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Abstract—We consider the ensemble of codes formed by a
serial concatenation of a repetition code with two accumula-
tors through uniform random interleavers. For this ensemble,
asymptotic expressions for the normalized minimum trapping
distance are derived. We employ a variant of the Gallager-
Zyablov-Pinsker bit flipping decoding algorithm on a binary
symmetric channel, where the analysis is based on the factor
graph of the code. In particular, we show that the minimum
trapping distance can be determined by solving a non-linear
optimization problem. As a result we find that the minimum
trapping distance grows linearly with block length for code rates
of 1/3 and smaller, albeit with very small growth rate coefficients.

I. I NTRODUCTION

The serial concatenation of constituent codes combined with
iterative decoding has led to powerful code constructions.The
simplest construction is the repeat-accumulate (RA) code [1],
which consists only of a repetition code, an interleaver, and
an accumulator. These codes have lower decoding complexity
than serially concatenated constructions with more complex
constituent codes. An even more important benefit is that RA
codes have an extremely low encoding complexity ofO(1),
which makes them well suited for power-limited environments.
However, as shown in [2–5], RA codes are not asymptotically
good, i.e., their minimum distance does not grow linearly
with block length, which has a significant impact on the
performance in the error-floor regime.

In this paper, we consider repeat-accumulate-accumulate
(RAA) codes, which are comprised of the serial concatenation
of an outer repetition code with two accumulators connected
through random interleavers. It was shown in [5], [6] that,
for rates equal to1/3 or smaller, the resulting code ensemble
is asymptotically good, where in [5] the exact growth rate
coefficients are determined. While this result is useful in as-
sessing the error-floor behavior for maximum-likelihood (ML)
decoding, it does not provide an accurate characterizationof
the low bit error rate (BER) performance regime in conjunction
with iterative decoding.

In particular, for low-density parity check (LDPC) codes,
stopping set [7] and trapping set [8], [9] classifications have
been proposed to characterize the error-floor properties for
the binary erasure channel (BEC) in the former case and,
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more generally, for non-erasure channels in the latter case,
assuming belief-propagation (BP) iterative decoding. Trapping
sets were first introduced as so-callednear codewords in [8].
This concept was extended in [9], where trapping sets were
used to predict the error floor performance in the very-low
BER regime. An(a, b) trapping set for a given parity check
matrix and its corresponding Tanner graph is defined in [9]
as a collection ofa variable nodes for which the subgraph
induced by thea variable nodes containsb check nodes with
odd degree. The intuition behind this definition is that, if
a > b, potentially unreliable messages within the induced
subgraph may not be corrected by reliable messages from
outside the trapping set due to the relatively small number
of odd degree check nodes within the subgraph. Further, the
work in [10] proposes a method of deriving stopping and trap-
ping set weight enumerators and analyzes the corresponding
asymptotic behavior of a BP decoder. Recently, a variation
of the trapping set definition has been stated in the form of
absorbing sets [11], [12] in order to separate the effects of
oscillatory behavior in the decoder from convergence to a non-
codeword.

In the following, we present an analysis of the minimum
trapping distance for an RAA code ensemble. As pointed out
above, even though related work has been carried out in the
context of LDPC codes in [10], such a characterization does
not seem to exist for double serially concatenated ensembles
such as the RAA ensemble1. In this initial study, we focus
solely on communicating over a binary symmetric channel
(BSC). For decoding, we employ a variant of the majority-
logic (bit flipping) iterative decoding algorithm introduced by
Gallager [14] and Zyablov and Pinsker [15], resp., for LDPC
codes on a factor graph representation of the RAA code. It
was shown in [15] that, for LDPC codes of block length
N , this algorithm has complexityO(N log N) and is able to
correctO(N) channel errors on a BSC. Thus, for small enough
channel error probabilities, the block error probability goes to
zero exponentially inN asexp(−O(N)).

The paper is organized as follows. In Section II we address
the encoder and the corresponding factor graph for the RAA
code. Section III presents the bit flipping decoding algorithm,

1However, a stopping set analysis of RAA codes has recently been proposed
in [13].
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Fig. 1. Repeat accumulate-accumulate encoder, rateR = 1/q.

and in Section IV a lower bound on the minimum trapping
distance is derived, and numerical results are presented.

II. FACTOR GRAPH REPRESENTATION OFRAA CODES

In this section we introduce a factor graph representation of
RAA codes, where the RAA encoder is depicted in Fig. 1. The
binary input sequenceu = [u1, u2, . . . , uK ] of lengthK has
weight w, R denotes the repetition code of rateR = 1/q,
which leads to a code sequence of weightqw and length
N = qK. We consider the ensemble of all possible inter-
leaversπ1 and π2 by using the uniform interleaver approach
[16], where each possible interleaver realization has the same
probability 1/N !. The permuted interleaver output sequences
are applied to the recursive convolutional codesA1/2 with
generator polynomialsg(D) = 1/(1 + D) (accumulator),
leading to sequences of weightd1 andd, respectively.

For decoding, we consider a factor graph representation
of the RAA code, which is shown in Fig. 2 forq = 3.
The small boxes represent check nodes, the circles variable
nodes, andπ1 andπ2 denote the interleavers, respectively. The
received code symbolsrn, n = 1, 2, . . . N , appear as variable
nodes in the first layer. At the output of the first layer, the
sequenceṽ1 = [ṽ1,1, ṽ1,2, . . . , ṽ1,N ] represents the inputs of
accumulatorA2 and the outputs of interleaverπ2, which has
v1 = [v1,1, v1,2, . . . , v1,N ] as its input sequence. Further, both
the input sequence of accumulatorA1 and the output sequence
of interleaverπ1 is denoted byũ = [ũ1, ũ2, . . . , ũN ]. From
Fig. 2 we obtain the following relations:

ṽ1,n = rn−1 + rn, (1)

rn =

n∑

k=1

ṽ1,k, (2)

ũn = v1,n−1 + v1,n, (3)

v1,n =

n∑

k=1

ũk. (4)

The k-th variable node,k = 1, 2, . . . ,K, in the third level
shares edges withq check nodes. Let the subset of theseq
values fromũ be denoted as̄uk , [uk,1, uk,2, . . . , uk,q] (see
Fig. 2). We now introduce the valueηk corresponding to the
k-th variable node as

ηk ,
wH(ūk)

q
. (5)

We also define the corresponding sequence
η = [η1, η2, . . . , ηK ].

The received sequencer is a valid codeword ifηk, k =
1, 2, . . . ,K, only takes on the values zero or one, i.e., if the

ūk are either all-zero or all-one subsets. Further, we define
so-calledsyndrome symbolssk, k = 1, 2, . . . ,K, as

sk ,

{

0 if ηk = 0 or ηk = 1,

1 otherwise,
(6)

and the syndrome sequence ass = [s1, s2, . . . , sk, . . . , sK ].
Note that this definition is different from the usual definition
of a syndrome. However, our definition has the analogous
property thatr is a codeword only if the syndrome Hamming
weight wH(s) = 0.

Lemma 1. There are

N !
N !

(q!)K

ways to choose the factor graph for the rate-1/q RAA code.

Proof: We first consider all possible edges between the
K variable nodes on the third level and theN check nodes
on the second level. The first variable node of the third level
can be connected toq check nodes on the second level in

N (N − 1) . . . (N − q + 1)

q!

ways, the second variable node of the third layer can be
connected in

(N − q) (N − q − 1) . . . (N − 2 q + 1)

q!

ways, and so on. In total, we haveN !/(q!)K possible edges
between the second and the third layer. Combining this with
the fact that the edges between theN check nodes on the first
level and theN variable nodes on the second level can be
arranged inN ! different ways, the lemma is proved.

III. D ECODING ALGORITHM

In order to decode the noisy RAA codewords, we consider a
variant of the Gallager-Zyablov-Pinsker bit flipping decoding
algorithm for LDPC codes [15]. The motivation for employing
this decoding algorithm is that a very intuitive trapping set
characterization can be obtained, as explained below.

The decoding is carried out on the factor graph of the code
(see Fig. 2). In the first decoding iteration, those symbols
in r are marked for which flipping reduces the syndrome
weight wH(s). After flipping those symbols simultaneously,
the resulting flipped sequence is considered as a new received
sequencer , and the next decoding iteration starts. In particu-
lar, the decoder carries out the following steps:
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1) Based on the received sequencer , the sequencẽv1 is
computed according to (1). Then, knowing the structure
of the interleaverπ2, v1 can be obtained.

2) The sequencẽu is then determined via (3), and finally
η and s are computed by evaluating (5) and (6). If
wH(s) = 0, decoding is stopped.

3) The decoder finds candidate received symbolsrn that
will decrease the syndrome weightwH(s) if flipped.
Then, all candidate symbols are flipped simultaneously.
If there are no candidate symbols available, decoding is
stopped and a decoding failure is declared.

4) The resulting flipped sequence is considered as a new
received sequence. Go to Step 1).

Definition 1. The sequence r is called a trapping set if there
are no candidate symbols available that lead to a reduction
of the syndrome weight.

Note that this definition of trapping sets is different from the
definitions in [9], [10] given for LDPC codes in the sense that
it identifies exactly those conditions that lead to a decoding
failure.

In the following, without loss of generality, we consider the
case when thetransmitted information sequenceu of length
K is the all-zero sequence, and we define the trapping distance
of a trapping setr as its Hamming weight.

Definition 2. The parameter dtrap is called the minimum
trapping distance if there are no trapping sets with trapping
distance d0 < dtrap, and there is at least one trapping set with
trapping distance dtrap.

In the next section we derive a lower bound on the
minimum trapping distance by computing ensemble-average
weight spectra for trapping sets.

IV. T RAPPING DISTANCE LOWER BOUND FOR THERAA
ENSEMBLE

We assume that the all-zero codeword has been sent, the
received sequencer of lengthqK has Hamming weightd, the
decoded sequencẽu has Hamming weightω, and the decoded
sequencesv1 and ṽ1 both have Hamming weightd1. We can
then state the following Lemmas.

Lemma 2. If wH(r) = d and wH(ṽ1) = d1, then the
sequence r can be chosen in

(
d − 1

⌈d1

2 ⌉ − 1

)(
N − d

⌊d1

2 ⌋

)

different ways.

The proof can be found in [1].

Lemma 3. Given the sequence ṽ1 of weight d1, the sequence
v1 can be chosen in d1! (N − d1)! different ways.

Proof: There ared1! ways to connect the symbols with
value one in the sequencesv1 and ṽ1 in the factor graph, and
(N − d1)! ways to connect the symbols with the value zero.

Now consider a corrupted received sequencer at the
decoder input. At every decoder iteration, each of the pos-
sible values ofηk is specified in (5). We define the set
ν , (ν0, ν1, . . . , νq), where eachνℓ counts the number of
occurrences of the valuesℓ/q, ℓ = 0, 1, . . . , q, in the sequence
η = [η1, η2, . . . , ηK ]. The set ν is called the constraint
composition and satisfies the following relations:

q
∑

ℓ=0

νℓ = K and
q
∑

ℓ=0

ℓ νℓ = ω. (7)

Lemma 4. A sequence η with constraint composition ν can
be chosen in

(
K

ν0, ν1, . . . , νq

)

=
K!

ν0! ν1! · · · νq!



different ways.

The proof follows from the definition ofν. By combining
(7) and Lemma 4 we obtain the following lemma.

Lemma 5. For a given sequence ũ of weight ω, the sequence
η can be chosen in

∑

ν:
Pq

ℓ=0
νℓ=K,

Pq

ℓ=0
ℓ νℓ=ω

(
K

ν0, ν1, . . . , νq

)

different ways.

We now prove the following key lemma.

Lemma 6. Given a sequence ũ of weight ω and a sequence
η with constraint composition ν, there are

ω!(N − ω)!
q∏

ℓ=0

(ℓ! (q − ℓ)!)νℓ

ways to arrange the edges connecting the second and third
levels in the factor graph of the code.

Proof: The proof is analogous to the proof of Lemma 1.
First, the variable nodes corresponding toηk = 0 can only be
connected to check nodes associated with symbolsũk = 0 in

(N − ω) (N − ω − 1) · · · (N − ω − qν0 + 1)

(q!)ν0

(8)

different ways. We fix these edges in the factor graph. Then,
the variable nodes associated withηk = 1/q consist of a single
edge associated with̃uk = 1 andq− 1 edges withũk = 0, so
we have

(N−ω−qν0) (N−ω−qν0−1) · · · (N−ω−qν0−(q−1)ν1+1)

((q − 1)!)ν1

·

ω (ω − 1) · · · (ω − ν1 + 1)

(1!)ν1

(9)

different sets of edges. Now, we continue with the valuesηk =
ℓ/q, ℓ = 2, . . . , q− 1 in the same way, and by fixing all those
edges, forηk = 1 we end up with

(

ω −
q−1∑

ℓ=1

νℓ

)

· · · 2 · 1

(q!)νq
(10)

different ways of arranging the edges between the variable
nodes associated withηk = 1 and the corresponding check
nodes forũk = 1. By combining the cases represented by
(8), (9), and (10), and the corresponding equations forℓ =
2, . . . , q − 1, the lemma is proved.

We now enumerate all possible combinations of weights
wH(r) = d, wH(v1) = d1, and wH(ũ) = ω for a
given information sequenceu with constraint compositionν
using an input-output weight enumerator function (IOWEF)
Ad,d1,ω(ν). Here, we assume thatν satisfies the conditions
of (7). An expression for the ensemble average IOWEF

Ād,d1,ω(ν) can then be obtained by combining Lemmas 1,
2, 3, 4, and 6, which gives rise to the following theorem.

Theorem 1. The ensemble-average IOWEF Ād,d1,ω for an
RAA code ensemble with rate R = 1/q and a given constraint
composition ν = (ν0, ν1, . . . , νq) equals

Ād,d1,ω(ν) =
(

d1 − 1

⌈ω
2 ⌉ − 1

)(
N − d1

⌊ω
2 ⌋

)(
d − 1

⌈d1

2 ⌉ − 1

)(
N − d

⌊d1

2 ⌋

)

(
N

ω

) (
N

d1

) ·

(
K

ν0, ν1, . . . , νq

)

·
(q!)K

q∏

ℓ=0

(ℓ! (q − ℓ)!)νℓ

. (11)

The following corollary immediately follows from the above
theorem.

Corollary 1. The ensemble-average IOWEF Ād,d1,q·w(ν) with
ν = (K −w, 0, . . . , 0, w) from Theorem 1 is equivalent to the
(unconstrained) ensemble-average IOWEF for the RAA code
derived in [5].

In the following, we employ Theorem 1 to derive a lower
bound ondtrap. It can be seen from the factor graph in Fig. 2
that each flipping of a symbolrn in the first level causes the
flipping of at most four symbols in the sequenceũ . Since
we have assumed that the transmitted sequence is the all-zero
sequence and the received sequencer is a BSC error pattern
of weightd, we do not need to consider the case that a flipping
candidatern is connected to a variable node on the third level
of the factor graph corresponding toηk = 0, which would
lead to anincrease of the syndrome weight. Thus, only the
following cases need to be considered:

1) There is a connection between a flipping candidate
rn and a variable node corresponding to the value
ηk = 1/q. In this case, since the all-zero codeword
has been sent, we again only need to address the case
where the syndrome weight is decreased, i.e., where the
corresponding symbol̃un changes its value to zero.

2) There is a connection between a flipping candidatern

and a variable node corresponding to the valueηk =
ℓ/q, 2 ≤ ℓ ≤ q − 1. In this case, the syndrome weight
cannot increase and we assume in the following that the
syndrome weight is always unchanged2.

3) There is a connection between a flipping candidatern

and a variable node corresponding to the valueηk = 1,
whose flipping increases the syndrome weight.

Since case 2) above does not lead to an increase of the
syndrome weight, we only need to focus on cases 1) and 3).
Thus, if the number of check nodes̃un = 1 sharing an edge
with a variable nodeηk = 1/q is larger than the number of

2Here we neglect the case that theℓ corresponding values iñu could be
changed to zero at the same time by a single flip ofrn and therefore decrease
the syndrome weight, since the probability of this event typically is very small.



check nodes̃un = 1 sharing an edge with a variable node
ηk = 1, i.e.,

ν1 − q νq > 0, (12)

then at least one received symbolrn can always be identified
as a flipping candidate such that the syndrome weight is
decreased. As a consequence, (12) represents a sufficient
condition for the absence of a trapping set.

We now employ the result in (12) to define the ensemble
average weight enumerating function (WEF) for received
sequences of weightd that constitute trapping sets as

Ād =
N∑

ω=1

N∑

d1=1

∑

ν :
Pq

ℓ=0
νℓ = K

Pq

ℓ=0
ℓ νℓ = ω

ν1 − q νq ≤ 0

Ād,d1,ω(ν). (13)

From (13), we obtain

Ād ≤ N2 max
1≤d1≤N, 1≤ω≤N

∑

ν :
Pq

ℓ=0
νℓ = K

Pq

ℓ=0
ℓ νℓ = ω

ν1 − q νq ≤ 0

Ād,d1,ω(ν),

(14)
and we can derive an upper bound for the sum in (14) as

∑

ν :
Pq

ℓ=0
νℓ = K

Pq

ℓ=0
ℓ νℓ = ω

ν1 − q νq ≤ 0

Ād,d1,ω(ν) ≤

min
s,λ<0

∑

ν

Ād,d1,ω(ν) exp

[

s

(
q
∑

ℓ=0

ℓνℓ−ω

)]

exp[λ(ν1−q νq)]

︸ ︷︷ ︸

,M̄d,d1,ω(s,λ)

,

(15)

wheres andλ < 0 are auxiliary variables and the summation
is carried out over allν such that

∑K
ℓ=0 νℓ = K. In order to

obtain a tight upper bound, the right hand side in (15) must
be minimized overs and λ < 0. The quantityM̄d,d1,ω(s, λ)
in (15) represents a modified ensemble-average IOWEF. Thus,
the ensemble-average WEF̄Ad can be upper bounded as

Ād ≤ N2 max
1≤d1≤N, 1≤ω≤N

min
s,λ<0

M̄d,d1,ω(s, λ). (16)

For the sake of brevity, we now restrict ourselves to the
caseq = 3. By combining (11) and (15) and subsequently
employing the multinomial theorem,̄Md,d1,ω(s, λ) can be
written as

M̄d,d1,ω(s, λ) =
(

d1 − 1

⌈ω
2 ⌉ − 1

)(
N − d1

⌊ω
2 ⌋

)(
d − 1

⌈d1

2 ⌉ − 1

)(
N − d

⌊d1

2 ⌋

)

(
N

ω

) (
N

d1

) ·

e−sω ·
(

1 + 3 es+λ + 3 e2 s + e3 (s−λ)
)K

. (17)

Using the asymptotic form of Stirling’s approximation, (17)
yields

M̄d,d1,ω(s, λ) = exp [(F (α, β, ρ, s, λ) + o(N)) N ] , (18)

whereα , ω/N , β , d1/N , and ρ , d/N are normalized
weights, and the functionF (·) is defined as

F (α, β, ρ, s, λ) , f(α, β, ρ) + g(α, s, λ), (19)

where

f(α, β, ρ) = −H(β) − H(ρ) + H

(
β − α/2

1 − α

)

(1 − α)+

α ln 2 + H

(
ρ − β/2

1 − β

)

(1 − β) + β ln 2 (20)

and

g(α, s, λ) =
1

3
ln
(

1 + 3 es+λ + 3 e2 s + e3 (s−λ)
)

− sα.

(21)
The derivation ofF (α, β, ρ, s, λ) can be extended to the case
q > 3 in a straightforward way. The only difference is that the
function g(α, s, λ) must be modified: for example, forq = 4,
g(α, s, λ) becomes

g(α, s, λ) =
1

4
ln
(

1+4 es+λ+6 e2 s+4 e3 s+e4 (s−λ)
)

− sα.

(22)
We now define the function

rtrap(ρ) , lim
N→∞

1

N
ln ĀρN , (23)

wherertrap(ρ) has the following interpretation: if the function
is negative for someρ, ρtrap > ρ > 0, then crosses zero and is
positive forρ > ρtrap, it follows that, for almost all codes in the
ensemble, the minimum trapping distance is lower bounded by
dtrap ≥ ρtrapN as the block lengthN tends to infinity.

By combining (16), (18), and (19), and inserting the result-
ing expression for̄Ad in (23), we obtain the following theorem
and corollary.

Theorem 2. The function rtrap(ρ) can be upper bounded as

rtrap(ρ) ≤ r̂trap(ρ)

= max
0<α<0.5, 0<β<0.5

(

f(α, β, ρ) + min
s, λ<0

g(α, s, λ)

)

, (24)

where the function f(·) is given by (20) and the function g(·)
is given by (21) (or the corresponding expressions for q > 3).

Corollary 2. Let ρ0 > 0 be such that r̂trap(ρ0) < 0. Then
almost all RAA codes in the ensemble do not contain trapping
sets of weight ρ0N or less.

In order to compute a lower boundρ′trap on the asymptotic
normalized minimum trapping distanceρtrap, we must find
the zero crossing of̂rtrap(ρ) by numerically solving (24) with
constrained non-linear optimization techniques. Table I shows
the resulting lower bounds forq ≥ 3. We see that the minimum
trapping distancedtrap = ρtrapN grows linearly with block
length, even though the growth coefficients are very small.



The reason is that the employed bit flipping decoder has
only moderate error correcting capabilities and is inferior
to performing BP decoding on the factor graph or iterative
decoding on the constituent codes. Note that, forq = 2, we are

TABLE I
LOWER BOUNDρ′TRAP ON THE ASYMPTOTIC NORMALIZED MINIMUM

TRAPPING DISTANCES FOR THERAA CODE ENSEMBLE, A BIT FLIPPING

DECODER, AND DIFFERENT RATESR = 1/q.

q ρ′trap

3 3.00 · 10
−8

4 9.50 · 10
−8

5 1.05 · 10
−6

6 4.70 · 10
−6

7 1.33 · 10
−5

8 2.70 · 10
−5

9 4.41 · 10
−5

10 6.15 · 10
−5

not able to obtain linear minimum trapping distance growth,
which is consistent with the fact that linear minimum distance
growth cannot be proved either in this case [5]. Finally, Fig. 3
displays the values ofρ′trap from Table I versus the inverse
code rateq = 1/R.

3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

q

ρ′
tr

ap

Fig. 3. Lower boundρ′trap on the normalized asymptotic trapping distance
for the RAA code ensemble versus the inverse rateq = 1/R.

V. CONCLUSION

In this paper we have addressed the asymptotic minimum
trapping distance of an RAA code ensemble, where a variant of
the Gallager-Zyablov-Pinsker bit flipping decoding algorithm
on the factor graph of the code was employed. In particular,
we have proposed a complete trapping set characterization
for the bit flipping decoder on the BSC. The lower bound
on the normalized minimum trapping distance for the RAA
code ensemble is obtained by employing a uniform interleaver
approach and combining the resulting expression with a de-
coder condition for the existence of trapping sets. Finally, a
numerical evaluation is obtained via a constrained nonlinear

optimization approach. The main result is that, for all rates
smaller than or equal toR = 1/3, the minimum trapping
distance grows linearly with block length, although the growth
rate coefficients are very small.

Future work will include a further analysis of the bit flipping
decoder; in particular, investigating the effects of introducing
errors by the flipping of correctly received symbols. We will
also focus on extending the results to AWGN channels, and
on performing trapping set analyses for different decoders,
such as BP and iterative decoding of the individual constituent
codes, for which the results of this paper could serve as initial
performance benchmarks.
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