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Abstract—We consider transmission over a wiretap channel
where both the main channel and the wiretapper’s channel are
Binary Erasure Channels (BEC). We propose a code construction
using two edge type LDPC codes based on the method of
Thangaraj, Dihidar, Calderbank, McLaughlin and Merolla. The
advantage of our construction is that we can easily calculate the
threshold over the main channel. Using standard LDPC codes
with a given threshold over the BEC we give a construction for
a two edge type LDPC code with the same threshold. Since this
construction gives a code for the main channel with threshold
zero we also give numerical methods to find two edge type LDPC
codes with non-zero threshold for the main channel.

I. I NTRODUCTION

Wyner introduced the notion of a wiretap channel in [1]
whose non-degraded version is depicted in Figure 1. In gen-
eral, the channel from Alice to Bob and the channel from Alice
to Eve can be any discrete memoryless channels. In this paper
we will restrict ourselves to the setting when both channelsare
Binary Erasure Channels (BEC). In a wiretap channel, Alice
communicates a messageW to Bob through the main channel
denoted asCm, by encodingW as ann bit vector X, and
transmittingX acrossCm. Bob receives a noisy version of
X which is denoted byY . In our settingCm is a BEC with
erasure probabilityǫm. Eve observesX via the wiretapper’s
channelCw and receives a noisy version ofX denoted as
Z. In our setting,Cw is a BEC with erasure probabilityǫw.
The encoding of a messageW by Alice should be such that
Bob is able to decodeW reliably andZ does not provide
any information to Eve aboutW . More precisely, as in [2],
the mutual information betweenW andZ goes to zero rate-
wise asn goes to infinity. Assume thatW is chosen from
{1, . . . ,M} with uniform probability. In [1] the codebookC
used by Alice is partitioned intoM subsetsCw of equal size,
and to transmit messagew Alice chooses a member ofCw

uniformly at random. IfC can be used to communicate reliably
over the main channel Bob will be able to determine the subset
Cw and thus the messageW .

Previously in [2], [3] the authors have given code design
methods based on sparse graph codes. The approach of [3] is
based on nested codes [4]. It was shown in [2] that if the
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Fig. 1. Wiretap channel

coarse code of the nested code is capacity achieving over
BEC(ǫw) and the fine code has threshold greater thanǫm

then perfectly secure and reliable communication is possible.
However no construction method was given to find nested
codes with these properties. In particular, no guarantee was
given for the threshold over the main channel. In this paper,
we give a code construction method based on two edge type
LDPC codes. Our method has the advantage that its reliability
performance on the main channel and secrecy performance on
the wiretapper’s channel can be easily computed. Our code
construction is based on the code construction method of [2].

II. CODE CONSTRUCTION

We first describe the code construction method of[2]. Let
H be ann(1− r)×n LDPC matrix. LetC be the code whose
parity-check matrix isH. Let H1 andH2 be the submatrices
of H such that

H =

[

H1

H2

]

,

whereH1 is an n(1 − r1) × n matrix. Clearly,r1 > r. Let
C1 be the code with parity-check matrixH1. C is the coarse
code, andC1 is the fine code in the nested code(C1, C), and
C1 is partitioned into2n(r1−r) disjoint subsets given by the
cosets ofC. Assume that Alice wants to transmit a message
W whose binary representation is given by ann(r1 − r)-bit



vector S. To do this she transmitsX, which is a randomly
chosen solution of

[

H1

H2

]

X = [0 · · · 0 S]T .

As shown in [2], the equivocation for Eve is

∆ ≡ H(W |Z) = n(ǫw − (1 − r1)). (1)

If C is capacity achieving over the wiretapper’s channel then
ǫw = 1−r and∆ = n(r1−r). This means thatS is perfectly
secure from Eve, since the rate from Alice to Bob isr1 −
r. Also, if the threshold of the codeC1 is higher than the
main channel erasure probabilityǫm then Bob can recoverS
reliably.

The natural candidate for such a code construction is a two
edge type LDPC code. A two edge type matrixH has form

H =

[

H1

H2

]

. (2)

The two types of edges are the edges connected to check nodes
in H1 and those connected to check nodes inH2. An example
of a two edge type LDPC code is shown in Figure 2. We now
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Fig. 2. Two edge type LDPC code

define the degree distribution of edges. Letω
(j)
i1i2

denote the
fraction of typej (j = 1 or 2) edges connected to variable
nodes withi1 outgoing type 1 edges andi2 outgoing type 2
edges. The fractionω(j)

i1i2
is calculated with respect to the total

number of typej edges. LetΩi1i2 be the fraction of variable
nodes withi1 outgoing edges of type1 andi2 outgoing edges
of type 2. This gives the following relationships between
Ω, ω(1), and ω(2), which hold whenever the right hand side
is defined,

ω
(1)
i1i2

=
i1Ωi1i2

∑

i1,i2
i1Ωi1i2

(3)

ω
(2)
i1i2

=
i2Ωi1i2

∑

i1,i2
i2Ωi1i2

(4)

Ωi1i2 =

ω
(1)
i1i2

i1

∑

i1,i2

ω
(1)
i1i2

i1

=

ω
(2)
i1i2

i2

∑

i1,i2

ω
(2)
i1i2

i2

. (5)

Similarly, let ρ
(j)
i denote the degree distribution of typej

edges on the check node side. Note that only one type
of edges is connected to a particular check node. Like
the standard LDPC ensemble of [5], the two edge type
LDPC ensemble with block lengthn and degree distribution

{

ω(1), ω(2), ρ(1), ρ(2)
}

is the collection of all the bipartite
graphs satisfying the degree distribution constraints. Towrite
the density evolution recursion, letx

(l)
j denote the probability

that a message from a variable node to a check node on an
edge of typej in iteration l is erased. Clearly,

x
(1)
j = ǫ.

In the same way lety(l)
j be the probability that a message

from a check node to a variable node on an edge of typej in
iteration l is erased. This probability is

y
(l)
j = 1 − ρ(j)(1 − x

(l)
j ), j = 1, 2

whereρ(j)(x) =
∑

i ρ
(j)
i xi−1. Using this we can write down

the following recursions forx(l)
j :

x
(l+1)
1 = ǫω(1)(y

(l)
1 , y

(l)
2 ) (6)

x
(l+1)
2 = ǫω(2)(y

(l)
1 , y

(l)
2 ), (7)

where

ω(1)(x, y) =
∑

i1,i2

ω
(1)
i1i2

xi1−1yi2

ω(2)(x, y) =
∑

i1,i2

ω
(2)
i1i2

xi1yi2−1.

As the density evolution recursion is a two dimensional
recursion, it is difficult to analyze. Thus we look for degree
distributions which reduce the two dimensional recursion to
a single dimension to be able to use the standard setting of
density evolution recursion for the BEC. To do this, we impose
the following constraints:

ρ(1)(x) = ρ(2)(x) = ρ(x) (8)

ω(1)(x, x) = ω(2)(x, x) = λ(x). (9)

Note that since

ω(j)(x, x) =
∑

i1,i2

ω
(j)
i1i2

xi1+i2−1

=
∑

k

(

∑

i1+i2=k

ω
(j)
i1i2

)

xk−1,

(9) implies
∑

i1+i2=k

ω
(1)
i1i2

=
∑

i1+i2=k

ω
(2)
i1i2

∀k. (10)

Equation (8) ensures thaty(l)
1 = y

(l)
2 wheneverx(l)

1 = x
(l)
2 ,

and (9) ensuresx(l+1)
1 = x

(l+1)
2 whenevery(l)

1 = y
(l)
2 . Thus,

since x
(1)
j = ǫ we can skip the subscripts onx(l)

j and y
(l)
j

and end up with the usual one dimensional density evolution
equation

x(l+1) = ǫλ(1 − ρ(1 − x(l))), (11)

whereλ(x) =
∑

k λkxk−1 is given by

λk =
∑

i1+i2=k

ω
(1)
i1i2

. (12)



Assume that we can find an assignment ofω(1), ω(2), ρ(1), ρ(2)

which satisfies (5), (8), (9), (10), and (12). Now by choosing
(λ, ρ) to be a degree distribution for the BEC with threshold
ǫ⋆, we obtain that the two edge type LDPC ensemble also has
the same thresholdǫ⋆. Thus it can guarantee an equivocation of
n(ǫ⋆−(1−r1)), wherer1 is the rate of matrixH1. To compute
the threshold achievable on the main channel, we need to
compute the threshold ofC1. The ensemble of matrixH1 is
a standard LDPC ensemble, and its degree distribution can be
easily calculated from the degree distribution of the two edge
type ensemble. Hence we can easily compute its threshold.
In the following theorem we present such an assignment of
ω(1), ω(2), ρ(1), ρ(2).

Theorem II.1. Let (λ, ρ) be a standard LDPC degree distri-
bution with design rate r and threshold ǫ⋆ over the BEC. Then
the following assignment

ρ(1)(x) = ρ(2)(x) = ρ(x)

ω
(1)
ii = ω

(2)
ii = λ2i (13)

ω
(1)
ii+1 = ω

(2)
i+1i =

i

2i + 1
λ2i+1 (14)

ω
(1)
i+1i = ω

(2)
ii+1 =

i + 1

2i + 1
λ2i+1 (15)

ω
(1)
i1i2

= ω
(2)
i1i2

= 0 |i1 − i2| > 1, (16)

ensures that the two edge type LDPC ensemble
{

ω(1), ω(2), ρ(1), ρ(2)
}

also has design rate r and threshold
ǫ⋆. Also, it guarantees an equivocation of n(ǫ⋆ − (1 − r)/2)
to Eve.

Proof: Note that

ω
(1)
i1i2

= ω
(2)
i2i1

∀i1, i2. (17)

This ensures that (5) is fulfilled.
We now show thatω(1)(x, x) = ω(2)(x, x) = λ(x). Then

the two dimensional density evolution recursion becomes the
one dimensional recursion in (11), and the two type edge
ensemble will have the same threshold as the one edge type
ensemble. We have

ω(1)(x, x) =
∑

i1,i2

ω
(1)
i1i2

xi1+i2−1

(a)
=
∑

i

ω
(1)
ii+1x

2i + ω
(1)
ii x2i−1 + ω

(1)
i+1ix

2i

(b)
=
∑

i

i

2i + 1
λ2i+1x

2i + λ2ix
2i−1+

+
i + 1

2i + 1
λ2i+1x

2i

=
∑

i

λ2i+1x
2i + λ2ix

2i−1

=λ(x)

where (a) is due to (16) and (b) is due to (13) - (15). The
proof for ω(2)(x, x) is done in the same way.

The design rate of the two edge type ensemble is

rdes = 1 − (m1 + m2)/n

wheremj is the number of parity checks of typej and n is
the number of variable nodes. If we letdavg denote the average
check node degree and count the number of typej edges in
two different ways we get

n
∑

i1,i2

ijΩi1i2 = mjdavg

or

mj

n
=

∑

i1,i2
ijΩi1i2

davg

(a)
=

1

davg

∑

i1,i2
ij

ω
(j)
i1i2

ij

∑

i1,i2

ω
(j)
i1i2

ij

(b)
=

1

davg

1

∑

i1,i2

ω
(j)
i1i2

ij

where (a) is due to (5) and (b) follows since theω
(1)
i1i2

sum to
1.

The design rate then becomes

rdes = 1 − (m1 + m2)/n

= 1 −
1

davg







1

∑

i1,i2

ω
(1)
i1i2

i1

+
1

∑

i1,i2

ω
(2)
i1i2

i2







(a)
= 1 −

2

davg







1

∑

i1,i2

ω
(1)
i1i2

i1







(b)
= 1 −

2

davg

(

1
∑

i

λ2i+1

2i+1 + λ2i

i
+ λ2i+1

2i+1

)

= 1 −
1

davg

1
∑

i

λ2i+1

2i+1 + λ2i

2i

= 1 −
1

davg

1
∑

i
λi

i

where (a) is due to (17) and (b) follows using (13) - (16). Since
this expression is the same as the design rate of the standard
LDPC ensemble(λ, ρ) we have shown thatC has design rate
r. Thus if the one edge type ensemble achieves capacity over
the BEC(ǫw), so does the two edge type ensemble.

To show that the equivocation to Eve isn(ǫ⋆ − (1 − r)/2)
we show that the design rate ofC1 is (1 + r)/2 and use (1).
The fraction of type 1 edges connected to a variable node with
i1 outgoing type 1 edges is given by

∑

i2
ω

(1)
i1i2

, so the variable
degree distribution forH1 is given by

λ
(1)
i =

∑

i2

ω
(1)
ii2

= ω
(1)
ii−1 + ω

(1)
ii + ω

(1)
ii+1

=
i

2i − 1
λ2i−1 + λ2i +

i

2i + 1
λ2i+1



again using (13) - (16). Thus the design rate forC1 becomes

r1 = 1 −
1

davg

1
∑

i

λ
(1)
i

i

= 1 −
1

davg

1
∑

i

λ2i−1

2i−1 + 2λ2i

2i
+ λ2i+1

2i+1

= 1 −
1

2

1

davg

1
∑

i
λi

i

= 1 −
1

2
(1 − r)

=
1 + r

2
.

Since all capacity approaching sequences of degree distri-
butions have some degree two variable nodes we see that our
construction will have some degree one variable nodes in the
code for the main channel. This means that the threshold over
the main channel will be zero. To get around this problem
we use linear programming methods to find good degree
distributions satisfying the two dimensional density evolution
equations.

III. N UMERICAL OPTIMIZATION

Since the construction in Theorem II.1 gives a code over
the main channel with threshold zero we try to find a good
two edge type ensemble using numerical methods. First we
optimizeC1 for the main channel using the methods described
in [6] and obtain a good ensemble(Λ(1), R(1)) for the main
channel.Λ(1) andR(1) are degree distributions from the node
perspective.

For a given two edge type ensemble we can find the
corresponding one edge type ensemble forC1 by summing
over the second index, since the fraction of variable nodes
with i1 outgoing type 1 edges is given by

∑

i2
Ωi1i2 . To fix

the degree distribution ofH1 we then impose the constraint
∑

i2

Ωi1i2 = Λ
(1)
i1

for all i1.

For succesful decoding we impose the two constraints
x

(l+1)
1 ≤ x

(l)
1 andx

(l+1)
2 ≤ x

(l)
2 which can be written as

x1 ≥ ǫω(1)(y1, y2)

= ǫ
∑

i1,i2

ω
(1)
i1i2

yi1−1
1 yi2

2

= ǫ
∑

i1,i2

i1Ωi1,i2
∑

k1,k2
k1Ωk1,k2

yi1−1
1 yi2

2 .

where we have used (3) in the last step, andy1, y2 are given
by

yj = 1 − ρj(1 − xj).

This simplifies to the linear constraint

0 ≤
∑

i1,i2

i1(x1 − ǫyi1−1
1 yi2

2 )Ωi1i2 .

The corresponding constraint forx2 is

0 ≤
∑

i1,i2

i1(x2 − ǫyi1
1 yi2−1

2 )Ωi1i2 .

The design rate can be written as

rdes = 1 −

∑

i1,i2
i1Ωi1i2

∑

i iR
(1)
i

−

∑

i1,i2
i2Ωi1i2

∑

i iR
(2)
i

,

where the term

∑

i1,i2
i1Ωi1i2

∑

i
iR

(1)
i

is constant because of the fixed

degree distribution ofH1. If R(2) is fixed we see that maximiz-
ing the design rate is the same as minimizing

∑

i1,i2
i2Ωi1i2 .

Thus we end up with the following linear program:

minimize
∑

i1,i2

i2Ωi1i2

subject to
∑

i2

Ωi1i2 = Λ
(1)
i1

, i1 = 2, . . . , I

∑

i1,i2

i1(x1(k) − ǫy1(k)i1−1y2(k)i2)Ωi1i2 ≥ 0, k = 1, . . . ,K

∑

i1,i2

i1(x2(k) − ǫy1(k)i1y2(k)i2−1)Ωi1i2 ≥ 0, k = 1, . . . ,K,

where I is the largest degree inΛ(1)(x). The points
{x1(k), x2(k)}K

k=1 are chosen by generating a distributionΩ
and then running the density evolution recursion

x
(1)
1 = x

(1)
2 = ǫ

x
(l+1)
1 = ǫω(1)(y

(l)
1 , y

(l)
2 )

x
(l+1)
2 = ǫω(2)(y

(l)
1 , y

(l)
2 )

K times. The program is then solved repeatedly, each time
updating{x1(k), x2(k)}K

k=1. This process is repeated several
times for different check node degree distributionsR(2).

Two degree distributions found in this way are given in
Tables II and III. The same distribution was used forH1, a
rate .498836 code with threshold .5 and multiplicative gap to
capacity (1 − ǫ − rdes)/(1 − ǫ) = 0.00232857. The degree
distribution for this code is given in Table I.

The code in Table II has rate 0.39893 and threshold 0.6.
The multiplicative gap to capacity of this code is 0.00267632.
The rate from Alice to Bob is 0.099906 and the equivocation
for Eve is0.098836n.

The code in Table III has rate 0.248705 and threshold 0.75.
The multiplicative gap to capacity is 0.00518359. The rate
from Alice to Bob is 0.250131 and the equivocation for Eve
is 0.248836n.

IV. CONCLUSION

We have constructed a capacity achieving sequence of
two edge type LDPC ensembles based on standard LDPC
ensembles. The reliability and security performance of our
construction can easily be computed from the performance
of the standard LDPC ensemble over the BEC. Note that



TABLE I
DEGREE DISTRIBUTION FORH1

i Λi

2 0.5572098
3 0.1651436
4 0.07567923
5 0.0571348
7 0.043603
8 0.02679802
13 0.013885518
14 0.0294308
31 0.02225301
100 0.00886105

i R
(1)
i

9 0.25
10 0.75

TABLE II
DEGREE DISTRIBUTIONS FOR A CODE OPTIMIZED FORǫm = 0.5 AND

ǫw = 0.6.

i1 i2 Ωi1i2

2 0 0.463846
2 1 0.0814943
2 2 0.0118691
3 0 0.14239
3 1 0.0201658
3 2 0.00258812
4 0 0.0292241
4 1 0.0464551
5 0 0.0564162
5 1 0.000718585
7 1 0.0436039
8 1 0.0258926
8 2 0.000905503
13 2 0.00631474
13 5 0.00757076
14 1 0.011051
14 2 0.0173718
14 5 0.00100807
31 0 0.00240762
31 4 0.0012626
31 5 0.0185828
100 4 0.000326117
100 17 0.00383319
100 18 0.00470174

i R
(1)
i

9 0.25
10 0.75

i R
(2)
i

6 1.0

if we choose the standard LDPC ensemble to be capacity
achieving, we achieve perfect secrecy as the two edge type
LDPC ensemble is then also capacity achieving. However, as
there are degree two variable nodes in a capacity achieving
degree distribution, we obtain some degree one variable nodes

TABLE III
DEGREE DISTRIBUTIONS FOR A CODE OPTIMIZED FORǫm = 0.5 AND

ǫw = 0.75.

i1 i2 Ωi1i2

2 0 0.367823
2 1 0.166244
2 2 0.0231428
3 0 0.125727
3 1 0.0394166
4 0 0.00286773
4 1 0.0728115
5 1 0.0571348
7 2 0.0300989
7 3 0.013505
8 3 0.0196622
8 4 0.00713582
13 2 0.000565918
13 5 0.0133196
14 2 0.0149732
14 5 0.0132215
14 6 0.0012361
31 8 0.00490831
31 9 0.0173447
100 17 0.00130606
100 30 0.00498932
100 31 0.00256567

i R
(1)
i

9 0.25
10 0.75

i R
(2)
i

4 0.25
5 0.75

in the upper submatrixH1. This reduces its threshold to zero,
requiring an error free main channel.

To alleviate this problem we use numerical methods to
find codes with rates close to the secrecy capacity and high
equivocation over the wiretapper’s channel.
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