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Abstract—We consider the ensemble of codes formed by a more generally, for non-erasure channels in the latter,case
serial concatenation of a repetition code with two accumula- assuming belief-propagation (BP) iterative decodingppiag
tors through uniform random interleavers. For this ensemble, sets were first introduced as so-calieghr codewords in [8].

asymptotic expressions for the normalized minimum trapping . . .
distance are derived. We employ a variant of the Gallager- This concept was extended in [9], where trapping sets were

Zyablov-Pinsker bit flipping decoding algorithm on a binary Uused to predict the error floor performance in the very-low
symmetric channel, where the analysis is based on the factor BER regime. An(a,b) trapping set for a given parity check

graph of the code. In particular, we show that the minimum matrix and its corresponding Tanner graph is defined in [9]
trapping distance can be determined by solving a non-linear 55 5 ¢ojlection ofa variable nodes for which the subgraph

optimization problem. As a result we find that the minimum . . . .
trapping distance grows linearly with block length for code rates induced by the: variable nodes contairischeck nodes with

of 1/3 and smaller, albeit with very small growth rate coefficients. 0dd degree. The intuition behind this definition is that, if
a > b, potentially unreliable messages within the induced

subgraph may not be corrected by reliable messages from
_ ) _ _ outside the trapping set due to the relatively small number
The serial concatenation of constituent codes combined Wit 5qd degree check nodes within the subgraph. Further, the
|t9rat|ve decoding _haslled to powerful code constructidi® \york in [10] proposes a method of deriving stopping and trap-
simplest construction is the repeat-accumulate (RA) cddle [ping set weight enumerators and analyzes the corresponding
which consists only of a repetition code, an |nt.erleaved aRsymptotic behavior of a BP decoder. Recently, a variation
an accumulator. These codes have lower decoding compleiiythe trapping set definition has been stated in the form of
than serially concatenated constructions with more Comp|§bsorbing sets [11], [12] in order to separate the effects of

constituent codes. An even more important benefit is that Rfcillatory behavior in the decoder from convergence tora no
codes have an extremely low encoding complexity(dfl), codeword.

which makes them well suited for power-limited environngent |, the following, we present an analysis of the minimum

However, as shown in [2-5], RA codes are not asymptotically, )ning distance for an RAA code ensemble. As pointed out
good, i.e., their minimum distance does not grow linearlyy,q e “even though related work has been carried out in the
with block length, which has a significant impact on th@gniext of LDPC codes in [10], such a characterization does

performance in the error-floor regime. not seem to exist for double serially concatenated ensemble

In this paper, we consider repeat-accumulate-accumuldig, as the RAA ensemBleln this initial study, we focus
(RAA) codes, which are comprised of the serial concatenatlgolely on communicating over a binary symmetric channel
of an outer repetition code with two accumulators connect?gsc)_ For decoding, we employ a variant of the majority-
through random interleavers. It was shown in [S], [6] thajogic (it flipping) iterative decoding algorithm introdext by
for rates eql_JaI td /3 or smaller, f[he resulting code ensembl%allager [14] and Zyablov and Pinsker [15], resp., for LDPC
is asymptotically good, where in [5] the exact growth ratg,qeg on a factor graph representation of the RAA code. It
coefficients are determined. While this result is useful in ag,.5 shown in [15] that, for LDPC codes of block length
sessing the error-floor behavior for maximum-likelihoodlgM this algorithm has Co’mplexity)(N log N) and is able to
decoding, it does not provide an accurate _CharaCteri_Zaﬂo_ncorrectO(N) channel errors on a BSC. Thus, for small enough
the low bit error rate (BER) performance regime in CONjuittti o el error probabilities, the block error probabilityeg to
with iterative decoding. zero exponentially inV asexp(—O(N)).

' The paper is organized as follows. In Section |l we address

In particular, for low-density parity check (LDPC) codes
stopping s&t [7] and trapping set [8], [9] classifications have he encoder and the corresponding factor graph for the RAA
f: de. Section Il presents the bit flipping decoding aldponit

I. INTRODUCTION

been proposed to characterize the error-floor properties
the binary erasure channel (BEC) in the former case and,
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0830650, and NASA Grant NNX07AK53G. in [13].
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Fig. 1. Repeat accumulate-accumulate encoder, Rate 1/q.

and in Section IV a lower bound on the minimum trappingy, are either all-zero or all-one subsets. Further, we define
distance is derived, and numerical results are presented. so-calledsyndrome symbolssy, £k =1,2,..., K, as

(6)

A
In this section we introduce a factor graph representatfon o = otherwise,
RAA codes, where the RAA encoder is depicted in Fig. 1. The
binary input sequence = [u;,us, ..., uk] of length K has and the syndrome sequence &8= [s1, S2,. .., 8k, - - -, SK].
weight w, R denotes the repetition code of rafe = 1/¢, Note that this definition is different from the usual defioiti
which leads to a code sequence of weight and length of a syndrome. However, our definition has the analogous
N = ¢K. We consider the ensemble of all possible inteproperty thatr is a codeword only if the syndrome Hamming
leaversm; and by using the uniform interleaver approactwveightwg (s) = 0.
[16], whgre each possible interlgaver realization has #mees Lemma 1. There are
probability 1/N!. The permuted interleaver output sequences
are applied to the recursive convolutional codés, with | N
generator polynomialg;(D) = 1/(1 + D) (accumulator), (gh¥
leading to sequences of W§|gdi}i andd, respectively. .ways to choose the factor graph for the rate-1/¢ RAA code.
For decoding, we consider a factor graph representation
of the RAA code, which is shown in Fig. 2 foy = 3. Proof: We first consider all possible edges between the
The small boxes represent check nodes, the circles variaflevariable nodes on the third level and the check nodes
nodes, andr; andm, denote the interleavers, respectively. Then the second level. The first variable node of the third level
received code symbols,, n = 1,2,... N, appear as variable can be connected tg check nodes on the second level in
nodes in the first layer. At the output of the first layer, the N(N-1)...(N—g+1)

IIl. FACTOR GRAPH REPRESENTATION OIRAA CODES {0 if n=0o0rn =1,

sequences; = [011,01,2,...,01,n] represents the inputs of '

accumulator4s; and the outputs of interleaver,, which has &

v1 = [v1,1,v1,2,...,v1,n] @S its input sequence. Further, bothvays, the second variable node of the third layer can be
the input sequence of accumulatdr and the output sequenceconnected in

of interleaverr; is denoted bya = [u1, s, ..., 4y]. From (N—q)(N—qg—1)...(N-2q+1)

Fig. 2 we obtain the following relations: 7!
ways, and so on. In total, we havé!/(¢!)¥ possible edges
- zn: - @ between the second and the third layer. Combining this with
'n = — ULk the fact that the edges between tNecheck nodes on the first
=t level and theN variable nodes on the second level can be

'Dl,n =Tn—1+7n, (1)

Un = U:La"* T V1n, ©) arranged inV! different ways, the lemma is proved. m
VUln = Zﬁk (4) I1l. DECODING ALGORITHM
k=1
The k-th variable nodek — 1,2.....K, in the third level In order to decode the noisy RAA codewords, we consider a

variant of the Gallager-Zyablov-Pinsker bit flipping detay
algorithm for LDPC codes [15]. The motivation for employing
this decoding algorithm is that a very intuitive trapping se
characterization can be obtained, as explained below.

The decoding is carried out on the factor graph of the code

shares edges with check nodes. Let the subset of these
values froma be denoted agy, £ (W1, Uk 2,5 - - -, Ukq) (SEE
Fig. 2). We now introduce the valug, corresponding to the
k-th variable node as

e = wH(“k)_ (5) (see Fig. 2). In the first decoding iteration, those symbols
q in » are marked for which flipping reduces the syndrome

We also define the corresponding  sequenaeeight wy(s). After flipping those symbols simultaneously,
n=[n,n2,- .,k the resulting flipped sequence is considered as a new relceive
The received sequence is a valid codeword ifn,, £ = sequencer, and the next decoding iteration starts. In particu-

1,2,..., K, only takes on the values zero or one, i.e., if thiar, the decoder carries out the following steps:
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Fig. 2. Factor graph for an RAA code with= 3. The small boxes represent check nodes, the circles varaoles, andr; andw denote the interleavers,
respectively.

1) Based on the received sequentgethe sequence; is IV. TRAPPING DISTANCE LOWER BOUND FOR THERAA
computed according to (1). Then, knowing the structure ENSEMBLE

of the interleaverr,, v; can be obtained. _ We assume that the all-zero codeword has been sent, the
2) The sequence is then determined via (3), and finallyeceived sequence of lengthgK has Hamming weight, the
n and s are computed by evaluating (5) and (6). lijecoded sequende has Hamming weight, and the decoded

wp (s) = 0, decoding is stopped. sequences; and#;, both have Hamming weight;. We can
3) The decoder finds candidate received symbglshat then state the following Lemmas.

will decrease the syndrome weighty (s) if flipped.

Then, all candidate symbols are flipped simultaneouskemma 2. If wp(r) = d and wy (1) = di, then the

If there are no candidate symbols available, decodingJgquence r can be chosen in

stopped and a decoding failure is declared. d—1 N —d
4) The resulting flipped sequence is considered as a new ((qu — )( L%J )

received sequence. Go to Step 1). different ways.

Definition 1. The sequence r is called a trapping set if there  The proof can be found in [1].

are no candidate symbols available that lead to a reduction | amma 3. Given the sequence @, of weight d., the sequence
of the syndrome weight. v, can be chosen in d;! (N — d;)! different ways.

Proof: There ared;! ways to connect the symbols with
lue one in the sequences and v, in the factor graph, and
N — d;)! ways to connect the symbols with the value zero.
|
Now consider a corrupted received sequenceat the
In the following, without loss of generality, we consideeth decoder input. At every decoder iteration, each of the pos-
case when théransmitted information sequence. of length sible values ofr, is specified in (5). We define the set

Note that this definition of trapping sets is different frome t
definitions in [9], [10] given for LDPC codes in the sense th
it identifies exactly those conditions that lead to a deogdi
failure.

K is the all-zero sequence, and we define the trapping distamce® (v, 11, ...,v,), where eachy, counts the number of
of a trapping setr as its Hamming weight. occurrences of the valuégq, £ = 0,1,...,q, in the sequence
n = [m,n2,...,nk]. The setv is called the constraint

Definition 2. The parameter dy, is called the minimum composition and satisfies the following relations:
trapping distance if there are no trapping sets with trapping q q
distance dy < dyap, and there is at least one trapping set with Z vy =K and Z lyp = w. (7)
trapping distance dirap. £=0 £=0
Lemma 4. A sequence n with constraint composition v can

In the next section we derive a lower bound on thee chosenin
minimum trapping distance by computing ensemble-average K B K!
weight spectra for trapping sets. ( 71/q)

A T volvg!- -y



different ways.

The proof follows from the definition of>. By combining
(7) and Lemma 4 we obtain the following lemma.

Lemma 5. For a given sequence u of weight w, the sequence

7 can be chosen in
K
Yo, V1,---,Vq

We now prove the following key lemma.

>

vyt w=K, Y lvi=w

different ways.

Lemma 6. Given a sequence o of weight w and a sequence
n with constraint composition v, there are

w!(N — w)!

110 (a0

£=0

ways to arrange the edges connecting the second and third
levels in the factor graph of the code.

Ad,dl,w(u) can then be obtained by combining Lemmas 1,
2, 3, 4, and 6, which gives rise to the following theorem.

Theorem 1. The ensemble-average IOWEF A, g4, ., for an
RAA code ensemble with rate R = 1/¢ and a given constraint
composition v = (v, v1,. .., 1) equals

Agg, w(v) =

(gh*™

) (-0

£=0

11)

The following corollary immediately follows from the above
theorem.

Corollary 1. The ensemble-average IOWEF A 4, 4.1 (V) With
v=(K-w,0,...,0,w) from Theorem 1 is equivalent to the
(unconstrained) ensemble-average IOWEF for the RAA code

Proof: The proof is analogous to the proof of Lemma 1ygrived in [5].

First, the variable nodes correspondingjto= 0 can only be

connected to check nodes associated with symipls: 0 in
(N—w)(N—w=1)---(N—w—qvg+1)
(g})r

®)

In the following, we employ Theorem 1 to derive a lower
bound ondyp. It can be seen from the factor graph in Fig. 2
that each flipping of a symbal, in the first level causes the
flipping of at most four symbols in the sequenge Since

different ways. We fix these edges in the factor graph. Thefe have assumed that the transmitted sequence is the all-zer
the variable nodes associated with= 1/q consist of a single sequence and the received sequends a BSC error pattern

edge associated witly, = 1 andq — 1 edges withi, = 0, SO
we have

(N—w—quo) (N—w—qro—1) - (N—w—quo—(q—1)r1+1)
(G~ D
ww=1) - (w—v1+1)
(1N

9)

different sets of edges. Now, we continue with the valyes-
/g, t=2,...
edges, fom, = 1 we end up with

(w_qfw>...2.1

(=1

(q!)¥a (10)

,q — 1 in the same way, and by fixing all those

of weightd, we do not need to consider the case that a flipping
candidater,, is connected to a variable node on the third level
of the factor graph corresponding ip. = 0, which would
lead to anincrease of the syndrome weight. Thus, only the
following cases need to be considered:

1) There is a connection between a flipping candidate
r, and a variable node corresponding to the value
n. = 1/q. In this case, since the all-zero codeword
has been sent, we again only need to address the case
where the syndrome weight is decreased, i.e., where the
corresponding symbal,, changes its value to zero.

2) There is a connection between a flipping candidate
and a variable node corresponding to the valye=
¢/q, 2 < ¢ < q— 1. In this case, the syndrome weight
cannot increase and we assume in the following that the
syndrome weight is always unchanded

different ways of arranging the edges between the variable )

There is a connection between a flipping candidate

nodes associated with, = 1 and the corresponding check
nodes fora, = 1. By combining the cases represented by
(8), (9), and (10), and the corresponding equations/fet
2,...,q— 1, the lemma is proved.

We now enumerate all possible combinations of weigh
U}H(’I") = d, wH('vl) = d, and wH('&) = w for a
given information sequence with constraint compositiow
using an input-output Welght enumerator function (IOWEF) 2Here we neglect the case that theorresponding values i could be

Ag,a,,w(v). Here, We assume that satisfies the conditions cnanged to zero at the same time by a single flip,ofind therefore decrease
of (7). An expression for the ensemble average IOWEhe syndrome weight, since the probability of this eventdgfy is very small.

and a variable node corresponding to the vajye= 1,
whose flipping increases the syndrome weight.

Since case 2) above does not lead to an increase of the
gndrome weight, we only need to focus on cases 1) and 3).
Thus, if the number of check nodés, = 1 sharing an edge
with a variable node), = 1/¢ is larger than the number of



check nodesi,, = 1 sharing an edge with a variable noddJsing the asymptotic form of Stirling’s approximation, 17
me =1, i.e., yields

Y1 4% - 07 (12) Md,dl,w(57/\) = exp [(F(a,ﬁ,p,s,)\) +0(N)) N} ) (18)
then at least one received symbgl can always be identified wherea £ w/N, 8 £ d;/N, andp £ d/N are normalized

as a flipping candidate such that the syndrome weight Weights. and the functiod(-) is defined as

decreased. As a consequence, (12) represents a suffimenlg '

condition for the absence of a trapping set. F(a,B,p,8,7\) 2 f(a,B,p) + g(a, s, \), (19)
We now employ the result in (12) to define the ensemble

average weight enumerating function (WEF) for receive\efhere

sequences of weight that constitute trapping sets as 08—a/2
flapop) = —H(3) ~ 1) + 1 (22 ) 1oy
N N —
Aa=>_>" > Aga wv).  (13) p—5/2
e G N A aln2+H 1-3 (1-8)+pmn2 (20)
Loty =w and
v —qrg <0 1
From (13), we obtain g(e,5,2) = 31n (1 +3e7 4367 4 e (S_A)) - sa.
N _ (21)
Ay < N? L S > Adaa,w V), The derivation ofF'(a, 3, p, s, \) can be extended to the case
T T T vyl =K g > 3 in a straightforward way. The only difference is that the
Yicotve=w function g(a, s, \) must be modified: for example, far= 4,
vi—qrg <0 g(a, s, \) becomes

(14)
and we can derive an upper bound for the sum in (14) as gla, s, ) = iln (1+4es+>\+6625+4€33+e4(s—A)> _ sa.

~ (22)
< ) .
Z Adrw(V) < We now define the function
v: Yyl =K 1
S vy =w 2 i — A
v ef[;uqlg 0 ruap(p) = lim N Apns (23)

- q whereryap(p) has the following interpretation: if the function
SH;LHO Z Agd, (V) exp [S (Z EwwﬂeXpP\(mq Vvg)l,  is negative for some, pyap > p > 0, then crosses zero and is
’ v =0 positive forp > pyap, it follows that, for almost all codes in the
ensemble, the minimum trapping distance is lower bounded by
(15) dwap > prap/N a@s the block lengthV tends to infinity.
By combining (16), (18), and (19), and inserting the result-

wheres and A < 0 are auxiliary vari;a{bles and the summatiofing expression ford, in (23), we obtain the following theorem
is carried out over alb such thaty >, , v, = K. In order to and corollary.

obtain a tight upper bound, the right hand side in (15) must )
be minimized overs and A < 0. The quantityM, 4, (s, A) 1heorem 2. The function ryap(p) can be upper bounded as
in (15) represents a modified ensemble-average IOWEF. Thus,

EMaay,0(5\)

the ensemble-average WEE,; can be upper bounded as Pap(p) < Tuap(p)
i N = i A 24
Ag<N? o maxomin Mog(s, A (16) 0caco BB L 05 (f(a,ﬁm) + min g(a, s, )) , (24)

For the sake of brevity, we now restrict ourselves to tihere the function f(.) is given by (20) and the function ¢(-)
caseq = 3. By combining (11) and (15) and subsequentl{s 91ven by (21) (or the corresponding expressions for ¢ > 3).
employing the multinomial theorem)/y 4, . (s, A) can be Corollary 2. Let py > 0 be such that 7usp(po) < 0. Then
written as almost all RAA codes in the ensemble do not contain trapping
sets of weight po N or less.

Mg g, (s, A) =
e c(il _)1 N_d, d—1 N—d In order to compute a lower bound,, on the asymptotic
<[w1 B 1>( 2] >(Wiﬂ B 1)( 4] ) normalized minimum trapping dlsta_\nQﬁ,ap, we must fmd
2 2 2 2 . the zero crossing ofap(p) by numerically solving (24) with
(N> <N> constrained non-linear optimization techniques. Tablleowss
w di the resulting lower bounds far> 3. We see that the minimum

trapping distancelyay = prap/N grows linearly with block

K
—sw s+A 2s 3(s—>\))
¢ <1 A CE - an length, even though the growth coefficients are very small.



The reason is that the employed bit flipping decoder hagtimization approach. The main result is that, for all sate
only moderate error correcting capabilities and is inferiemaller than or equal t&® = 1/3, the minimum trapping
to performing BP decoding on the factor graph or iterativéistance grows linearly with block length, although thevgito
decoding on the constituent codes. Note thatgfer 2, we are rate coefficients are very small.

Future work will include a further analysis of the bit flipgin
decoder; in particular, investigating the effects of idiroing
errors by the flipping of correctly received symbols. We will
also focus on extending the results to AWGN channels, and

TABLE |
LOWER BOUND pygap ON THE ASYMPTOTIC NORMALIZED MINIMUM
TRAPPING DISTANCES FOR THERAA CODE ENSEMBLE A BIT FLIPPING
DECODER AND DIFFERENT RATESR = 1/q.

] on performing trapping set analyses for different decqders

l q [ P{rap
31 3.00.10-5 such as BP and iterative decoding of the individual constitu
4 [950-1078 codes, for which the results of this paper could serve aglinit
5 1(7)5 : 10_? performance benchmarks.
6 | 47010~
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V. CONCLUSION [14]

In this paper we have addressed the asymptotic miniml{[g
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the Gallager-Zyablov-Pinsker bit flipping decoding al¢fum

on the factor graph of the code was employed. In particulz;]r?]
we have proposed a complete trapping set characterization
for the bit flipping decoder on the BSC. The lower bound
on the normalized minimum trapping distance for the RAA
code ensemble is obtained by employing a uniform interleave
approach and combining the resulting expression with a de-
coder condition for the existence of trapping sets. Finally
numerical evaluation is obtained via a constrained noafine
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