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Abstract—We consider transmission over a wiretap channel L» Alice BEC(e,n) Bob
where both the main channel and the wiretapper’s channel are
Binary Erasure Channels (BEC). We propose a code construction
using two edge type LDPC codes based on the method of
Thangaraj, Dihidar, Calderbank, McLaughlin and Merolla. The
advantage of our construction is that we can easily calculate the
threshold over the main channel. Using standard LDPC codes BEC(ew)
with a given threshold over the BEC we give a construction for
a two edge type LDPC code with the same threshold. Since this zZ
construction gives a code for the main channel with threshold
zero we also give numerical methods to find two edge type LDPC
codes with non-zero threshold for the main channel.
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I. INTRODUCTION Fig. 1. Wiretap channel

Wyner introduced the notion of a wiretap channel in [1]

whose non-degraded version is depicted in Figure 1. In gen- . ) o
eral, the channel from Alice to Bob and the channel from Alicgoarse code of the nested code is capacity achieving over

to Eve can be any discrete memoryless channels. In this pa?grc(ew) and the fine code has threshold greater than
we will restrict ourselves to the setting when both chanaegs then perfectly secure and reliable communication is péssib
Binary Erasure Channels (BEC). In a wiretap channel, Alidd®Wever no construction method was given to find nested
communicates a messatjé to Bob through the main channeICOdeS with these properties. In particular, no guaranteg wa
denoted as’,,, by encodinglV as ann bit vector X, and given for the threshold over the main channel. In this paper,
moa =X . .
transmitting X acrossC,,,. Bob receives a noisy version of W& givé a code construction method based on two edge type
X which is denoted by’. In our settingC,, is a BEC with LDPC codes. Our method has the advantage that its reliabilit
erasure probability,,. Eve observesy via the wiretapper's perfor_mance on the main channel and_ secrecy performance on
channelC,, and receives a noisy version of denoted as the wiretapper’s channel can be easily computed. Our code
Z. In our setting,C,, is a BEC with erasureiprobability ~ construction is based on the code construction method of [2]
The encoding of a messad€ by Alice should be such that
Bob is able to decodél” reliably and Z does not provide i ) .
any information to Eve abouit’. More precisely, as in [2], We first describe the code cqnstructlon method2)f Let
the mutual information betweel and Z goes to zero rate- X P& ann(1l—r)xn LDPC matrix. LetC be the code whose
wise asn goes to infinity. Assume thatV’ is chosen from parity-check matrix isH. Let H, and H, be the submatrices
{1,..., M} with uniform probability. In [1] the codeboog ©f H such that o
used by Alice is partitioned intd/ subset<,, of equal size, H= [Hl} ,
and to transmit message Alice chooses a member df, 2
uniformly at random. I can be used to communicate reliablyhere H; is ann(1l — r1) x n matrix. Clearly,r; > r. Let
over the main channel Bob will be able to determine the subght be the code with parity-check matrif{;. C is the coarse
C,, and thus the messad€. code, and’; is the fine code in the nested co@®,C), and
Previously in [2], [3] the authors have given code desigfy is partitioned into2"("1~") disjoint subsets given by the
methods based on sparse graph codes. The approach of [Zoisets ofC. Assume that Alice wants to transmit a message
based on nested codes [4]. It was shown in [2] that if tH& whose binary representation is given by @afr; — r)-bit
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vector S. To do this she transmit&, which is a randomly {w™®,w® p1) p@1 is the collection of all the bipartite

chosen solution of graphs satisfying the degree distribution constraintswiite
H, T the density evolution recursion, Ie@” denote the probability
[HQ] X=[0---05]". that a message from a variable node to a check node on an

edge of typej in iteration! is erased. Clearly,
)

X, =€.
A=HW|Z) = nlew — (1—11)). (1) .
In the same way IeyJ() be the probability that a message
§fbm a check node to a variable node on an edge of fype

iteration! is erased. This probability is

As shown in [2], the equivocation for Eve is

If C is capacity achieving over the wiretapper’s channel th
€w = 1—r andA = n(r; —r). This means tha$ is perfectly
secure from Eve, since the rate from Alice to Bobris—

r. Also, if the threshold of the codé, is higher than the g =1-pD1-2), j=1,2
main channel erasure probability, then Bob can recovef , ) i ) ) .
reliably. wherep)(z) = 37, pi”’ 211, Using this we can write down

The natural candidate for such a code construction is a tg following recursions f0m§l)i
edge type LDPC code. A two edge type matfixhas form

H oY = w48 (6)
l l l

=i @ L) 0 0, o

The two types of edges are the edges connected to check nd’&% re

in H,; and those connected to check nodegiin An example w(l)(x, y) = Z wzilli)zxil*lyiz

of a two edge type LDPC code is shown in Figure 2. We now i102

w(2)(x,y) = Z wfilx“yirl.
11,12
As the density evolution recursion is a two dimensional
Ty" recursion, it is difficult to analyze. Thus we look for degree
distributions which reduce the two dimensional recursion t
a single dimension to be able to use the standard setting of

Type 1 checks Type 2 checks density evolution recursion for the BEC. To do this, we ingpos
the following constraints:
Fig. 2. Two edge type LDPC code
’ e P (@) = p? (@) = pla) ®)
define the degree distribution of edges. L&f) denote the wW(z,7) = W (2,2) = \(x). 9)

fraction of type;j (j = 1 or 2) edges connected to variableygte that since
nodes withi; outgoing type 1 edges and outgoing type 2

edges. The fractiowz(fz?z is calculated with respect to the total W (z,2) = Z wi(fngilﬂrl
number of typej edges. LeX);,;, be the fraction of variable i1,02
nodes withi; outgoing edges of typé andi, outgoing edges ) 1
of type 2. This gives the following relationships between = Z Z Wiriy | T s
Q,w™, andw®, which hold whenever the right hand side ko N\irti=k
is defined, (9) implies
110 m _ 2
%(111_)2 _ th‘ ;5_ - ©) | Z Wiy = | Z wi, Yk (20)
41,40 V1900112 i1+io=k i1+io=k
@ _ _ 28 ; no_ W0 o _ 0
e TS0 (4) Equation (8) ens(ﬂr%s th e Ys When(el\)/era;l(l)_ zs”,
e e " and (9) ensures; "’ = x;  whenevery;’ =y, . Thus,
Pigip Yigig since x;;) = ¢ we can skip the subscripts er) and yy)
Qiyi, = 4= ENCORE (5) and end up with the usual one dimensional density evolution
Zil,i2 2117’2 Z’il,i2 ;1212 equatlon
- j N (+1) _ _ Q)
Similarly, let p{”) denote the degree distribution of tyge r = eA1—p(1 =), (1)

edges on the check node side. Note that only one Yidere \(z) = 3, \wz* 1 is given by

of edges is connected to a particular check node. Like

the standard LDPC ensemble of [5], the two edge type =Y %(111)2 (12)
LDPC ensemble with block length and degree distribution i1t+is=k



Assume that we can find an assignmenu6f, w2 p(1) | p(2) The design rate of the two edge type ensemble is
which satisfies (5), (8), (9), (10), and (12). Now by choosing
(A, p) to be a degree distribution for the BEC with threshold
€*, we obtain that the two edge type LDPC ensemble also haberem; is the number of parity checks of tygeandn is
the same threshold . Thus it can guarantee an equivocation ahe number of variable nodes. If we Ié4,4 denote the average
n(e*—(1—ry)), wherer; is the rate of matrixZ;. To compute check node degree and count the number of ty@eiges in
the threshold achievable on the main channel, we needty different ways we get

compute the threshold af,. The ensemble of matri¥f; is n ZZQ o

a standard LDPC ensemble, and its degree distribution can be Lo T Jrave

easily calculated from the degree distribution of the twgesd ; e

type ensemble. Hence we can easily compute its threshocfd.

Tdes= 1 — (ml + m2)/n

In the following theorem we present such an assignment of mj _ M
w(l)’ w(2)7 p(1)7 p(g) n da\/g
(4)
Theorem II.1. Let (), p) be a standard LDPC degree distri- @ 1 i i
bution with design rate » and threshold ¢* over the BEC. Then = daw )
the following assignment DD
o 1 1
p(z) = p@ (x) = p(x) i A—
W _ @ _ DD
W =Wy = )\22' (13) 11,2 1y
u)7(L1J)r1 _ wi(i)li = - :_ 1)\21_“ (14) \1vhere (a) is due to (5) and (b) follows since lzhlélli)2 sum to
1 .
0 .
%(41-)11‘ _ %‘(?J)ﬂ _ 222‘:_ A2t (15) The design rate then becomes
Tdes= 1 — (m1 +ma)/n
A=l =0 w1 g T
1 1 1
ensures that the two edge type LDPC ensemble =1- 7 ORRE =
{w®, w® pM) P} also has design rate » and threshold M5, ‘“iim S ‘“;11‘2
¢*. Also, it guarantees an equivocation of n(e* — (1 —r)/2) een e
to Eve. @ - l ;
Proof: Note that davg S ‘”5.32
11,22 1
W) =W Viy,is. (17) ®,_ 2 < 1 )
d A2it1 A2i A2it1
This ensures that (5) is fulfilled. M\ 21 T4t 3
We now show thato™ (z,z) = w® (z,z) = \(z). Then =1— L)\;
the two dimensional density evolution recursion becomes th davg ), 2 + 42
one dimensional recursion in (11), and the two type edge - 1 1
ensemble will have the same threshold as the one edge type - sz} Ai

ensemble. We have where (a) is due to (17) and (b) follows using (13) - (16). Sinc

w(z,2) = Z w1(17) pitiz—1 this expression is the same as the design rate of the standard
e LDPC ensemblé ), p) we have shown that has design rate
r. Thus if the one edge type ensemble achieves capacity over
the BECE,,), so does the two edge type ensemble.
To show that the equivocation to Evenge* — (1 —r)/2)

11,12

5 Ll ol ol 0
A

(:b)z B Y N ID W= Lo we show that the design rate 6f is (1 +7)/2 and use (1).
T2+l The fraction of type 1 edges connected to a variable node with
1+1 N 2 i1 outgoing type 1 edges is given By, wfllzl so the variable
24172 degree distribution fof; is given by
=) Ao 4 Agur?t 1 _ (1)
i
=z 1 1 1
(=) = wz(ill + wvgi) + Wz‘(w)ﬂ

where (a) is due to (16) and (b) is due to (13) - (15). The _ i Noi 1+ Aos + i Ao
proof for w(® (z, z) is done in the same way. 2 — 17T AR T gy e



again using (13) - (16). Thus the design rate orbecomes The corresponding constraint fey is

1 1 . i1, in—1
rn=1-— Kik(l) 0< Z 11(332 - Gyily? )Qiliz'
\Y i -
9 Zz i 11,12
B 1 1 The design rate can be written as
I I A2i— 2)g; A2 . .
davg 3, Zg + B2 + 3k v 1ivin D04 4, 12804
11 1 Tdes= 1 — 0 O
:1—577)\ ZiZRi ZiZRi
avg X, % SRS
1 i1 L158iyig .
—1_ 5(1 —7) where the ter lejiRﬁ” is constant because of the fixed
147 degree distribution off;. If R is fixed we see that maximiz-
= . ing the design rate is the same as minimiz AT
2 9 9 1,22 1t2

Thus we end up with the following linear program:

Since all capacity approaching sequences of degree distri- minimize Z 19,4,
butions have some degree two variable nodes we see that our
construction will have some degree one variable nodes in tguebject o
code for the main channel. This means that the threshold over
the main channel will be zero. To get around this problenEQ
we use linear programming methods to find good degreg,
g:qsttjgkt)il;trl]?s satisfying the two dimensional density ewian Z in(z1 (k) — eyn (k) ya(k)2) 0, >0, k=1,..., K

1,12

:A(l) Z'1:2)...7I

1112 i1 0

11,12
I1l. N UMERICAL OPTIMIZATION > ir(wa(k) — eya (k) y2(k)> )y, >0, k=1,... K,
Since the construction in Theorem 1.1 gives a code ovet-

the main channel with threshold zero we try to find a googhere 7 is the largest degree im\()(z). The points

two edge type ensemble using numerical methods. First W, (k), z2(k)}K_, are chosen by generating a distributiin
Optimizecl for the main channel USing the methods deSCI’ibQ;hd then running the density evolution recursion

in [6] and obtain a good ensemb{d ("), R™M) for the main oo

channel A" and R(Y are degree distributions from the node Ty =Ty =€
i ! o
perspective. ' 2™ = ew® (", 5
For a given two edge type ensemble we can find the (1+1) @0 O
corresponding one edge type ensemble dprby summing Ty =ew (Y e

over the second index, since the fraction of variable nodgs times. The program is then solved repeatedly, each time
with i, outgoing type 1 edges is given By, i;,. To fix ypdating{z; (k), z2(k)}_,. This process is repeated several
the degree distribution off; we then impose the constraint times for different check node degree distributidd®).
ZQ' C— AD for all i Two degree distributions found in this way are given in
e g Tables Il and Ill. The same distribution was used fér, a
" ] ) _rate .498836 code with threshold .5 and multiplicative gap t
(zﬁ?; SUC(%GSM ?ﬁﬁ?d'ng(lyve impose the two constraingapacity (1 — ¢ — rdeg)/(1 — ¢) = 0.00232857. The degree
zy < andz; " <y’ which can be written as distribution for this code is given in Table I.
The code in Table Il has rate 0.39893 and threshold 0.6.

> e
712w (v, ) The multiplicative gap to capacity of this code is 0.0026763

=y wfllgyiﬁll/? The rate from Alice to Bob is 0.099906 and the equivocation

i1,z for Eve is0.098836m.
. Z 1182, 4, yilqyiz The code in Table Il has rate 0.248705 and threshold 0.75.
Dy B1 kT The multiplicative gap to capacity is 0.00518359. The rate

e from Alice to Bob is 0.250131 and the equivocation for Eve
where we have used (3) in the last step, andy, are given s (.2488361.

by
IV. CONCLUSION
yj =1—p;(1—ay). We have constructed a capacity achieving sequence of
This simplifies to the linear constraint two edge type LDPC ensembles based on standard LDPC
, , ensembles. The reliability and security performance of our
0< ZZ&(% - Gyil_ly?)ghz’z' construction can easily be computed from the performance

i1,i2 of the standard LDPC ensemble over the BEC. Note that



TABLE | TABLE Il

DEGREE DISTRIBUTION FORH DEGREE DISTRIBUTIONS FOR A CODE OPTIMIZED FORy, = 0.5 AND
€w = 0.75.
3 A;
2 | 0.5572098 i1 | 92 | iy
3 | 0.1651436 2 | 0 | 0367823
4 | 0.07567923 2 | 1 | 0.166244
5 | 0.0571348 2 | 2 | 0.0231428
7 | 0.043603 3 | 0 | 0125727
8 | 0.02679802 3 | 1 | 0.0394166
13 | 0.013885518 4 | 0 | 0.00286773
14 | 0.0294308 4 | 1 | 00728115
31 | 0.02225301 5 | 1 | 0.0571348 i | RO
100 | 0.00886105 7 | 2 | 0.0300989 5 T 055
. | gD 7 | 3 | 0.013505 10| 075
9T 055 8 | 3 | 0.0196622 . =
: 8 | 4 | 000713582 || i | R;
10 | 075 13 | 2 | 0.000565918|[ 4 | 0.25
13 | 5 | 0.0133196 5 | 0.75
TABLE II 14 | 2 | 0.0149732
DEGREE DISTRIBUTIONS FOR A CODE OPTIMIZED FORy, = 0.5 AND 14 5 0.0132215
€w = 0.6. 14 | 6 | 0.0012361
31 | 8 | 0.00490831
0 [ [ Qi 31 | 9 | 0.0173447
2 0 0.463846 100 | 17 | 0.00130606
2 1 0.0814943 100 | 30 | 0.00498932
2 | 2 | 00118691 100 | 31 | 0.00256567
3 | 0 | 014239
3 | 1 | 0.0201658
z (2) 8:8%225&2 in the upper submatri¥; . This reduces its threshold to zero,
4 | 1 | 0.0464551 requiring an error free main channel.
5 | 0 | 00564162 . m To alleviate this problem we use numerical methods to
5 | 1 | 0.000718585|| ¢ | R, ) : . .
7 | 1| 00436039 9 [ 025 find codes with rates close to the secrecy capacity and high
8 | 1 | 0.0258926 10 | 0.75 equivocation over the wiretapper’s channel.
8 | 2 | 0.000905503|[ ;[ @
13 | 2 | 0.00631474 |——7& REFERENCES
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