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Abstract—In this paper we consider the ensemble of codes
formed by a serial concatenation of a repetition code with mul-
tiple accumulators through uniform random interleavers. Based
on finite length weight enumerators for these codes, asymptotic
expressions for the minimum distance and an arbitrary number
of accumulators larger than one are derived. In accordance with
earlier results in the literature, we first show that the minimum
distance of RA codes can grow, at best, sublinearly with the block
length. Then, for RAA codes and rates of1/3 or smaller, it is
proved that these codes exhibit linear distance growth with block
length, where the gap to the Gilbert-Varshamov bound can be
made arbitrarily small by increasing the number of accumulators
beyond two. In order to address rates larger than1/3, random
puncturing of a low-rate mother code is introduced. We show that
in this case the resulting ensemble of RAA codes asymptotically
achieves linear distance growth close to the Gilbert-Varshamov
bound. This holds even for very high rate codes.

I. I NTRODUCTION

Since the invention of turbo codes. iterative decoding
schemes with even better performance than turbo codes have
been designed. Among these are serially concatenated codes,
where the simplest code is the repeat-accumulate (RA) code
[1] which consists only of a repetition code, an interleaver, and
an accumulator. Such a code has the advantage of very low
decoding complexity compared to serially concatenated code
constructions with convolutional constituent codes. Another
benefit of RA codes, compared to powerful code construc-
tions such as LDPC codes, is the extremely low encoding
complexity ofO(1), whereas LDPC codes have an encoding
complexity of O(g), with g much smaller than the block
length [2]. This makes RA codes well suited in power-
limited environments, for example, for physical layer error
correction in battery powered sensor network nodes or in space
communications.

In this paper we address multiple serially concatenated RA
codes, where design guidelines for more general double seri-
ally concatenated codes have been given in [3]. In particular,
we focus on the serial concatenation of an outer repetition code
with two or more accumulators connected through random
interleavers. The resulting code ensemble is then analyzed
using the uniform interleaver approach [4] by averaging over
all possible interleavers. Our work is mainly motivated by
[5], where a similar setup was considered. There, the authors
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show that for an asymptotically large number of accumulators
and uniform interleavers there are codes in the ensemble
whose minimum distance grows linearly with block length and
which achieve the Gilbert-Varshamov-Bound (GVB). They
also provide numerical calculations of the minimum distance
for different numbers of accumulators and finite block lengths,
but they do not make any statement regarding the asymptotic
minimum distance growth rate for the practically more relevant
case of a finite (small) number of accumulators. For the
case of two accumulators, in [6] it is shown that there exist
RAA ensembles with linear distance growth, but besides the
existence proof no growth rate is given. In the following, we
try to fill this gap and present an analysis of the asymptotic
minimum distance growth rate for RA and repeat multiple
accumulate codes. The main result of the paper is that for
RAA codes and rates equal to1/3 or smaller, we show that
these codes exhibit linear distance growth with block length,
where the gap to the GVB can be made arbitrarily small
by increasing the number of accumulators beyond two. In
addition, we consider random puncturing at the output of
the last accumulator. We show that in this case the resulting
ensemble of RAA codes achieves linear distance growth close
to the GVB for any code rate smaller than one.

The paper is organized as follows. In Section II we consider
the ensemble average weight spectrum of RA codes and show
that the minimum distance cannot grow linearly with block
length. Section III addresses the case of repeat and multiple
accumulate codes, and random puncturing and its effect on the
minimum distance is discussed in Section IV.

II. ENSEMBLE AVERAGE WEIGHT SPECTRUM FORRA
CODES

In this section we briefly address the minimum distance of
RA codes, and we show that these codes cannot achieve linear
distance growth with block length, i.e., they are asymptotically
bad. Related results have already been established in [6],
[7], and [8], where lower and upper bounds on minimum
distance for more general serially concatenated codes have
been derived. In order to introduce the notation and for tutorial
reasons we restate these results, where our derivation is based
on the uniform interleaver approach.

The RA encoder is depicted in Fig. 1. The binary input
sequenceu has lengthK and weight w, R denotes the
repetition code of rateR = 1/q, which leads to a code
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Fig. 1. Repeat-accumulate encoder.

sequence of weightqw and lengthN = qK. The subsequent
interleaverπ1 permutes the code sequence. We consider the
ensemble of all interleavers by using the uniform interleaver
approach [4], where each possible interleaver realizationhas
the same probability1/2N . The permuted output sequence is
applied to the recursive convolutional codeA1 with generator
polynomial g(D) = 1/(1 + D) (accumulator), leading to an
output sequencev of weight d1.

Theorem 1. The average distanced1 for an ensemble of RA
codes with repetition factorq ≥ 3 is smaller thanN

q−2

q with
vanishing probability if the block length tends to infinity,i.e.,

lim
N→∞

Pr(d1 ≤ N
q−2

q
−ǫ) = 0,

whereǫ can be made arbitrarily small.

Proof: The conditional probability that a weightd1 code-
word is obtained at the output of the accumulator for a given
input weightw can be expressed using the uniform interleaver
approach as [1], [4]

Pr(d1|w) =

(
d1 − 1

⌈ qw
2 ⌉ − 1

)(
qK − d1

⌊ qw
2 ⌋

)

(
qK

qw

) . (1)

The total number of input sequences having weightw is
(
K
w

)
.

Then, the ensemble average input-output weight enumerator
function (IOWEF) Ād1,w, specifying the total number of
weight-d1 output sequences for a fixed input weightw, is given
as

Ād1,w =

(
K

w

)

Pr(d1|w). (2)

By using Stirling’s approximation and the fact that

ℓ∏

λ=0

(N − λ) ≥
N ℓ

ϕ(ℓ)
, with ϕ(ℓ) := exp

(
ℓ(ℓ + 1)

2N

)

,

we can upper bound (2) as

Ād1,w ≤
Nw d

⌈qw/2⌉−1
1 N⌊qw/2⌋

qw Nqw
2qw

⌈qw

2

⌉

ϕ(w). (3)

The ensemble average IOWEF giving the total number of
output sequences with weightd ≤ δ can now be obtained
from Ād1≤δ,w =

∑δ
d1=1 Ād1,w. Using (3) then yields

Ād1≤δ,w ≤
Nw δ⌈qw/2⌉ N⌊qw/2⌋

Nqw

(
2q

q

)w ⌈qw

2

⌉

ϕ(w)

︸ ︷︷ ︸

=:f(w,N)

. (4)

We now assume that the weightδ can be expressed in terms
of the block lengthN as δ = Nν , with 0 < ν < 1, whereν
is chosen such that

lim
N→∞

Ād1≤δ,w = 0 (5)

is satisfied for allw. SincelimN→∞ f(w,N) = f(w) in (4),
we only need to satisfy

ν
⌈qw

2

⌉

− (q − 1)w +
⌊qw

2

⌋

< 0 (6)

in order to achieve (5). Two cases can be considered: For
evenqw, the evaluation of (6) directly leads toν < 1 − 2/q.
For odd qw, we obtainν < 1+w(q−2)

qw+1 . We thus haveν <

min
(

1 − 2/q, 1+w(q−2)
qw+1

)

= 1 − 2/q for all w. This leads to

expressing the weightδ as δ = N1−2/q−ǫ, for any ǫ > 0.
Since (5) holds we also havelimN→∞ Ād1≤δ = 0, where

Ād1≤δ =

δ∑

d1=1

K∑

w=1

Ād1,w

represents the ensemble average output weight enumerator
function (WEF) specifying the overall number of output se-
quences of weightd1 ≤ δ. Since (see [5], [9])

Pr(d ≤ δ) ≤ (Ā0 − 1) + Ād1≤δ,

which is a consequence of the Markov inequality, the theorem
is proved.

The following corollary follows immediately.

Corollary 1. In the ensemble of length-N RA codes with
repetition factorq ≥ 3 and N → ∞ almost all codes have
minimum distance lower bounded by

dRA
min > N

q−2

q
−ǫ,

whereǫ can be made arbitrarily small.

An upper bound for the minimum distance is given by the
following theorem.

Theorem 2. The minimum distance of the ensemble of RA
codes is upper bounded forN → ∞ as

dRA
min < O(N

q−1

q ),

whereq ≥ 2.

A proof is given in [8]. An alternative proof can be obtained
by employing sphere-packing arguments analogous to the
proof of the sphere-packing bound for multiple turbo codes
in [10]. From Corollary 1 and Theorem 2 we conclude that
the minimum distance of almost all RA codes grows with the
block lengthN asO(Nν) where(q−2)/q−ǫ ≤ ν < (q−1)/q.

III. ENSEMBLE AVERAGE WEIGHT SPECTRUM FOR REPEAT

MULTIPLE ACCUMULATE CODES

In this section we generalize the encoder from Fig. 1 and
consider a serial concatenation ofM accumulatorsAℓ with
generator polynomials1/(1+D) separated by interleaversπℓ,
1 ≤ ℓ ≤ M . This setup is shown in Fig. 2. In particular, based
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Fig. 2. Repeat multiple accumulate encoder.

on an average weight enumerator analysis, we show that the
repeat double accumulate (RAA) ensemble (M = 2) for q ≥
3 is asymptotically good, i.e., its average minimum distance
asymptotically exhibits linear growth with block length. This
analysis is then extended toM ≥ 3, where it is shown that
for q = 2 asymptotically linear minimum distance growth can
be obtained for the RAAA code ensemble.

Definition 1. The asymptotic spectral shape function [9], [11]
is denoted as

r(ρ) := lim
N→∞

1

N
ln ĀρN , (7)

whereρ = d/N is the normalized codeword weight and̄Ad

is the ensemble average WEF.

From (7), the WEF can be expressed asĀρN ∼ eN r(ρ).
Thus, the important property ofr(ρ) in terms of minimum
distance can be stated as follows: if the function is negative
for someρ, ρ0 > ρ > 0, then crosses zero and is positive for
ρ > ρ0, it follows that, for almost all codes in the ensemble,
the minimum distance is lower bounded bydmin ≥ ρ0N as
the block lengthN tends to infinity.

A. Repeat double accumulate codes

In the following we derive an expression for the spectral
shape function for the ensemble of RAA codes. By expur-
gating this ensemble, we are then able to find a normalized
codeword weightρ0 such thatr(ρ0) = 0 anddr/dρ

∣
∣
ρ=ρ0

> 0.
For notational convenience, we setd := d2 in the following.

Analogous to (3), the conditional probability that a weight
d1 codeword is obtained at the output of the first accumu-
lator and a weightd codeword at the output of the second
accumulator for a given input weightw is

Pr(d1, d|w) =
(

d1 − 1

⌈ qw
2 ⌉ − 1

)(
qK − d1

⌊ qw
2 ⌋

)(
d − 1

⌈d1

2 ⌉ − 1

)(
qK − d

⌊d1

2 ⌋

)

(
qK

qw

) (
qK

d1

) ,

which can be rewritten as

Pr(d1, d|w) =
(

qK − qw

d1 − ⌈ qw
2 ⌉

)(
qw

⌈ qw
2 ⌉

)(
d1

⌈d1

2 ⌉

)(
qK − d1

d − ⌈d1

2 ⌉

)

(
qK

d1

) (
qK

d

) ·

⌈
qw
2

⌉ ⌈
d1

2

⌉

d1 d
.

(8)

The ensemble average IOWEF̄Ad1,d,w can now be obtained
as

Ād1,d,w =

(
K

w

)

Pr(d1, d|w). (9)

By using Stirling’s approximation, combining (8) and (9)
yields

Ād1,d,w = exp (f(α, β, ρ)N + O(ln N)) , (10)

where α = w/K = qw/N and β = d1/N are normalized
weights, and the function

f(α, β, ρ) =
H(α)

q
−H(β)−H(ρ)+H

(
β − α/2

1 − α

)

(1−α)

+ α ln 2 + H

(
ρ − β/2

1 − β

)

(1 − β) + β ln 2, (11)

whereH(·) is the binary entropy function. Note that, due to
the serial concatenation of accumulators, the quantitiesα, β,
and ρ can be expressed as functions of each other such that
f(·, ·, ·) can be regarded as a one-dimensional function with
two of the arguments being fixed.

Furthermore, the ensemble average WEF specifying the
number of codewords with weightd, 1 ≤ d ≤ N/2, can be
upper bounded as

Ād =

K∑

w=1

N∑

d1=1

Ād1,d,w ≤ K N max
1≤w<K

max
1≤d1<N

Ād1,d,w.

(12)
Combining (12), (10), and (7) leads to an upper bound on the
asymptotic spectral shape function given by

r(ρ) ≤ r′(ρ) = max
0<α<1

max
0<β<1

f(α, β, ρ). (13)

In the following we address the maximization of the func-
tion f(α, β, ρ) over α andβ. A maximum off(·) can occur
on the boundary, i.e., forα = 0 and β = 0 or in the region
{0 < α < 1, 0 < β < 1}. In the latter case, the necessary
condition is that both the partial derivatives∂f/∂α and∂f/∂β
equal zero at the point corresponding to the maximum. The
derivative∂f/∂α is given as

∂f

∂α
= −

1

q
ln

(
α

1 − α

)

+
1

2
ln

(
β − α/2

1 − α

)

+

1

2
ln

(
1 − β − α/2

1 − α

)

+ ln 2,

and∂f/∂α = 0 is obtained if

4

(
β − α/2

1 − α

) (

1 −
β − α/2

1 − α

)

=

(
α

1 − α

) 2

q

,



which leads to

β =
1

2
±

1 − α

2

√

1 −

(
α

1 − α

) 2

q

. (14)

From (14) it can be observed that the extremal points off(·)
occur whenα ≤ 1/2. Also, because of symmetry, we restrict
ourselves toβ ≤ 1/2. Then, from (14) we have

β =
1

2
−

1 − α

2

√

1 −

(
α

1 − α

) 2

q

. (15)

Evaluating the second derivative∂2f/∂α2 = 0 at the value of
β given in (15) leads to a negative value, and thusf(α, β, ρ)
exhibits a maximum at this point for any value ofρ. Likewise,
the derivative∂f/∂β can be obtained as

∂f

∂β
= ln

(
β

1 − β

)

− ln

(
β − α/2

1 − β − α/2

)

+

1

2
ln

(
ρ − β/2

1 − β

)

+
1

2
ln

(
1 − ρ − β/2

1 − β

)

+ ln 2 (16)

where∂f/∂β = 0 holds if

4

(
ρ − β/2

1 − β

) (

1 −
ρ − β/2

1 − β

)

=

(
1 − β

β
·

β − α/2

1 − β − α/2

)2

.

(17)
Finally, the solution of the quadratic equation (17) in the
variablex = (ρ − β/2)/(1 − β) leads to

ρ =
1

2
−

1 − β

2

√

1 −

(
1 − β

β
·

β − α/2

1 − β − α/2

)2

, (18)

whereβ satisfies (15). For the solution of (17) we have again
invoked symmetry and assumed thatρ ≤ 1/2. Hence, a triple
α, β, ρ maximizingf(α, β, ρ) over α andβ can be computed
via (15) and (18) for a givenρ1. An upper bound forr(ρ) is
then obtained via (13) and (11).

In Fig. 3 the upper boundr′(ρ) is plotted for ratesR = 1/q
with q = 3, 4, 5, 6 in the interesting region. We observe that for
all considered rates the functionr′(ρ) exhibits a zero crossing
at ρ = ρ0, and therefore almost all codes in the ensemble
do not have any codewords with normalized weightρ < ρ0.
In other words, the minimum distance of almost all codes
in the ensemble is lower bounded bydmin ≥ ρ0 N and thus
grows linearly with block length. In Fig. 3 the values of the
GVB for the different rates are shown as vertical dashed lines.
The exact values of the zero crossings forρ = ρ0 are listed
in Table I along with the corresponding values of the GVB.
We can see that, especially for smaller code rates, the growth
rate of the minimum distance of the RAA ensemble is close
to the GVB. Note that forq = 2 we are not able to show
linear growth with block length. This is due to the fact that
for the RA code, according to Theorem 1,q = 2 does not
even guarantee a sublinear distance growth rate. However, by
introducing random puncturing of a low rate RAA mother

1The structure of equations (15) and (18) suggests a slightlydifferent but
equivalent approach, whereα is used as the free parameter andβ andρ are
determined via (15) and (18).
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Fig. 3. Upper boundr′(ρ) for the RAA code ensemble with ratesR =
1/3, 1/4, 1/5, 1/6 and the corresponding values of the GVB.

code, the resulting code ensemble exhibits linear distance
growth, as will be shown in Section IV.

TABLE I
NORMALIZED MINIMUM DISTANCES ρ0 AND THE CORRESPONDING

VALUES OF THE GVB FOR THERAA ENSEMBLE WITH DIFFERENT CODE
RATES.

q ρ0 GVB

3 0.1323 0.1740

4 0.1911 0.2145

5 0.2286 0.2430

6 0.2549 0.2644

B. Generalization to multiple accumulators

We now generalize the results of the previous subsection
to repeat-multiple-accumulate codes withM > 2, i.e., with
more than two accumulators (see Fig. 2). In this general
case the conditional probability of the weight vectord =
[d1, d2, . . . , dM ] for a given input weight can be written as

Pr(d|w) = Pr(d1|w) ·

M∏

ℓ=2

(
dℓ − 1

⌈dℓ−1

2 ⌉ − 1

)(
qK − dℓ

⌊dℓ−1

2 ⌋

)

(
qK

dℓ−1

) ,

where Pr(d1|w) is defined in (3). The ensemble average
IOWEF is then given by

Ād,w =

(
K

w

)

Pr(d|w) = exp (f(γ)N + O(lnN)) , (19)

where in the last step Stirling’s approximation is employed.
The vectorγ contains normalized weights and withd := dM

is given by

γ = [γ0, γ1, . . . , γM ] =

[

α,
d1

N
,
d2

N
, . . . , ρ =

d

N

]

.



The functionf(γ) in (19) can now be written as

f(γ) =
H(α)

q
−

M−1∑

ℓ=1

H(γℓ)

+
M∑

ℓ=1

H

(
γℓ − γℓ−1/2

1 − γℓ−1

)

(1 − γℓ−1) + ln(2)
M−1∑

ℓ=0

γℓ.

Analogous to (13) for the RAA case,f(γ) can be maximized
over γ0, γ1, . . . , γM−1, where by employing a similar deriva-
tion as in Section III-A the solution for a givenρ = γM can
be expressed by the following recursive set of equations:

γ1 =
1

2
−

1 − α

2

√

1 −

(
α

1 − α

) 2

q

, (20)

γℓ+1 =
1

2
−

1 − γℓ

2

√

1 −

(
1 − γℓ

γℓ
·

γℓ − γℓ−1/2

1 − γℓ − γℓ−1/2

)2

(21)

for 1 ≤ ℓ ≤ M − 1.
As an example, forM = 3, the resulting valuesρ0

for the zero-crossings of the functionsr′(ρ) are shown for
q = 2, 3, 4, 5, 6 and compared to the GVB in Fig. 4. The
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Fig. 4. GVB and corresponding normalized asymptotic minimum dis-
tancesρ0 = dmin/N for the RAAA code ensemble with ratesR =
1/2, 1/3, 1/4, 1/5, 1/6.

exact valuesρ0 are listed in Table II. We observe that the
resulting asymptotic minimum distance growth rates of the
RAAA code ensemble forq ≥ 3 essentially achieve the GVB,
which verifies the results obtained in [5] for finite block length.
Also, in contrast to the RAA case in Section III-A, the RAAA
code ensemble achieves linear distance growth even for the
R = 1/2 case due to the extra interleaver and accumulator.

IV. REPEAT MULTIPLE ACCUMULATE CODES WITH

RANDOM PUNCTURING

For the RAA code ensemble analyzed in Section III-A we
were not able to show linear distance grow forR = 1/q =
1/2. This motivates us to employ random puncturing at the

TABLE II
NORMALIZED MINIMUM DISTANCES ρ0 AND THE CORRESPONDING

VALUES OF THE GVB FOR THERAAA ENSEMBLE WITH DIFFERENT CODE
RATES.

q ρ0 GVB

2 0.1034 0.1100

3 0.1731 0.1740

4 0.2143 0.2145

5 0.2428 0.2430

6 0.2643 0.2644

output of the inner accumulator in connection with a lower-
rate RAA mother code. In particular, random puncturing is
useful for achieving ratesR > 1/3 from the R = 1/3 RAA
code ensemble, but for the sake of completeness the following
analysis is given for the general case of punctured repeat
multiple accumulate codes.

Let N ′ be the number of code symbols after puncturing,
d′ = d′M the corresponding codeword weight, andR′ the code
rate, respectively. We also define the ratiosr = N ′/N and
ρ′ = d′/N as the new normalized output weight after punc-
turing. The conditional probability of a weight-d′ sequence
after puncturing is now given by

Pr(d′|d,N ′) =

(
d

d′

)(
N − d

N ′ − d′

)

(
N

N ′

) .

Again using Stirling’s approximation, this can be expressed as

Pr(d′|d,N ′) = exp

{

N

[

H

(
ρ′

ρ

)

ρ+

H

(
r − ρ′

1 − ρ

)

(1 − ρ) − H(r)

]}

.

Considering the general case of repeat multiple accumulate
codes, the ensemble average IOWEF can now be obtained
from (19) as follows:

Ād,d′,w =

(
K

w

)

Pr(d|w) Pr(d′|d,N ′)

= exp (F (γ, ρ′, r)N + O(lnN)) ,

whereF (γ, ρ′, r) = f(γ) + ϕ(ρ′, ρ, r) and

ϕ(ρ′, ρ, r) = H

(
ρ′

ρ

)

ρ+H

(
r − ρ′

1 − ρ

)

(1−ρ)−H(r). (22)

Analogous to (12) and (13) for the RAA ensemble in Sec-
tion III-A, an upper bound for the normalized spectral shape
function r(d/N ′) = r(ρ′/r) can be obtained as

r(ρ′/r) ≤ r′(ρ′/r) = max
γ

F (γ, ρ′, r), (23)

where the maximization must now be carried out over all
elements of the vectorγ including ρ = γM . Sinceϕ(ρ′, ρ, r)
in (22) does not depend on the variablesγ0, γ1, . . . , γM−1,
we can simply employ (20) and (21) for1 ≤ ℓ ≤ M − 1. In



addition, we need to compute the derivative∂F/∂ρ, which is
given as

∂F

∂ρ
= ln

(
ρ2 (1 − ρ − γM−1/2)

(1 − ρ)2 (ρ − γM−1/2)

)

+ln

(
1 − ρ − r + ρ′

ρ − ρ′

)

.

Rewriting the condition∂F/∂ρ = 0 for ρ′ as a function ofγ
yields

ρ′ =
ρ (c + 1) + r − 1

1 + c
, where c =

(1 − ρ)2 (ρ − γM−1/2)

ρ2 (1 − ρ − γM−1/2)
.

(24)
The upper bound for the asymptotic spectral shape function in
(23) can now be computed using (20) and (21), for1 ≤ ℓ ≤
M − 1, and (24).

Fig. 5 considers the particularly interesting RAA case and
shows the normalized minimum distancesρ0 = dmin/N
corresponding to the zero crossings ofr′(ρ′/r) for different
mother code ratesR and punctured code ratesR′. We observe
that, compared to the unpunctured RAA code ensemble from
Section III-A, linear distance growth is also obtained for the
punctured ensemble for ratesR′ > 1/3. This behavior is due to
the extra randomness added by puncturing the encoder output.
We also see that the asymptotic normalized minimum distance
tends to be closer to the GVB for higher rates, which is due to
the fact that a larger number of puncturing patterns and thusa
more ”random-like” construction, is available for smallerN ′.
Table III gives some numerical values ofρ0 for a rateR = 1/3
mother code.
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Fig. 5. GVB and corresponding normalized asymptotic minimum distances
ρ0 = dmin/N for the randomly punctured RAA code ensemble with mother
codes of ratesR = 1/q = 1/3, 1/4, 1/5.

V. CONCLUDING REMARKS

We have shown that RAA codes for code rates equal to
1/3 or smaller are asymptotically good in the sense that
they achieve asymptotic linear distance growth with block
length. Moreover, we have shown that the distance growth
rates approach the GVB for small code rates. This extends the
results of [5], where linear distance growth is only shown for
an infinite number of accumulators. Our results also extend

TABLE III
NORMALIZED MINIMUM DISTANCES ρ0 AND THE CORRESPONDING
VALUES OF THE GVB FOR THE PUNCTUREDRAA ENSEMBLE WITH

DIFFERENT CODE RATES EMPLOYING A MOTHER CODE OF RATE1/3.

R ρ0 GVB

0.4 0.1242 0.1461

0.5 0.1036 0.1100

0.6 0.0771 0.0794

0.7 0.0522 0.0532

0.8 0.0306 0.0311

0.9 0.0125 0.0130

those of [6], where linear distance growth for the RAA
ensemble is shown, but no growth rate is given. Further,
by introducing random puncturing at the output of the inner
accumulator, we demonstrate that the resulting high rate RAA
ensembles exhibit linear distance growth, where the growth
rate is close to the GVB if the mother code rate is sufficiently
low. Finally, in the case of three accumulators, we obtain linear
distance growth for code ensembles employing a rateR = 1/2
repetition code.

Despite the fact that the repeat multiple accumulate code
ensembles considered in this paper proved to be asymptotically
good, the convergence behavior of these codes may not be
sufficient to provide an iterative decoding threshold closeto
capacity, as can be seen from the simulation results presented
in [5]. However, the results obtained may be useful in con-
structing similar code ensembles based on simple component
codes with low encoding complexity, asymptotically linear
distance growth, and good convergence behavior.
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