New Results on the Minimum Distance of Repeat
Multiple Accumulate Codes

Jorg Kliewer Kamil S. Zigangirov, Daniel J. Costello, Jr.
Department of Electrical and Computer Engineering, Department of Electrical Engineering,
New Mexico State University, Las Cruces, NM 88003, USNniversity of Notre Dame, Notre Dame, IN 46556, USA
Email: jkliewer@nmsu.edu Email: {kzigangi, costello.p@nd.edu

Abstract—In this paper we consider the ensemble of codes show that for an asymptotically large number of accumutator
formed by a serial concatenation of a repetition code with mul- and uniform interleavers there are codes in the ensemble
tiple accumulators through uniform random interleavers. Based whose minimum distance grows linearly with block length and
on finite length weight enumerators for these codes, asymptotic . . .
expressions for the minimum distance and an arbitrary number which aChleve the_Gllbert-Varghamov-Bounq _(GVB)'_ They
of accumulators larger than one are derived. In accordance with @lso provide numerical calculations of the minimum distanc
earlier results in the literature, we first show that the minimum  for different numbers of accumulators and finite block ldvsgt
distance of RA codes can grow, at best, sublinearly with the block pyt they do not make any statement regarding the asymptotic

length. Then, for RAA codes and rates ofl/3 or smaller, it is e ; ; aley
proved that these codes exhibit linear distance growth with block mlnlmu;n dli_ta_rsce grOV\ﬁh rate ft())r thefpractlcall)l/ rt'nore rF th

length, where the gap to the Gilbert-Varshamov bound can be case of a finite (small) ”‘4““ er_ 0_ accumulators. For _e
made arbitrarily small by increasing the number of accumulators ~ €ase of two accumulators, in [6] it is shown that there exist

beyond two. In order to address rates larger than1/3, random RAA ensembles with linear distance growth, but besides the
puncturing of a low-rate mother code is introduced. We show that  existence proof no growth rate is given. In the following, we
in this case the resulting ensemble of RAA codes asymptotically v, 1 fil| this gap and present an analysis of the asymptotic
achieves linear distance growth close to the Gilbert-Varshamov _°. . dist ih rate for RA and i ltiol
bound. This holds even for very high rate codes. minimum distance grow rf”‘ e for an repea_ muluple
accumulate codes. The main result of the paper is that for
I. INTRODUCTION RAA codes and rates equal 19’3 or smaller, we show that

these codes exhibit linear distance growth with block langt

Since thg invention of turbo codes. iterative deCOdm\%’/here the gap to the GVB can be made arbitrarily small
schemes with even better performance than turbo codes hav

e .

been designed. Among these are serially concatenated,co§ gnereasing the _number of accumulc—_ltors beyond two. In
aedmon, we consider random puncturing at the output of
the

where the simplest code is the repeat-accumulate (RA) cq last accumulator. We show that in this case the resulting

[1] which consists only of a repetition code, an interlea ensemble of RAA codes achieves linear distance growth close
an accumulator. Such a code has the advantage of very |ow
té’ the GVB for any code rate smaller than one.

in mplexit mpared t riall n nat : . . .
decoding complexity compared to serially concatenatecco The paper is organized as follows. In Section Il we consider

constructions with convolutional constituent codes. Aeot the ensemble average weiaht spectrum of RA codes and show
benefit of RA codes, compared to powerful code construg- - g gnt sp . .
r&1at the minimum distance cannot grow linearly with block

tions such as LDPC codes, is the extremely low encodil th. Section Il addresses the case of repeat and naultipl
complexity of O(1), whereas LDPC codes have an encodingrIg ' ! pez P
ccumulate codes, and random puncturing and its effecten th

complexity of O(g), with ¢ much smaller than the block minimum distance is discussed in Section IV
length [2]. This makes RA codes well suited in power- '
limited environments, for example, for physical layer €rro ||, ENSEMBLE AVERAGE WEIGHT SPECTRUM FORA
correction in battery powered sensor network nodes or icespa CODES
comr‘{whuiglgggzﬁ;le address multiple serially concatenated %In this section we briefly address the minimum dis_tance_ of

. S A codes, and we show that these codes cannot achieve linear
codes, where design guidelines for more general double Selctance growth with block length, i.e., they are asympedly
ally concatenated codes have been given in [3]. In parm,cul%ad Related results have alreéd.yqbeen established in [6]
we focus on the serial concatenation of an outer repetitialec 71, 'and [8], where lower and upper bounds on minimum '
W'th two or more accumulators connected _through rando |atance for more general serially concatenated codes have
interleavers. The resulting code ensemble is then analyzk(Ja

using the uniform interleaver approach [4] by averagingrove een derived. In order to introduce the notation and forriako
9 . . pp . . y 'g 9 reasons we restate these results, where our derivatiorsexba
all possible interleavers. Our work is mainly motivated b

S . %n the uniform interleaver approach.
[5], where a similar setup was considered. There, the aﬂthor.l.he RA encoder is depicted in Fig. 1. The binary input

This work was supported in part by NSF Grant CCF05-15012, N&gant  S€quenceu has lengthK and Weightw, R denotes the
NNX07AK53G, and the University of Notre Dame Faculty Resb@cogram.  repetition code of rateR = 1/¢, which leads to a code



u v We now assume that the weightcan be expressed in terms

R g - A of the block lengthV asé = N, with 0 < v < 1, wherev
weightw weightqw weightd, is chosen such that
Fig. 1. Repeat-accumulate encoder. 1\}520 Adgy<sw =0 ®)

is satisfied for alkw. Sincelimy . f(w, N) = f(w) in (4),

sequence of weighjw and lengthN = ¢K. The subsequent we only need to satisfy

interleaverm; permutes the code sequence. We consider the v [@W (g Dw+ {@J <0 (6)
ensemble of all interleavers by using the uniform inter&gav 2 2

approach [4], where each possible interleaver realizati@® in order to achieve (5). Two cases can be considered: For
the same probability /2. The permuted output sequence igvenquw, the evaluation of (6) directly leads o< 1 — 2/q.
applied to the recursive convolutional code with generator For odd qw, we obtainy < % We thus haver <
28%:?2‘;2 lféfge ofl\{\f;igﬁ]zi_(accum“'amr)’ leading to an . (1 2/q, 22 = 1~ 2/q for all w. This leads to

expressing the weighi asé = N'~2/2=¢ for any ¢ > 0.
Theorem 1. The average distancé, for an ensemble of RA gjnce (5) holds we also haven . Ad1<6 — 0, where

codes with repetition factog > 3 is smaller thanN @ with

vanishing probability if the block length tends to infinitg., - -
gp Y g ¥ Ag <5 = E E Ag,w
q—2
lim Pr(d; < N« ~€) =0, dy=1w=1
N=ee represents the ensemble average output weight enumerator
wheree can be made arbitrarily small. function (WEF) specifying the overall number of output se-

Proof: The conditional probability that a weighlt code- quences of weightl, < 9. Since (see [5], [9])

word is obtained at the output of the accumulator for a given Pr(d <6) < (Ag—1) + Ad1<67

input weightw can be expressed using the uniform interleaver
approach as [1], [4] which is a consequence of the Markov inequality, the theorem

is proved. u
( di—1 Y\ (qK —dy The following corollary follows immediately.
[

qw _ qw
1-1 7] . (1) Corollary 1. In the ensemble of length- RA codes with
(QK> repetition factorq > 3 and N — oo almost all codes have
qw minimum distance lower bounded by

Pr(dy|w) =

The total number of input sequences having weigtis (). dRAy
Then, the ensemble average input-output weight enumerator
function (IOWEF) Ay, ., specifying the total number of Wheree can be made arbitrarily small.

weightd; output sequences for a fixed input weightis given  An upper bound for the minimum distance is given by the

as % following theorem.
Adyw = <w> Pr(dy|w). (2)  Theorem 2. The minimum distance of the ensemble of RA
codes is upper bounded féd¥ — oo as

By using Stirling’'s approximation and the fact that A g1

) y dmln < O( )7

- N . L+1)

N—-)\>—r th = whereq > 2.
ITov—n= g witn o0 exp( ). ‘

A proof is given in [8]. An alternative proof can be obtained
we can upper bound (2) as by employing sphere-packing arguments analogous to the
[qw/21=1 s Lqw)2] proof of the sphere-packing bound for multiple turbo codes

Ay < N™ d; Nlaw oqw {@W o(w) 3) in [10]. From Corollary 1 and Theorem 2 we conclude that
o= qw Nav 2 ’ the minimum distance of almost all RA codes grows with the

. v — —e< — .
The ensemble average IOWEF giving the total number cb)*OCk lengthlV asO(N") where(q—2)/q—e <v < (¢=1)/q

output sequences with weiglt < ¢ can now be obtained [Il. ENSEMBLE AVERAGE WEIGHT SPECTRUM FOR REPEAT
from Ay <50 = Zd _, Ag, - Using (3) then yields MULTIPLE ACCUMULATE CODES
) N sTaw/2] Nlaw/2l 792\ o In this section we generalize the encoder from Fig. 1 and
Ag <5 < T <> {7W o(w). (4) consider a serial concatenation &f accumulatorsA, with
<4, . p

generator polynomials/(1+ D) separated by interleavers,
—:f(w,N) 1 < ¢ < M. This setup is shown in Fig. 2. In particular, based




u v
— R m A ) Ay ey Ay —
weightw weightqw weightd; weightd, weightd,,

Fig. 2. Repeat multiple accumulate encoder.

on an average weight enumerator analysis, we show that ffifee ensemble average IOWEFdl,d’w can now be obtained
repeat double accumulate (RAA) ensemhlé & 2) for ¢ > as

3 is asymptotically good, i.e., its average minimum distance Ay g = (K) Pr(dy, d|w). 9)
asymptotically exhibits linear growth with block lengthhi$ e ’

analysis is then extende_d o 2.3.’ Wherg it is shown that By using Stirling’s approximation, combining (8) and (9)
for ¢ = 2 asymptotically linear minimum distance growth can ields
be obtained for the RAAA code ensemble. y

Definition 1. The asymptotic spectral shape function [9], [11] Adyaw = exp (f(a, 5,p) N + O(ln N)), (10)

is denoted as wherea = w/K = qw/N and 3 = d,/N are normalized

o1 weights, and the function
r(p) ;== lim NIHAPN’

N—o0

_ H(a) B—a/2
wherep = d/N is the normalized codeword weight ant; flew . p) = —H(B)—H(p)+H ( 1—« (1=a)
is the ensemble average WEF. _3/2
) +aln2+H<p B/ >(1B)+ﬂln2, (11)
From (7), the WEF can be expressed Asy ~ eV 7). 1-p

Thus, the important property of(o) n terms O.f minimum where H(-) is the binary entropy function. Note that, due to
distance can be stated as follows: if the funct_lon is negatiy, o serial concatenation of accumulators, the quantities,
for somep, po > p > 0, then crosses zero and is positive fof "oy he expressed as functions of each other such that
p > po, it follows that, for almost all codes in the ensemblef(. ) can be regarded as a one-dimensional function with
the minimum distance is lower bounded By, > poV as tW(; (’)f the arguments being fixed.
the block lengthV" tends to infinity. Furthermore, the ensemble average WEF specifying the
number of codewords with weight, 1 < d < N/2, can be
upper bounded as
In the following we derive an expression for the spectral K N
shape function for the ensemble of RAA codes. By expur- Ay = Z Z Ag 4w <KN max max Ay g..
gating this ensemble, we are then able to find a normalized ol dit PR 1Sw<K 1<di<N 77
codeword weighp, such that(py) = 0 anddr/dp\p:p0 > 0. (12)
For notational convenience, we sét= ds in the following.  Combining (12), (10), and (7) leads to an upper bound on the
Analogous to (3), the conditional probability that a weighasymptotic spectral shape function given by
d; codeword is obtained at the output of the first accumu- ,
lator and a weightd codeword at the output of the second r(p) <r'(p) = gnax, Ofggglf(aaﬁap)- (13)
accumulator for a given input weight is

A. Repeat double accumulate codes

In the following we address the maximization of the func-
Pr(dy, d|w) = tion f(a, 3, p) over « and 8. A maximum of f(-) can occur
' on the boundary, i.e., fo = 0 and 5 = 0 or in the region
( le} —1 )(qKq; dl)( Z_ I )(qul_ d) {0 < & < 1,0 < 3 < 1}. In the latter case, the necessary
(S1-U\ 5] J\FI-1U\ [F] condition is that both the partial derivativeg /da. andd f /03
(qK) (qK) ’ equal zero at the point corresponding to the maximum. The
dy

qw derivative 0 f /O« is given as
which can be rewritten as —
ﬁ:—lln a —l—lln B=a/? +
Ja q 1—a 2 1—a

di — 4] : N
anddf /0o = 0 is obtained if

2
o o () () ()
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which leads to : | T R

0.14 7q:3 | i i i 1
Lo T2 o B O RS
B=5=+ 1- (14) 012]---g=5 | : o 1
2 2 1-— (0% 7q=6 | | | |
0.1 j i ; l 1
From (14) it can be observed that the extremal pointg ©f ! ! ; !
occur whena < 1/2. Also, because of symmetry, we restrict _ 0.08f | ! | .
ourselves ta3 < 1/2. Then, from (14) we have = .06 | | ; i i
2 j j L
1 1-— a .04+ I i i 1 B
5:5— 2a 1—<1a > . (15) 004 J ! ! L
- 002/ : P
Evaluating the second derivatii#f /0a? = 0 at the value of ok | | - /l/ |
3 given in (15) leads to a negative value, and tifis, 3, p) i :’ i /:/ 3
exhibits a maximum at this point for any value @fLikewise, -0.02 w w R S T
the derivatived f /03 can be obtained as 0.15 02 025 03
g =In p —In B - a/2 Fig. 3. Upper bound”(p) for the RAA code ensemble with rated =
ap 1-0 1-8—a/2 1/3,1/4,1/5,1/6 and the corresponding values of the GVB.
1 p—pB/2Y 1 1—p—p3/2
=1 —In|{ —— In2 (16
() g (FHE) e o

_ code, the resulting code ensemble exhibits linear distance
wheredf /0 = 0 holds if growth, as will be shown in Section IV.

2
g (P=B2\ ({_p=B/2\_(1=8 f[-a)2 TABLE |
1 — /6 1 — ﬁ o ﬁ 1— ﬁ — a/2 ' NORMALIZED MINIMUM DISTANCES po AND THE CORRESPONDING
(

17) VALUES OF THEGVB FOR THERAA ENSEMBLE WITH DIFFERENT CODE

Finally, the solution of the quadratic equation (17) in the RATES

variablez = (p — 3/2)/(1 — ) leads to

1 1-8 1-8  B-a/2 \°
Py 7o 1< ﬁ'l—ﬁ—aﬂ)’ =

whereg satisfies (15). For the solution of (17) we have again
invoked symmetry and assumed that 1/2. Hence, a triple
a, 3, p maximizing f(«, 8, p) over a and 8 can be computed
via (15) and (18) for a givep. An upper bound for(p) is o _
then obtained via (13) and (11). B. Generalization to multiple accumulators

In Fig. 3 the upper bound (p) is plotted for rates® = 1/q We now generalize the results of the previous subsection
with ¢ = 3,4, 5, 6 in the interesting region. We observe that foto repeat-multiple-accumulate codes witti > 2, i.e., with
all considered rates the functiofy(p) exhibits a zero crossing more than two accumulators (see Fig. 2). In this general
at p = po, and therefore almost all codes in the ensembtase the conditional probability of the weight vecidr =
do not have any codewords with normalized weight. po.  [dy,da, ..., dy] for a given input weight can be written as
In other words, the minimum distance of almost all codes d—1 K—_d
in the ensemble is lower bounded by, > po N and thus u ( d[i 1> (q L e)
grows linearly with block length. In Fig. 3 the values of the Pr(djw) = Pr(dy|w) - H (=51 =5

=2

| m | GvB |
0.1323] 0.1740
0.1911| 0.2145
0.2286 | 0.2430
0.2549 | 0.2644

o|o|s|wl|a

GVB for the different rates are shown as vertical dashedsline qK ’
The exact values of the zero crossings for py are listed <d51)

in Table | along with the corresponding values of the GVB. ) ) )
We can see that, especially for smaller code rates, the froffnere Pr(difw) is defined in (3). The ensemble average
rate of the minimum distance of the RAA ensemble is clod@WEF is then given by

to the GVB. Note that fory = 2 we are not able to show _ K

linear growth with block length. This is due to the fact that Adw = <w> Pr(d|w) = exp (f(7) N + O(InN)), (19)
for the RA code, according to Theorem {4,= 2 does not . o o

even guarantee a sublinear distance growth rate. Howeyer,'1€re in the last step Stirling’s approximation is emplayed
introducing random puncturing of a low rate RAA mothep N€ Vectory contains normalized weights and with:= d

is given by
1The structure of equations (15) and (18) suggests a sligfiigrent but di d d
equivalent approach, where is used as the free parameter ahaénd p are ~ = [’Y " ’VM] = |a 2172 p=—
determined via (15) and (18). Oy Lo "N'NTTT N



TABLE Il

The function f(~) in (19) can now be written as NORMALIZED MINIMUM DISTANCES pg AND THE CORRESPONDING
VALUES OF THEGVB FOR THERAAA ENSEMBLE WITH DIFFERENT CODE
H(a) e RATES.
Jly) === = > Hw)
. (=1 1 ’ q ‘ £0 ‘ GVB ‘
Yo —Ye-1/2 a1 )+ In(2) Z_: 2 | 0.1034] 0.1100
+ H|—— —v-1)+1n . : :
; L= e P v 3 | 0.1731] 0.1740
. 4 | 0.2143| 0.2145
Analogous to (13) for the RAA casg|~) can be maximized 5 | 02428 02430
over~g,v1,---,YMm—1, Where by employing a similar deriva- 6 | 0.2643| 02644
tion as in Section IlI-A the solution for a givem= ~,, can
be expressed by the following recursive set of equations:
1 1-« @ i output of the inner accumulator in connection with a lower-
Nn=57 79 “\1_-a/ (20) rate RAA mother code. In particular, random puncturing is

5 useful for achieving rate® > 1/3 from the R = 1/3 RAA
L ol (Ll ve— Ye-1/2 code ensemble, but for the sake of completeness the folgpwin
TG 2 Ye 1— v —ye-1/2 analysis is given for the general case of punctured repeat
(21) multiple accumulate codes.
Let N’ be the number of code symbols after puncturing,
d'" = d),; the corresponding codeword weight, aRtithe code

; , : ,
for the zero-crossings of the function$(p) are shown for rate, respectively. We also define the ratios- N/ and

B P ! = d'/N as the new normalized output weight after punc-
¢ = 2,3,4,5,6 and compared to the GVB in Fig. 4. Thetpuring. The conditional probability of a weight- sequence

after puncturing is now given by

for1 </¢< M —1.
As an example, forM = 3, the resulting valuesp

03 ,
—GvB (d N—d
O RAAA
o) ()
f Pr(d'|d,N') = ~~4—>———7~
0.25 r(d'|d, N') N
N/
z 0.2 Again using Stirling’s approximation, this can be exprekas
= N ¢
0.15} Pr(d'|d, N') = exp {N [H (p) p+
r—p
o (22)0-0- e}
Considering the general case of repeat multiple accumulate
0'08 ‘ ‘ ‘ ‘ codes, the ensemble average IOWEF can now be obtained
1 0.2 0.3 0.4 0.5 06 from (19) as follows:

R

A K ! !
Fig. 4. GVB and corresponding normalized asymptotic minimunt dis Adarw = (w) Pr(d|w) Pr(d'|d, N')
tancespo = dmin/N for the RAAA code ensemble with rateR =

1/2,1/3,1/4,1/5,1/6. =exp (F(v,p',7) N +O(In N)),

/ _ /
exact valuesp, are listed in Table Il. We observe that theWhereF(%p 1) = f(v) + (e, p,r) and
/

resulting asymptotic minimum distance growth rates of the , , B P r—p N
RAAA code ensemble fog > 3 essentially achieve the GVB, (¢ por) = H p+H 1—p (1=p)=H(r). (22)

which verifies the results obtained in [5] for finite block ¢gh. Analogous to (12) and (13) for the RAA ensemble in Sec-

Also, in contrast to the RAA. casein Section [II-A, the RAAAt'on I1I-A, an upper bound for the normalized spectral shape
code ensemble achieves linear distance growth even for ﬁctionr(d/N’) _ (/) can be obtained as

R =1/2 case due to the extra interleaver and accumulator.

Ir) <r'(p')r) = F(v,p 23

IV. REPEAT MULTIPLE ACCUMULATE CODES WITH r(/r) <o) e oy p's). (23)
RANDOM PUNCTURING where the maximization must now be carried out over all

For the RAA code ensemble analyzed in Section llI-A welements of the vectoy including p = v,,. Sincep(p’, p,r)

were not able to show linear distance grow f8r= 1/¢ = in (22) does not depend on the variablgs 1, ..., var—1,

1/2. This motivates us to employ random puncturing at thee can simply employ (20) and (21) far< ¢ < M — 1. In



addition, we need to compute the derivatiy&'/dp, which is

TABLE Il
NORMALIZED MINIMUM DISTANCES pg AND THE CORRESPONDING
VALUES OF THEGVB FOR THE PUNCTUREDRAA ENSEMBLE WITH

DIFFERENT CODE RATES EMPLOYING A MOTHER CODE OF RATE/3.

oF (,02(1—p—w_1/2) L—p—r+yp

o= 2 /

dp (1=p)2(p—vm-1/2) p—p

Rewriting the conditiordF'/dp = 0 for p’ as a function ofy

yields

ple+1)+r—1
1+c¢

given as
)—Hn < ) .

(1—p)2(p—vm-1/2) .
pr(l—p— 'YM—l/%%4)

(—

where ¢ =

)

The upper bound for the asymptotic spectral shape function i
(23) can now be computed using (20) and (21), fox ¢ <
M — 1, and (24).

Fig. 5 considers the particularly interesting RAA case a
shows the normalized minimum distances = dmin/N by
corresponding to the zero crossings 6y’ /r) for different
mother code rate® and punctured code ratég. We observe

[ R ] po | GvB |
0.4 | 0.1242 0.1461
0.5 | 0.1036 | 0.1100
0.6 | 0.0771| 0.0794
0.7 | 0.0522 | 0.0532
0.8 | 0.0306 | 0.0311
0.9 | 0.0125| 0.0130

those of [6], where linear distance growth for the RAA
semble is shown, but no growth rate is given. Further,

introducing random puncturing at the output of the inner

accumulator, we demonstrate that the resulting high raté RA
ensembles exhibit linear distance growth, where the growth

that, compared to the unpunctured RAA code ensemble fre is close to the GVB if the mother code rate is sufficiently

Section IlI-A, linear distance growth is also obtained fhet |, Finally.

in the case of three accumulators, we obtaiadr

punctured ensemble for rat&s > 1/3. This behavior is due to jistance growth for code ensembles employing a Rate 1/2
the extra randomness added by puncturing the encoder OUtPé‘betition code.

We also see that the asymptotic normalized minimum diStanC%espite the fact that the repeat multiple accumulate code

tends to be closer to the GVB for higher rates, which is due [9,comples considered in this paper proved to be asympiptica
the fact that a larger number of puncturing patterns and m“’@ood, the convergence behavior of these codes may not be

more "random-like” construction, is available for smalli?.
Table 11l gives some numerical values @f for a rateR = 1/3

mother code. in

0.2 .
-9 ,q:3
\ -x-g=4 dis
SO -+ fq:5
0.15- ——GVB||
[1
< 2
£ 017
©
[3]
0.05f
[4]
8.3 0.4 0.5 0.6 0.7 0.8 0.9
R’ (5]
Fig. 5. GVB and corresponding normalized asymptotic minimuniadises (6]

po = dmin/N for the randomly punctured RAA code ensemble with mother
codes of rateR = 1/¢ =1/3,1/4,1/5. 7]

V. CONCLUDING REMARKS (8]

We have shown that RAA codes for code rates equal to
1/3 or smaller are asymptotically good in the sense th
they achieve asymptotic linear distance growth with block
length. Moreover, we have shown that the distance growd?!
rates approach the GVB for small code rates. This extends the
results of [5], where linear distance growth is only shown fd11]
an infinite number of accumulators. Our results also extend

sufficient to provide an iterative decoding threshold cltse
capacity, as can be seen from the simulation results pregent

[5]. However, the results obtained may be useful in con-

structing similar code ensembles based on simple component
codes with low encoding complexity, asymptotically linear

tance growth, and good convergence behavior.
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