-times W€ now define the transfer functions
oversampled DFT filter bank with = AM/N can be obtained M1
by inserting (42) into (8), (43) into (9), and replacidg by Ag(z) = 1 Z Hy(zW5) Fu(2)
2L. Hence, the PR condition in (3) can be written as N ‘

2L 2L
RSD )(Z)ESD )(z) which denote the aliasing contribution of the analysis filter
— =D o O WWIPL(2E)SP0 (2)  Hi(z) shifted by 27¢/N for £ = 1,---,N — 1 and (for
éz_DémIN (44) ¢ = 0) the overall transfer function of the nonsubsam-
‘ pled filter bank. The aliasing component vectafz) =
which is a similar expression as (20) in the cosine-modulatédo(2), -+, Ax_1()]" can be obtained by
case for half the oversampling ratio. However, sitE& " =
2M - Iy, it turns out that it is sufficient to satisfy only the a(z) = i CH(2)f(2) (46)
following PR condition similar to (31) in order to achieve PR N
for an 2L-times oversampled DFT filter bank.

(45)

= 6_]27‘—/1\ .

k=0

with  the  synthesis filter  vector f(z) =
e [Fo(z), -+, Fam—1(2)]F. On the other hand, we can
Z Prren(2)Qant—1-k-en (2) express the aliasing component matrix (45) in terms of the
=0 D, analysis polyphase matrix (1) according to [16] as
[ A

1

for k=0,---,N-—1.

N H(z) = WID()EXIT(2N) (47)
Due to the absence of antidiagonal terms in the product of
the analysis and synthesis transform matrices [compare (ZgbhereD(z) = diag[1,z7, - -~ 72—(1\’—1)], andW denotes the
the additional PR conditions for the cosine-modulated casein « ¥ DFT matrix.
(29) are not relevant in the oversampled DFT case. Thus, allthe synthesis filters Fi.(z) can be constructed from
PR solutions for thel-times oversampled cosine-modulategheir type-2 polyphase components according fig(z) =
case including unidentical analysis and synthesis prototypg?’zgl Z—(N—l—f)FM(ZN)_ Writing this with f(z) and the
can also be used as solutions in thb-times oversampled synthesis polyphase matrix (2) yields
DFT case, but they only represent a subset of all possible
solutions. All considerations regarding the system delay, the f(z) = 2= VDRWT(N)e(z) (48)
link to pseudo QMF filter banks, and the design issues in th - -
next sections can be applied to oversampled DFT filter bar‘uIW%ere e(z) = [L,2%,-++,2(""D]T. Combining (46)—(48)
as well. eads
a(z) = % =D DARD (N ED ()] elz).

IV. RELATION TO PSEUDO QMF HLTER BANKS (49)

The approaches presented in the previous sections can not
only be used to design PR-times oversampled filter banks.Now, we use the fact thaR'"®)(z)EX)(z) is equal to the
As we will show in the following, it is also possible toleft-hand side of (25) if (29) is fulfilled (e.g., because of
use a prototype that satisfies the PR constraints for a givie choiceq(n) = p(n)). By inserting this relation into (49)
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and by expressing the resulting equation with the polyphaseThe overall transfer functiomy(z) amounts toAq(z) =
components?; (—z2) and Q;(—z*"), we get L/L, - z~(?M=1+2MD1) - \here the overall system delay
s (again) can be found a® = 2M(D; + 1) — 1. Furthermore,
a(z) =2(-1)"'z @-Dw we have to scale the analysis( and sgnthesis prototype with
2L_1P oM oM factor \/L,/L in order to obtain the original amplitude. With
Z N (=27)Q2pr—1-en (=27 such scaling, we have no linear distortion at all, which is not
=0 the case when using prototype filters designed as approximate
_— Nyquist(2M).fiIterls for almost PR filter .ba.nks [17]-[19]. The
Z Prtpon(=22M)0onr n_on(—22M) g?elyr?;tpétgnilsltg(rjtlon is due to those aliasing components that
=0 (50) 2) Examples for Pseudo QMF Solution&enerally, the fil-
ter bank in Fig. 1 can be regarded as a periodically time-
The comparison of (50) with (31) shows that for the PR casearying system with the periodic system respoh&e;,n;) =
each sum over in (50) amounts to a delay. Then, it can bé(n, + ¢N,ny + ¢N),¢ € Z, where k(nz,n1) denotes the
shown easily that(z) = [z=7,0,---,0]T, where D denotes response of the system at discrete timeto a unit sample
the overall system delay. This means that in the PR case, ablied at discrete time,. The aliasing distortions in such
aliasing components are canceled at the summation pointsistems are best visualized via bifrequency system functions
the synthesis filter bank. [20]-[22]. The bifrequency system function is defined as [22]
In order to describe the aliasing-cancelation effects in the
pseudo QMF case, where we use PR prototypes designed for ' T '
Lo = (c+1)L,c € Nin an L-times oversampled filter bank, K (/% e/ ) = — 3~ 3" k(ng,ny)edrm—1n2),
27r ny=—0o o>

oo

we write (50) with an additional scaling factdr/L, as —o0 ng=—
I N-1 ‘2L—1 ) )
Ap(z) =2 (=1)Pr= (M=) Z Wit Z Pn(—2*M)  Sincek(ng,ny) is periodic inn, andny, K (e/5%2, ¢7*4) con-
Lo =0 =0 tains only discrete lines, which refer to the aliasing components
Qani—1—i—en(—2*M) a_nd the _overall frequency response. Fig. 5(a) shows the mag-
Ny—1 N/No—1 nitude bifrequency system function for the PR oversampled
:2£ . (_1)Dlz—(21\4—1) Z Z W okmEAN,) - case withlM = 8 subbands, an oversampling ratio bf= 2,
L, = = " and a prototype of lengtti, = 128 designed forL, = 2.
91 - The diagonal lines indicate the principal location of All— 1
. Z Prgian, 4en (=22 possible aliasing components, which are completely canceled
=0 due to the PR property, and only the line for the transfer

2M) function of the system remains. Since we have a one-to-
one mapping between the input frequeriey and the output
for k = 0,---,N — 1. In the last step, the sum oveérwas frequency§2,, this system can be regarded as time invariant.
split into two sums by the substitution= m + AN,, where The PR prototype fof, = 2 is now scaled by/2 and applied
N, = M/L, is the subband decimation factor for whicio a critically subsampled filter bank, where the resulting
the prototype filters are designed. We now substitute agaiystem bifrequency function is shown in Fig. 5(b). We can see
v = A+ N/N,¢, which yields that every second possible aliasing spectrum is zero, which
N,—12L,-1 co.nfi.rms the result of the prqqf above. Since the remaining
Ar(2) LS (1P @M=D R R Jy—kemtrN,)  aliasing components are significantly suppressed by the high
L, — = N stopband gttenuatlon of fthe subband flltgrs and 'by the property
P (= Qortot o (=22M). (51) of the cosine-transform in (13), respectively, thIS' case can be
mANo M —1=m—vN, regarded as the pseudo QMF case. However, since the input-
For thosek where kvN, is a multiple of N, the term OUtpUt mapping is not one-to-one, the system response of this
W];k(mwNo) in (51) becomes independent of and then, filter bank is not time invariant.
the inner sum corresponds to the PR constraint (31) for ani" @ secor_1d example, we app_ly a prototype of !ength
oversampling ratioL,. When we use prototypes(n) and L, = 12_8 designed fquo = & to a critically subsampled fllter_
g(n), which give PR forL, [i.e., satisfy (31)], the inner sum bank with A/ = 8. This case can be _reg_arded as the classical
can be replaced by the delay terar2Pi(—1)P1 /(2N,), pseudo QMF case, vvhere alf — 1 aliasing components are
and we have present with a magnitude that corresponds to the prototype
Noo1 filter’g stqpband atte.nuat_ion. The resulting bifrequency system
Ai(2) :£ . y—(2M—=1) ,—2M D, Z WomsNINe _ function is shown in F_lg._6. Note that although we have
— ‘ chosenL, = M, the aliasing spectrum fof2o = @ + 7
I is not present. This is due to the even length of the prototype
sf‘), sel. filter p(n) = ¢(n), which leads to a zero at = —1 in the
transfer functionP(z) and, thus, to a suppression of all signal
Thus, everyL,/Lth aliasing component is canceled out. = components (including aliasing) at the frequeity= 7.

“QaM—1—m—AN,—en(—%

221\4)

N N
for k—sﬁo—
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(b)

Fig. 5. Normalized magnitude system bifrequency functions. (a) Oversampled perfect reconstruction ddse-f8r . = 2 and L, = 2. (b) Critically
sampled case witlhi/ = 8 and the same prototype as in (a). The prototype filter has a length, oE 128.

Expressing the sunis; r4¢n(n) as impulse responseg(n)
results in the requirements

2L—1 2m—2

D mren(n) = D si(i)8(n — ) (53)

£=0 1=0
and this yields the PR constraints in the time domain

1/(2N) forn=2D
sk(n) = {0/( ) othgrwise1 (54)

for £k =0,---,[N/2] = 1,n = 0,---,2m — 2. The delay
parameterD; can be selected in the rands < [0,---,2m —
2]. The number of PR constraints in (54) [i87/2](2m — 1).
Fig. 6. Normalized magnitude system bifrequency function for a criticallfFor A/ being a power of two and, < M/2, this means a

sampled filter bank with\/ = 8 and a prototype of length 128 designed forreduction by factord, compared with the critically subsampled
L, = M.

case.
For the design of the prototype, we use a quadratic-
V. DESIGN PROCEDURE AND EXAMPLES constrained least-squares approach [23]. Eagfn) from
(54) can be written as a quadratic constraint of the form
A. Prototype Optimization sk(n) = pTQy ,p with p = [p(0), - - -, p(L,, — 1)]T and some

1) General Case:We have seen in Section III-C that inMairix @ ,,. For details on the optimization approach, see

the case of identical prototypes for the analysis and synthe@g']' ) i .
bank, (29) is satisfied, and the prototype, according to (31 ,The constraints (54) are fulfiled numerically under ad-

remains to be designed. Expressing the latter equation in ff{donal minimization of the weighted prototype’s stopband
time domain withp(n) = ¢(n) yields energy, which is independent &f and can be written as

Q-1 Q
2L—1 m—1 1 Sk41 R '
— . . 30y 2 - .

Z Zpk+éN(i)  pori— 1 n—en(n — ) E, = - kz_owk /st |[P(e”)|]* d2=min. (55)
£=0 =0 - ‘

~ o) Here, [wo, ---,wo—_1] denote the weighting factors for the

1 e different frequency regions, which are characterized by the
=N &(n— Dy) (52) edge frequenciefl,,, -, Q.,_,,2, = w]. Equation (55)

can be expressed as a quadratic fagn= p*Sp according
fork=0,.---,[N/2]—1andn =0,---,2m — 2, whereé(n) to

denotes the unit sample sequence. The sequenges (n)

stand for the result of the convolution of the polyphase impulse g —
response®yen(n) andpaps—1__¢n(n). Since we consider

an analysis prototype filter of length, = 2mM,m € N,

each polyphase componept(n) has the lengthm, which
results in a total convolution length & — 1. The index and
k can be restricted to the firstV/2] convolution results
re+en(n) because the firstN/2| results lead to exactly the
same expressions as th& /2] last ones. The case of odd

is formally taken into account by use of the ceiling operator.

Q-1 =

S wpTSip=p" = > wi - Sip
mw

k=0 k=0

N |

S

Si = / e e (@) (@)} A9, with

c(Q) = []_7 e_jQ7 cee e_jQ(Lp_l)]T_
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Fig. 7. Design Example 1. Magnitude frequency responses for linear-phase prototypes. Design pardmeteii6, M = 16,D; = 7,Q = 2, edge
frequencieg(2s,,, 2, , Q2s,] = [0.067,0.37, 7], weightswy = 1,w; = 2, = 107!, (a) Oversampled case with = 2. (b) Critically sampled case.

Note that sincep is a real vector, we only need to take thd3. Design Examples
real part of the outer produe{Q)ct(£2). The elements of the

b i ; In the following, we present design examples, which show
matrix S can be given analytically as

that by relaxing the number of constraints in the oversampled

Qo1 . . case, we can design filters with better properties. In all

[Sklmm = / Re{c™/m9e/™} dQ2 examples, the initial filters for the optimization process were
i’“ constructed via the pseudo QMF method from [19]. As an

= <[sin ((n — m)Q,,,) objective function, we used the stopband energy (55). The

] optimization was carried out with the NAG Fortran library.
—sin ((m —n),)]. The PR constraints (54) were fulfilled up to some accuracy

2) Paraunitary Case:In this special case with(n) = p(n) © which will be specified in the examples. For .displaying
and linear-phase prototypes satisfying the symmetry conditif§quency responses, the prototypes were normalized to 0 dB
(40), we have only[N/2]m time-domain constraints to bePC amplification. _
satisfied in order to achieve PR. It was already stated in SectiofExample 1:In this example, we address the paraunitary
III-D that for linear-phase filters, the delay paramefey is Case and design a linear-phase prototype filter of lergth-

fixed to D; = m — 1 so that we can write (52) as 256 for M = 16 subbands and an overall system delay of
N D = 255 samples. Fig. 7(a) shows the magnitude frequency
Z Zpk+uv(i) ey (m—1—n +4) response of the proto_type designed for the oversampl_ed case

—~ = with L = 2, and Fig. 7(b) corresponds to the critically

~ subsampled case. The oversampled case yields much higher

Peen (W —m+1) stopband attenuation, which shows that the additional design
-1 S8’ —m+1) freedom in the oversampled case can indeed be used to

2N improve the prototype.
for k = 0,---,[N/2] —1 andn’ = 0,---,2m — 2. The Example 2: Here, we refer to the biorthogonal case and

expressionsy¢n(n’ —m + 1) can now be regarded as theconsider an example with reduced delay, where a prototype of
autocorrelation sequences of the polyphase impulse resporieggth L,,, = 128 is designed ford/ = 8, an overall system
pr+en(n) shifted bym —1 samples. Due to the even symmetrglelay of D = 47 samples and an oversampling ratiolot= 2.

of the autocorrelation{ryn(n') = Thren(2m —n’ — 2)), The prototype is then compared with a linear-phase design

we can restrict ourselves to’ = 0,1,---,m — 1. Hence, with the same reconstruction delay ahg, = 48. The solid
in the paraunitary case, we hay&//2]m time-domain PR line in Fig. 8(a) shows the magnitude frequency response of
constraints according to the low-delay prototype witll,, = 128, and the dotted line

corresponds to the linear-phase case With = 48. As we can

see, the longer prototype yields higher stopband attenuation
L7 k=0,---,[N/2] -1 while having the same reconstruction delay.

2N Fig. 8(b) shows the magnitude frequency response for the
with s;(n) defined as in (53). This is a further reduction otritically subsampled low-delay cagé = 1) with the same

the required conditions compared with the general case abgpatameters as above. We see again that in the biorthogonal
When comparing the number of PR constraints for differentise as well, where the prototypes do not have linear phase,
oversampling ratiod., here, we obtain the same results as iwe gain advantages by designing prototypes especially for a
the general case. given oversampling ratid..

52(0) =si(1) = -+ = sp(m=2) = 0

sp(m—1) =
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Fig. 8. Design Example 2: Magnitude frequency responsesifoe= 8 and an overall system delay d» = 47; one frequency band in the stopband
region with Q,, = 0.1m,e = 1079, (a) Oversampled case fdr = 2 with L,, = 128 (solid line) andL,, = 48 (linear-phase case, dotted line).
(b) Critically sampled case witlL,, = 128.

20 : ; ; " T 4

0 0.005 0.0l 0015 002 0.025 003
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Fig. 9. Design Example 3: Prototype length = 512 for M = 32 subbands, oversampling ratio = M, and an overall system delay & = 447
samples(D1 = 6,Q = 1,95, = 0.037,¢ = 10~7). (a) Magnitude frequency response. (b) One period of the filter bank’s overall magnitude
frequency responseédq(eif?)|.

Example 3: In this example, we design a prototype for the As expected, we can observe that the stopband energy de-
nonsubsampled cagé. = M) of length L, = 512, M = 32, creases when the filter length increases; see Fig. 10. However,
and an overall system delay B = 447 samples. Fig. 9 shows in the caseM = 16 for filter lengths larger than 350, there
the filter bank’s magnitude frequency response and one perischot much improvement, and one encounters the limits of
of the overall magnitude frequency responsgg(c’*!)|. Due the used optimization algorithm. There are even cases where
to the high stopband attenuation, this prototype can be ughé best filters have been found for critical subsampling. Since
for a critically subsampled pseudo QMF filter bank, where thtbese prototypes also give PR in the oversampled case, we can
aliasing components in the stopband region of the prototypenclude that in these cases, the solutiong\er M represent
are suppressed. The main aliasing components, however, lacal minima of the objective function.
canceled out by the properties of the transforms (13) and (16)From Fig. 10(a) and (b), we see that for fixed prototype

1) Relations Between Stopband Energy, Stopband Attenilengths, the stopband energy decreases when the subsampling
tion, Filter Length, and Oversampling Ratidn the following, rate N becomes smaller. This confirms the observation in
we show the effects on the stopband energy and the stopb&xdmple 1. A decreasingV leads to a decreasing number
attenuation in the paraunitary case when the filter length of PR constraints, and thus, we may expect a lower stop-
and the oversampling ratid. are varied. The results for band energy. However, oversampling ratios- 2 bring only
M = 16 and M = 32 are displayed in Fig. 10. All prototypesnegligibly small improvements compared with = 2. For
are designed withkk = 107%,Q = 1, and Q,, = 0.055 for the stopband attenuation, which is the interesting measure in
M = 16, and Q,, = 0.027 for M = 32, respectively. Due practice, we qualitatively have the same results as for the
to the quadratic nature of the objective function (55), the fastopband energy. See Fig. 10(c) and (d) for average stopband
whether or not the obtained solutions correspond to local attenuations.
global minima highly depends on the size of the problem and 2) Relations Between Stopband Energy, Stopband Attenua-
on the optimization method used. tion, System Delay, and Oversampling RatMe here address
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Fig. 10. Stopband energy for (@ = 16. (b) M = 32 and average stopband

for different subsampling rates.
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Fig. 11. Stopband energy (a) and average stopband attenuation (b) versus overall system delay for different subsam(lihg-ratds, = 128).

the biorthogonal case and measure the effects on the stopbaredfixed; they ardl, = 128, M = 8,Q = 1,Q,, = 0.11,
energy and the stopband attenuation due to a change of &nele = 10~°. The results are shown in Fig. 11. We observe
parametetD; and, thus, due to the overall system delayor that for increasing delay, the objective function decreases. As
different oversampling ratiod. The other design parameterdn the previous example, we see that an oversampling ratio of
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L>2 only gives a small amount of improvement compared Int. Conf. Acoust., Speech, Signal Processlanta, GA, May 1996, pp.
with L = 2. 1391-1394.
[14] P. P. Vaidyanathan\ultirate Systems and Filter Banks Englewood
Cliffs, NJ: Prentice-Hall, 1993.
VI. CONCLUSION [15] J. Kliewer and A. Mertins, “Design of paraunitary oversampled cosine-
modulated filter banks,” ifProc. IEEE Int. Conf. Acoust., Speech, Signal
We have derived the PR conditions for oversampled cosine- Process. Munich Germany, Apr. 1997, pp. 2073-2076.
modulated filter banks with arbitrary system delay. It turnedbl M. Vetterli, “Multirate filter banks for subband coding,” iBubband

: , 4 [ Coding J. W. Woods, Ed. Boston, MA: Kluwer, 1991, pp.
out that given an analysis prototype, the synthesis prototype 4”?1??80. oding 0088 oston twer PP

is not uniquely determined. The complete set of solutions wWgs] P. L. Chu, “Quadrature mirror filter design for an arbitrary number

expressed in terms of a single solution and the solutions from ©f equal bandwidth channelsIEEE Trans. Acoust., Speech, Signal
th I f matrix rator. Within this framewor Processing vol. ASSP-33, pp. 203-218, Feb. 1985.
€ nulispace of a matrix operator. s frameworky g ¢. b, Creusere and S. K. Mitra, “A simple method for designing high-

PR filter banks with unidentical prototypes for the analysis quality prototype filters for\/-band pseudo QMF banks|EEE Trans.

and synthesis stage can be designed. The design examplesSignal Processingvol. 43, pp. 1005-1007, Apr. 1995. .
h hown that PR prototvpes for oversampled filter ban 13] J. Kliewer, “Simplified design of linear-phase prototype filters for
ave sho p yp p modulated filter banks,” irProc. Euro. Signal Process. ConfTrieste,

with much higher stopband attenuations than for critically Italy, 1996, pp. 1191-1194.

subsampled filter banks can be found. All PR solutions in thé?] R. L. Reng and H. W. Schuessler, "Measurement of aliasing distortions
cosine-modulated case can be used for oversampled DFT filter and quantization noise in multrate systems, Hroc. IEEE Int. Symp.
p Circuits Syst. San Diego, CA, 1992, pp. 2328-2331.

banks as well. Finally, relations between PR oversampled aad] F. A. Heinle and H. W. Schuessler, “An enhanced method for measuring

critically subsampled cosine-modulated pseudo QMF banks the performance of multirate systems,”Rnoc. Int. Conf. Digital Signal
di d. It h that d MF banks havi Process. Limassol, Cyprus, June 1995.
were discussed. It was shown that pseudo Q anks aV[hE,% R. E. Crochiere and L. R. Rabinevlultirate Digital Signal Processing

a partial aliasing-cancelation property can be designed via the Englewood Cliffs, NJ: Prentice-Hall, 1983.

design of PR oversampled filter banks. [23] T. Q. Nguyen, “Digital filter banks design—Quadratic-constrained for-
mulation,”|IEEE Trans. Signal Processingol. 43, pp. 2103-2108, Sept.
1995.
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