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Oversampled Cosine-Modulated Filter
Banks with Arbitrary System Delay

Jörg Kliewer, Student Member, IEEE,and Alfred Mertins,Member, IEEE

Abstract—In this paper, design methods for perfect recon-
struction (PR) oversampled cosine-modulated filter banks with
integer oversampling factors and arbitrary delay are presented.
The system delay, which is an important parameter in real-
time applications, can be chosen independently of the prototype
lengths. Oversampling gives us additional freedom in the filter
design process, which can be exploited to find FIR PR prototypes
for oversampled filter banks with much higher stopband atten-
uations than for critically subsampled filter banks. It is shown
that for a given analysis prototype, the PR synthesis prototype
is not unique. The complete set of solutions is discussed in terms
of the nullspace of a matrix operator. For example, oversampling
allows the design of PR filter banks having unidentical prototypes
(of equal and unequal lengths) for the analysis and synthesis
stage. Examples demonstrate the increased design freedom due
to oversampling. Finally, it is shown that PR prototypes being
designed for the oversampled case can also serve as almost-
PR prototypes for critically subsampled cosine-modulated pseudo
QMF banks.

I. INTRODUCTION

OVERSAMPLED filter banks have their applications in
those areas of signal processing where one is interested

in making modifications to signals in certain frequency bands.
Examples are the simulation of room acoustics by filtering
in subbands, noise reduction in the spectral domain, and
equalization via fixed or dynamic (i.e. time-varying) filtering
of subband signals. In this paper, we develop PR conditions
for oversampled cosine-modulated filter banks with arbitrary
system delay. Especially in real-time applications when there
is some feedback involved (i.e., echo cancelation for mobile
phones or hearing aids), it is extremely important that the
overall system delay is as low as possible.

Cosine-modulated filter banks are a special subclass of the
general -channel filter bank depicted in Fig. 1, where the
analysis and synthesis filters and are derived
from prototypes and , respectively, by cosine mod-
ulation. Previous work on PR cosine-modulated filter banks
[1]–[9] has always addressed the critically subsampled case
( in Fig. 1). This case is very attractive for subband
coding because it leads to a minimum number of subband
coefficients. However, if we simply want to implement some
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linear filtering by introducing gain factors in the subbands,
critical subsampling is not useful. This is due to the fact that
the main aliasing spectra will no longer cancel in the synthesis
filter bank when the subband signals are modified. These main
aliasing components are not present in the oversampled case,

with sufficiently high oversampling.
Recently, perfect reconstruction (PR) conditions for over-

sampled DFT filter banks have been derived, and general
relations between oversampled filter banks and frame theory
have been investigated [10]–[13]. Due to the modulated nature
of DFT and cosine-modulated filter banks, the requirements
on the prototypes are somewhat related. As will be shown for
the biorthogonal case, all PR prototypes for cosine-modulated
filter banks also give PR in DFT banks. The opposite does not
hold for all PR DFT prototypes.

This paper is organized as follows. In Section II, we
present the polyphase representation for general (biorthogonal)
oversampled filter banks and show how the polyphase matrices
in the oversampled case with integer oversampling factors can
be obtained from the critically subsampled version. Section
III derives general PR conditions for biorthogonal cosine-
modulated filter banks with integer oversampling rates and
arbitrary overall system delays. We show that by solving the
PR conditions in the oversampled case, we gain additional
design freedom. The well-known critically subsampled case
and the paraunitary oversampled case are regarded as special
solutions of our general approach. Finally, relations between
oversampled cosine-modulated and DFT filterbanks will be
discussed. In Section IV, we establish the connection to
pseudo QMF filter banks and show that PR solutions in the
oversampled case have a partial aliasing cancelation property
when applied to a critically subsampled filter bank. Section V
refers to the prototype design, where examples are given.

Notation: Boldface letters indicate vectors and matrices.
Given a matrix , its transpose is denoted as and its
Hermitian or transpose-conjugate by , respectively. The
tilde on a (matrix-) function is defined as ,
where denotes complex conjugation of the polynomial
coefficients in The matrices and stand for
identity and reverse identity matrices, respectively.

II. POLYPHASE REPRESENTATION

FOR OVERSAMPLED FILTER BANKS

Consider the polyphase representation of the filter bank in
Fig. 2. Its oversampling ratio is defined as and is
restricted to be an integer in this paper. The analysis polyphase
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Fig. 1. General analysis and synthesis filter bank with subband processing.

Fig. 2. Polyphase analysis and synthesis filter bank without subband processing.

matrix of size in Fig. 2 is defined as

...
...

...
...

(1)

where are the type-1 polyphase
components of the th analysis filter

The synthesis polyphase matrix of size is
defined as

...
...

...
...

(2)

where the polyphase components of the th synthesis
filter are

Note that type-2 polyphase components (marked with a bar)
are used on the synthesis side. However, for the description of
oversampled modulated filter banks, it will be more convenient
to describe the synthesis filter bank with type-1 polyphase
components The relation between type-1 and type-
2 components can be stated as

For critical subsampling, we achieve quadratic polyphase
matrices and of size , whereas in the
oversampled case, the matrices have a rectangular shape of
size and , respectively.

Generally, an -times oversampled filter bank has the
perfect reconstruction property if

(3)

holds, where denotes the delay in the polyphase domain.
Under consideration of the blocking and unblocking delay
chains in Fig. 2, we have an overall delay of

(4)

samples between and
We will now derive relations between the polyphase matri-

ces and of a given filter bank for different
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(a) (b) (c)

Fig. 3. Polyphase analysis filter bank(M = 4). (a) Critically subsampled. (b) Oversampled by factor 2 and scaled by1=
p
2. (c) Equivalent structure

to (b) (see text).

oversampling ratios , whereas is restricted to be an integer.
For this, let us have a look at the example depicted in Fig. 3.
In Fig. 3(a), a critically sampled four-channel analysis filter
bank is shown. Fig. 3(b) shows the same filter bank but with
oversampling by the factor and a prefactor ,
which is introduced in order to compensate the increased
amplification of the complete analysis–synthesis system. Note
that the polyphase matrix from Fig. 3(a) has been
replaced by the matrix in Fig. 3(b), which means
that upsampled versions of the polyphase filters are used.
Partitioning the polyphase matrix according to

and rearranging the delay chain and the
subsamplers yields the structure in Fig. 3(c), which is equiv-
alent to the one in Fig. 3(b). The system in the gray box
is represented by the polyphase matrix of the oversampled
system

(5)

Likewise, the synthesis polyphase matrix can be given as

(6)

When we assume that the critically subsampled filter bank
has the PR property with , the oversam-
pled system also has the PR property

(7)

Since we neither changed the filters (except by factor )
nor introduced an additional delay into the system, the overall
delay of the system must be preserved for all oversampling
ratios. However, the delay caused by the delay chain for the
oversampled case in Fig. 3(c) is reduced by two taps compared
with Fig. 3(a). Thus, the delay introduced by multiplication of
the polyphase analysis and synthesis matrix has to be increased
by the same amount, which explains the additional delay of

in (7).
As can be easily verified (same arguments as above), the

generalizations of (5) and (6) to -channel filter banks being
oversampled by are

(8)

(9)

with

(10)

If the critically sampled filter bank has the PR property

(11)

then the corresponding oversampled filter bank obviously also
guarantees PR, and (3) holds. This can be easily seen from
(8), (9), and (11). We have

Here, the delay (in the polyphase domain) introduced by the
multiplication of the analysis and synthesis polyphase matrix
amounts to samples for a given
oversampling ratio The overall delay remains unchanged
for all , and we have

III. COSINE-MODULATED FILTER BANKS

WITH ARBITRARY SUBSAMPLING RATE

Unless otherwise noted, we consider biorthogonal cosine-
modulated filter banks where the analysis filters

are derived from an FIR prototype and
the synthesis filters from an FIR
prototype according to

The length of the analysis prototype is , and the
length of the synthesis prototype is denotes
the overall delay of the analysis-synthesis system, where we
will later show that normally varies between the minimal
delay of and a delay of samples. The latter
case corresponds to linear-phase prototypes with

, which are discussed in Section
III-D. A suitable choice for is given as
[2], [3].
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In this paper, we restrict ourselves to evenand analysis
and synthesis prototype lengths of and

In this case, all polyphase components
of a given prototype have the same length. Note that we
consider a general approach with different lengths for the
analysis and synthesis prototype.

A. Analysis and Synthesis Polyphase Matrices

1) Critically Subsampling:Let
denote the type-1 polyphase components of the analysis

prototype according to

The analysis polyphase matrix for the critically sampled
case can be written as [7], [9]

(12)

where

(13)

and

(14)

In the same way, the synthesis prototype is decom-
posed into the polyphase filters

Using these type-1 polyphase components, the synthesis
polyphase matrix can now be written as

(15)

where the diagonal matrices and are defined
in the same way as and in (14), and

(16)

for
For completeness, we also give in terms of type-2

components

where

diag

diag

2) Oversampled Case:We use the description of the
polyphase matrices for the critically sampled case and
insert (12) into the relation (8), thus obtaining a more
general expression for the analysis polyphase matrix in the
oversampled case. With the definition of diagonal matrices

diag

(17)

this yields for the analysis polyphase matrix

...
(18)

The synthesis polyphase matrix can be constructed in the
same way. From (15) and (9), we get

(19)

where the matrices containing the type-1 polyphase
components of the synthesis prototype are defined as
in (17).

Note that (compared with critical subsampling) the matrices
and , respectively, are unchanged in the oversampled

case so that the original phase offset in (13) and (16) is
preserved. The matrix is of size , where

, and therefore, the polyphase matrices and
are of size and , respectively.

B. PR Conditions

In the integer oversampled case, we have two ways of
satisfying the PR constraint (3).

1) The PR prototypes for the critically subsampled filter
bank are also used in the oversampled case, and thus,
(3) is met for all up to the factor

2) When the -times oversampled filter bank is designed
in such a way that (3) is satisfied and (11) is not, PR
up to a constant factor is obtained for all oversampling
ratios The filter bank designed this
way also ensures almost PR for all satisfying

; see Section IV.

The latter case is the interesting one for the design of
oversampled PR filter banks because we have more degrees
of freedom for the design process, and thus, the conditions on
both prototypes and can be relaxed. Therefore, we
focus on the discussion of this point.

First, we derive conditions for the polyphase components
in order to satisfy (3) for arbitrary oversampling ratios
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Inserting (18) and (19) into (3) yields

(20)

where we use the type-1 polyphase description on the synthesis
side. Choosing as in (13), as in (16), and writing the
delay as

(21)

leads to the expression for the product [9], [14]

(22)

Inserting this product into (20), we get

(23)

For achieving the PR property, the second term of this equa-
tion, which contains the antidiagonal terms, must be zero. With
(18) and (19), this can be written as

(24)

When this condition is satisfied, we still must constrain the
first term of (23) to be a simple delay. With (18), (19), and
(23), we then can state the requirement

(25)

We now use (17) and express the two PR conditions (24)
and (25) directly with the polyphase components and

This gives the conditions

(26)

and

(27)

which have to be fulfilled for

In order to simplify the expressions (26) and (27), we first
write (26) as

(28)

Note that (28) has the form of a polyphase decomposition of
some filter (which is identically zero here), and therefore, we
can conclude that (28) can be written as a set ofindependent
equations

(29)

Here, was replaced by Equation (27) can be simplified
by replacing the argument with and by writing the
delay with (4) and (21) as

(30)

thus resulting in

(31)

To achieve a PR filter bank, we have to fulfill (29) and find
a feasible solution that also satisfies (31). We will see in the
next sections that we have different solutions in the critically
sampled and the oversampled case, where in the latter case,
we have less severe constraints for the analysis and synthesis
prototypes, which will give us some benefits for the prototype
filter design.

The overall length of filters of the type
in (31) amounts to taps, which allows the
delay parameter to vary between 0 and
Thus, can be understood to be a design parameter that
allows us to choose the overall delay of the analysis-synthesis
system independently of We can achieve minimum delay
prototypes for and linear-phase prototypes (with

) for

C. General Solutions for the Design of PR Prototypes

We can see that (29) is always fulfilled if the synthesis
prototype and the analysis prototype are related as

with ; they differ only by a
constant factor and an additional delay. However, in general,
we have more solutions and more design freedom. In order
to describe the complete set of solutions for the oversampled
case, we rewrite the linear set of (29) and (31) as

(32)
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The matrix of dimension has a block
diagonal structure

...
...

...
...

Because of this block structure, we can split the whole system
into smaller linear sets of equations

(33)

The following partitioning of the vectors and is used.

where

and

where

The submatrices have the dimension
With the abbreviation , they can

be written as (34), shown at the bottom of the page. Note that
the first row of (33) is due to (31), whereas the remaining
rows are due to (29).

Since the matrices are rectangular of size ,
we have underdetermined sets of equations with at least

free parameters. All solutions to (32)
can be obtained by taking one solution of the inhomogeneous
system and adding linear combinations of all other
solutions from the nullspace of (these are the solutions
of ). For the sake of simplicity, let us assume that
the matrixes have maximal rank, that is, rank

(otherwise, we would have polyphase components
with zero coefficients). This means we obtain linearly
independent basis vectors for each
nullspace Such a set of basis vectors for the nullspace
will be denoted as

with

where stands for the polyphase
components of the corresponding nullspace filter.

When we design the analysis prototype in such a
way that it satisfies (31) with , its polyphase
components serve as a special solution to (33) because for

identical analysis and synthesis prototypes, (29) is always
satisfied. Then, all solutions can be characterized by

for (35)

where the coefficients denote the free parameters
in the above problem. The terms are arbitrary (FIR or
IIR) transfer functions. Additionally, we may introduce further
delay such that

Note that the role of the analysis and synthesis prototype
can be interchanged. This can be seen from the PR constraints
in (29) and (31), which still hold when plays the role of

and vice versa. Thus, instead of (35), we can also write

for

These considerations show that we can construct PR filter
banks with different analysis and synthesis prototypes. The
synthesis filters can be longer or shorter as the analysis filters,
and in special cases, we can also have unidentical prototypes
of the same length. This is demonstrated in the example below.

Obviously, if we decompose a signal with our analysis
filter bank and we only use a nullspace filter as a synthesis
prototype, the output signal will be identically zero. If we
construct the synthesis prototype according to (35), the output
will be independent of the parameters and of the filters

However, it is important to notice that the output signal
only is independent of the nullspace component as long as the
subband signals are directly derived from the analysis filter
bank. If the subband signals are modified, which is the case in
real applications, the nullspace component will also influence
the output. Therefore, the nullspace filters can be used in order
to modify and optimize the prototypes.

Example: Let us consider the case The
matrix is then given by the equation at the bottom of the
next page, and the basis vectors for the nullspace ofcan
be obtained as

...
...

...
...

...
...

...
...

(34)
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From this expression, we see that the nullspace polyphase
components have a maximum length of when
the analysis polyphase components are of lengthWith
(35), this leads to analysis and synthesis prototypes of unequal
length. However, if

and

we have the same lengths for both prototypes, but the anal-
ysis and synthesis prototypes do not have to be identical.
These conditions can be satisfied by designing the anal-
ysis prototype for the critically subsampled case [accord-
ing to (31) with
]. When we scale this analysis prototype by and

apply it to an oversampled filter bank with , we
can construct the corresponding PR synthesis prototypes via
(35). In this case, the two nullspace basis vectors reduce to

and
and with

, we obtain unidentical analysis and
synthesis prototypes of the same length.

Fig. 4 shows an example for the nullspace solution where
the analysis prototype of length is designed for

The magnitude frequency response of the analysis prototype
is depicted in Fig. 4(a). For the choice
and the frequency response of the
nullspace filter is shown in Fig. 4(b). Thus, the nullspace
impulse response has a length of
Note that the passband of the nullspace filter is located within
the stopband of the analysis prototype. This gives a vivid
explanation of the properties of a nullspace filter. However,
since we have the free choice for and , such a
behavior must not be found in all nullspace filters.

A synthesis prototype was obtained as the sum of the
analysis and the nullspace filter. Fig. 4(c) depicts the corre-
sponding magnitude frequency response, which qualitatively
looks like the sum of the responses in Fig. 4(a) and (b). A
more constructive solution is depicted in Fig. 4(d). In this case,
the polyphase components of the analysis and the nullspace
filters are linearly combined in such a way that the stopband
attenuation of the resulting synthesis filter is increased.

D. PR Solution for Special Cases

1) Critically Subsampled Case:In the following, it is
shown how the results for the critically subsampled case as
stated in literature [7], [9] are related to the general solution
presented in the last section.

With and , (31) and (29) can be written as

(36)

(37)

for In (36), two products of analysis
and synthesis prototype polyphase components always have
to add up to a delay, which is more restrictive than (31) in
the oversampled case.

The submatrices in (34) now have the
dimension , and the individual systems are given as

Since is now quadratic and is assumed to have full rank,
the nullspace is just the null vector. This means that
given the analysis prototype and the delay parameter, we
have only one solution for the synthesis prototype, which can
be written in closed form as

An FIR solution for the synthesis filter is obtained if

which is exactly the same condition as (36) with
In other words, an FIR solution for the case

essentially requires analysis and synthesis prototypes with
poyphase components being equal up to a scaling factor.

2) Paraunitary Case:The paraunitary case is characterized
by the fact that the sum of the energies of all subband signals is
equal to the energy of the input signal. This may be expressed
as with , where is the polyphase
vector of a finite-energy input signal, and
is the vector of subband signals. denotes the Euclidean
norm.

As can be easily verified, filter banks (oversampled and
critically sampled) are paraunitary if

(38)
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(a) (b)

(c) (d)

Fig. 4. Examples for magnitude frequency responses(M = 4; N = 2;D1 = 0). (a) Analysis prototype. (b) Nullspace filter(�(0)
0 = �

(0)
1 = 20;

C0(z) = C1(z) = 1). (c) Synthesis prototype according to (35) with�(0)
0 = �

(0)
1 = 20;C0(z) = C1(z) = 1. (d) Synthesis prototype according

to (35) with �
(0)
0 = �1; �

(0)
1 = 1; C0(z) = C1(z) = 1:

holds. From this equation, we may conclude that

where

(39)

yields a PR synthesis filter bank. The delay in (39) is in-
troduced in order to achieve causal synthesis filters. The
polyphase matrix contains the solutions from the
nullspace, which have been introduced in Section III-C.

In the following, we restrict ourselves to
From (39), we then see that the synthesis filters are time-
reversed versions of the analysis filters, that is,

As in the critically sampled case [14], this
is fulfilled when we choose linear-phase prototypes

and For the overall delay , this
means that is fixed to The
delay parameters and can be identified as
and , respectively.

Due to the linear-phase property of and its length being
an integer multiple of , two polyphase components are
always related as

for
(40)

For identical linear-phase analysis and synthesis prototypes,
from (40) and (31), it follows that

for

(41)

This result was already established in [15].
Equation (41) states that polyphase components always

have to be power complementary in the oversampled case.
For increasing , this condition on the prototype becomes less
restrictive, and the design freedom increases. Note that (41) is
the only condition on the analysis prototype for paraunitary
oversampled filter banks because with , the
condition (29) is always fulfilled.

E. Relation to DFT Filter Banks

In DFT filter banks, the analysis and synthesis filters,
and , respectively, are obtained by complex modulation
from given prototypes. The literature [10], [11], [13] covers
only the paraunitary case, where the same prototype is used
for analysis and synthesis. However, for relating DFT filter
banks to the cosine-modulated banks derived in this paper, it
is useful to consider two different prototypes ( and )
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also for DFT banks. Thus, and
Note that

we consider -band DFT and -band cosine-modulated
filter banks so that the subbands are of equal spectral width
in both cases.

In the critically subsampled case, the analysis and synthesis
polyphase matrices for the DFT filter bank can be written
with as in (21) and the diagonal matrix with elements

as

diag

(42)

diag

(43)

Here, denotes the DFT matrix and the
the type-1 polyphase com-

ponents of the analysis and synthesis prototype, respectively.
Similar to the derivation for the cosine-modulated filter

bank in Section III-B, the PR constraints for the -times
oversampled DFT filter bank with can be obtained
by inserting (42) into (8), (43) into (9), and replacingby

Hence, the PR condition in (3) can be written as

(44)

which is a similar expression as (20) in the cosine-modulated
case for half the oversampling ratio. However, since

, it turns out that it is sufficient to satisfy only the
following PR condition similar to (31) in order to achieve PR
for an -times oversampled DFT filter bank.

for

Due to the absence of antidiagonal terms in the product of
the analysis and synthesis transform matrices [compare (22)],
the additional PR conditions for the cosine-modulated case in
(29) are not relevant in the oversampled DFT case. Thus, all
PR solutions for the -times oversampled cosine-modulated
case including unidentical analysis and synthesis prototypes
can also be used as solutions in the-times oversampled
DFT case, but they only represent a subset of all possible
solutions. All considerations regarding the system delay, the
link to pseudo QMF filter banks, and the design issues in the
next sections can be applied to oversampled DFT filter banks
as well.

IV. RELATION TO PSEUDO QMF FILTER BANKS

The approaches presented in the previous sections can not
only be used to design PR-times oversampled filter banks.
As we will show in the following, it is also possible to
use a prototype that satisfies the PR constraints for a given

oversampling ratio as an almost PR solution for
with These solutions have the interesting
property that every th aliasing spectrum is canceled.

1) Partial Aliasing Cancelation:We first state some gen-
eral results and consider an arbitrary-channel filter bank
with oversampling ratio and subband sampling rate, as
it is depicted in Fig. 1. The analysis modulation (which is
also called the aliasing component) matrix of size is
defined as

...
...

...
...

(45)

where
We now define the transfer functions

which denote the aliasing contribution of the analysis filter
shifted by for and (for
) the overall transfer function of the nonsubsam-

pled filter bank. The aliasing component vector
can be obtained by

(46)

with the synthesis filter vector
On the other hand, we can

express the aliasing component matrix (45) in terms of the
analysis polyphase matrix (1) according to [16] as

(47)

where diag , and denotes the
DFT matrix.

The synthesis filters can be constructed from
their type-2 polyphase components according to

Writing this with and the
synthesis polyphase matrix (2) yields

(48)

where Combining (46)–(48)
leads to

(49)

Now, we use the fact that is equal to the
left-hand side of (25) if (29) is fulfilled (e.g., because of
the choice ). By inserting this relation into (49)
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and by expressing the resulting equation with the polyphase
components and , we get

...

(50)

The comparison of (50) with (31) shows that for the PR case,
each sum over in (50) amounts to a delay. Then, it can be
shown easily that , where denotes
the overall system delay. This means that in the PR case, all
aliasing components are canceled at the summation point in
the synthesis filter bank.

In order to describe the aliasing-cancelation effects in the
pseudo QMF case, where we use PR prototypes designed for

in an -times oversampled filter bank,
we write (50) with an additional scaling factor as

for In the last step, the sum overwas
split into two sums by the substitution , where

is the subband decimation factor for which
the prototype filters are designed. We now substitute again

, which yields

(51)

For those where is a multiple of , the term
in (51) becomes independent of, and then,

the inner sum corresponds to the PR constraint (31) for an
oversampling ratio When we use prototypes and

, which give PR for [i.e., satisfy (31)], the inner sum
can be replaced by the delay term ,
and we have

Thus, every th aliasing component is canceled out.

The overall transfer function amounts to
, where the overall system delay

(again) can be found as Furthermore,
we have to scale the analysis and synthesis prototype with
factor in order to obtain the original amplitude. With
such scaling, we have no linear distortion at all, which is not
the case when using prototype filters designed as approximate
Nyquist filters for almost PR filter banks [17]–[19]. The
only output distortion is due to those aliasing components that
are not canceled.

2) Examples for Pseudo QMF Solutions:Generally, the fil-
ter bank in Fig. 1 can be regarded as a periodically time-
varying system with the periodic system response

, where denotes the
response of the system at discrete timeto a unit sample
applied at discrete time The aliasing distortions in such
systems are best visualized via bifrequency system functions
[20]–[22]. The bifrequency system function is defined as [22]

Since is periodic in and con-
tains only discrete lines, which refer to the aliasing components
and the overall frequency response. Fig. 5(a) shows the mag-
nitude bifrequency system function for the PR oversampled
case with subbands, an oversampling ratio of ,
and a prototype of length designed for
The diagonal lines indicate the principal location of all
possible aliasing components, which are completely canceled
due to the PR property, and only the line for the transfer
function of the system remains. Since we have a one-to-
one mapping between the input frequency and the output
frequency , this system can be regarded as time invariant.
The PR prototype for is now scaled by and applied
to a critically subsampled filter bank, where the resulting
system bifrequency function is shown in Fig. 5(b). We can see
that every second possible aliasing spectrum is zero, which
confirms the result of the proof above. Since the remaining
aliasing components are significantly suppressed by the high
stopband attenuation of the subband filters and by the property
of the cosine-transform in (13), respectively, this case can be
regarded as the pseudo QMF case. However, since the input-
output mapping is not one-to-one, the system response of this
filter bank is not time invariant.

In a second example, we apply a prototype of length
designed for to a critically subsampled filter

bank with This case can be regarded as the classical
pseudo QMF case, where all aliasing components are
present with a magnitude that corresponds to the prototype
filter’s stopband attenuation. The resulting bifrequency system
function is shown in Fig. 6. Note that although we have
chosen , the aliasing spectrum for
is not present. This is due to the even length of the prototype
filter , which leads to a zero at in the
transfer function and, thus, to a suppression of all signal
components (including aliasing) at the frequency
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(a) (b)

Fig. 5. Normalized magnitude system bifrequency functions. (a) Oversampled perfect reconstruction case forM = 8; L = 2 andLo = 2. (b) Critically
sampled case withM = 8 and the same prototype as in (a). The prototype filter has a length ofLp = 128:

Fig. 6. Normalized magnitude system bifrequency function for a critically
sampled filter bank withM = 8 and a prototype of length 128 designed for
Lo = M:

V. DESIGN PROCEDURE AND EXAMPLES

A. Prototype Optimization

1) General Case:We have seen in Section III-C that in
the case of identical prototypes for the analysis and synthesis
bank, (29) is satisfied, and the prototype, according to (31),
remains to be designed. Expressing the latter equation in the
time domain with yields

(52)

for and , where
denotes the unit sample sequence. The sequences
stand for the result of the convolution of the polyphase impulse
responses and Since we consider
an analysis prototype filter of length ,
each polyphase component has the length , which
results in a total convolution length of The index

can be restricted to the first convolution results
because the first results lead to exactly the

same expressions as the last ones. The case of odd
is formally taken into account by use of the ceiling operator.

Expressing the sums as impulse responses
results in the requirements

(53)

and this yields the PR constraints in the time domain

for
otherwise

(54)

for The delay
parameter can be selected in the range

The number of PR constraints in (54) is
For being a power of two and , this means a
reduction by factor compared with the critically subsampled
case.

For the design of the prototype, we use a quadratic-
constrained least-squares approach [23]. Each from
(54) can be written as a quadratic constraint of the form

with and some
matrix For details on the optimization approach, see
[23].

The constraints (54) are fulfilled numerically under ad-
ditional minimization of the weighted prototype’s stopband
energy, which is independent of and can be written as

(55)

Here, denote the weighting factors for the
different frequency regions, which are characterized by the
edge frequencies Equation (55)
can be expressed as a quadratic form according
to

and

with
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(a) (b)

Fig. 7. Design Example 1. Magnitude frequency responses for linear-phase prototypes. Design parameters:Lp = 256;M = 16;D1 = 7; Q = 2; edge
frequencies[
s ;
s ;
s ] = [0:06�; 0:3�; �], weightsw0 = 1; w1 = 2; � = 10�11: (a) Oversampled case withL = 2. (b) Critically sampled case.

Note that since is a real vector, we only need to take the
real part of the outer product The elements of the
matrix can be given analytically as

Re

2) Paraunitary Case:In this special case with
and linear-phase prototypes satisfying the symmetry condition
(40), we have only time-domain constraints to be
satisfied in order to achieve PR. It was already stated in Section
III-D that for linear-phase filters, the delay parameter is
fixed to so that we can write (52) as

for and The
expressions can now be regarded as the
autocorrelation sequences of the polyphase impulse responses

shifted by samples. Due to the even symmetry
of the autocorrelation ,
we can restrict ourselves to Hence,
in the paraunitary case, we have time-domain PR
constraints according to

with defined as in (53). This is a further reduction of
the required conditions compared with the general case above.
When comparing the number of PR constraints for different
oversampling ratios , here, we obtain the same results as in
the general case.

B. Design Examples

In the following, we present design examples, which show
that by relaxing the number of constraints in the oversampled
case, we can design filters with better properties. In all
examples, the initial filters for the optimization process were
constructed via the pseudo QMF method from [19]. As an
objective function, we used the stopband energy (55). The
optimization was carried out with the NAG Fortran library.
The PR constraints (54) were fulfilled up to some accuracy
, which will be specified in the examples. For displaying

frequency responses, the prototypes were normalized to 0 dB
DC amplification.

Example 1: In this example, we address the paraunitary
case and design a linear-phase prototype filter of length

for subbands and an overall system delay of
samples. Fig. 7(a) shows the magnitude frequency

response of the prototype designed for the oversampled case
with , and Fig. 7(b) corresponds to the critically
subsampled case. The oversampled case yields much higher
stopband attenuation, which shows that the additional design
freedom in the oversampled case can indeed be used to
improve the prototype.

Example 2: Here, we refer to the biorthogonal case and
consider an example with reduced delay, where a prototype of
length is designed for , an overall system
delay of samples and an oversampling ratio of
The prototype is then compared with a linear-phase design
with the same reconstruction delay and The solid
line in Fig. 8(a) shows the magnitude frequency response of
the low-delay prototype with , and the dotted line
corresponds to the linear-phase case with As we can
see, the longer prototype yields higher stopband attenuation
while having the same reconstruction delay.

Fig. 8(b) shows the magnitude frequency response for the
critically subsampled low-delay case with the same
parameters as above. We see again that in the biorthogonal
case as well, where the prototypes do not have linear phase,
we gain advantages by designing prototypes especially for a
given oversampling ratio
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(a) (b)

Fig. 8. Design Example 2: Magnitude frequency responses forM = 8 and an overall system delay ofD = 47; one frequency band in the stopband
region with 
s = 0:1�; � = 10�9. (a) Oversampled case forL = 2 with Lp = 128 (solid line) andLp = 48 (linear-phase case, dotted line).
(b) Critically sampled case withLp = 128:

(a) (b)

Fig. 9. Design Example 3: Prototype lengthLp = 512 for M = 32 subbands, oversampling ratioL = M , and an overall system delay ofD = 447
samples(D1 = 6;Q = 1;
s = 0:03�; � = 10�7). (a) Magnitude frequency response. (b) One period of the filter bank’s overall magnitude
frequency responsejA0(ej
)j:

Example 3: In this example, we design a prototype for the
nonsubsampled case of length
and an overall system delay of samples. Fig. 9 shows
the filter bank’s magnitude frequency response and one period
of the overall magnitude frequency response Due
to the high stopband attenuation, this prototype can be used
for a critically subsampled pseudo QMF filter bank, where the
aliasing components in the stopband region of the prototype
are suppressed. The main aliasing components, however, are
canceled out by the properties of the transforms (13) and (16).

1) Relations Between Stopband Energy, Stopband Attenua-
tion, Filter Length, and Oversampling Ratio:In the following,
we show the effects on the stopband energy and the stopband
attenuation in the paraunitary case when the filter length
and the oversampling ratio are varied. The results for

and are displayed in Fig. 10. All prototypes
are designed with and for

and for , respectively. Due
to the quadratic nature of the objective function (55), the fact
whether or not the obtained solutions correspond to local or
global minima highly depends on the size of the problem and
on the optimization method used.

As expected, we can observe that the stopband energy de-
creases when the filter length increases; see Fig. 10. However,
in the case for filter lengths larger than 350, there
is not much improvement, and one encounters the limits of
the used optimization algorithm. There are even cases where
the best filters have been found for critical subsampling. Since
these prototypes also give PR in the oversampled case, we can
conclude that in these cases, the solutions for represent
local minima of the objective function.

From Fig. 10(a) and (b), we see that for fixed prototype
lengths, the stopband energy decreases when the subsampling
rate becomes smaller. This confirms the observation in
Example 1. A decreasing leads to a decreasing number
of PR constraints, and thus, we may expect a lower stop-
band energy. However, oversampling ratios bring only
negligibly small improvements compared with For
the stopband attenuation, which is the interesting measure in
practice, we qualitatively have the same results as for the
stopband energy. See Fig. 10(c) and (d) for average stopband
attenuations.

2) Relations Between Stopband Energy, Stopband Attenua-
tion, System Delay, and Oversampling Ratio:We here address
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(a) (b)

(c) (d)

Fig. 10. Stopband energy for (a)M = 16. (b) M = 32 and average stopband attenuation for (c)M = 16. (d) M = 32 versus prototype length
for different subsampling rates.

(a) (b)

Fig. 11. Stopband energy (a) and average stopband attenuation (b) versus overall system delay for different subsampling rates(M = 8; Lp = 128):

the biorthogonal case and measure the effects on the stopband
energy and the stopband attenuation due to a change of the
parameter and, thus, due to the overall system delayfor
different oversampling ratios The other design parameters

are fixed; they are
and The results are shown in Fig. 11. We observe
that for increasing delay, the objective function decreases. As
in the previous example, we see that an oversampling ratio of
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only gives a small amount of improvement compared
with

VI. CONCLUSION

We have derived the PR conditions for oversampled cosine-
modulated filter banks with arbitrary system delay. It turned
out that given an analysis prototype, the synthesis prototype
is not uniquely determined. The complete set of solutions was
expressed in terms of a single solution and the solutions from
the nullspace of a matrix operator. Within this framework,
PR filter banks with unidentical prototypes for the analysis
and synthesis stage can be designed. The design examples
have shown that PR prototypes for oversampled filter banks
with much higher stopband attenuations than for critically
subsampled filter banks can be found. All PR solutions in the
cosine-modulated case can be used for oversampled DFT filter
banks as well. Finally, relations between PR oversampled and
critically subsampled cosine-modulated pseudo QMF banks
were discussed. It was shown that pseudo QMF banks having
a partial aliasing-cancelation property can be designed via the
design of PR oversampled filter banks.
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