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Abstract
We introduce a family of binary prefix condition codes in which each codeword is required

to have a Hamming weight which is a multiple of w for some integer w ≥ 2. Such codes
have intrinsic error resilience and are a special case of codes with codewords constrained to
belong to a language accepted by a deterministic finite automaton. For a given source over
n symbols and parameter w we offer an algorithm to construct a minimum-redundancy code
among this class of prefix condition codes which has a running time of O(nw+2).

1. Introduction
In recent years the study of joint source-channel coding with variable-length codes has gained interest

because of the prospect of designing communication systems with the same performance but less
complexity than systems which completely separate the source and channel coding functions. Two of
the early papers on this topic are [1] and [2], and the recent paper [3] offers an overview of numerous
papers in the area. The problem we address in this paper is motivated by an algorithm proposed in [3].

Assume a memoryless source X over the alphabet X = {1, 2, . . . , n}, and let pi, i ∈ X , denote the
probability of symbol i. For convenience suppose that p1 ≥ p2 ≥ . . . ≥ pn ≥ 0. We are given a positive
integer w ≥ 2. The Hamming weight of a binary string is the number of ones in the string. An optimal
or minimum-redundancy code over a class of codes is one which minimizes the average codeword
length. We seek an optimal binary prefix condition code with the constraint that each codeword has a
Hamming weight which is a multiple of w. Observe that any sequence of codewords from such a code
has a Hamming weight which is a multiple of w. Therefore, the Hamming distance dmin or number
of positions in which two distinct sequences of codewords of the same length differ must be at least
two. This property introduces error resilience into the output of the source encoder, and we shall see
shortly that for small values of w the optimal code does not sacrifice much in terms of compression
performance. The paper [3] offers a simple heuristic for this problem when w = 2, i.e., when each
codeword is required to have even parity.

Let li, i ∈ X , be the length of the codeword assigned to source symbol i. It is possible to show that
when w = 2, the necessary and sufficient conditions for the existence of a binary prefix condition code
with even parity codewords of length l1, l2, . . . , ln is identical to the conditions satisfied by a binary
prefix condition code with codeword lengths l1, l2, . . . , ln in which every codeword is constrained to end
with the binary symbol “1.” The problem of constructing minimum-redundancy “1”-ended binary prefix
condition codes was first posed about 20 years in [4], and there are two polynomial-time algorithms [5],
[6], [7] to solve it which are based on dynamic programming and which use a well-known connection



between prefix condition codes and binary trees. In each case the solution is obtained by taking advantage
of properties of certain subtrees of the binary code tree corresponding to the optimal prefix condition
code. When w = 2, it is straightforward to modify the algorithms to find an optimal “1”-ended prefix
condition code to obtain an optimal even parity prefix condition code. Moreover,
Theorem 1: The expected length E[L] of an optimal even parity prefix condition code for a memo-

ryless source X with binary entropy H(X) and with minimum source symbol probability pn satisfies

H(X) + pn ≤ E[L] < H(X) + 1.

Next assume that w > 2 and the maximum symbol probability of source X is p1. The expected length
E[L] of an optimal prefix condition code in which each codeword has a Hamming weight which is a
multiple of w satisfies

E[L] <

{

H(X) + (w − 1)(1 − p1) + p1 + log2((2 log2 e)/e), p1 < 0.5
H(X) + w(1 − p1) + 1 + p1 log2 p1 + (1 − p1) log2(1 − p1), p1 ≥ 0.5

Proof: (Sketch) The bounds when w = 2 follow from results in [4] and [8] on the performance
of optimal “1”-ended codes. The bound when w > 2 can be obtained by determining the Huffman
codeword lengths for source X , setting the shortest Huffman codeword to the all-zero word and then
adding at most w − 1 “1”-bits to the ends of each remaining codeword as needed to ensure that each
codeword has Hamming weight which is a multiple of w, and using the redundancy analysis of [9].

We comment that the problem we consider here is a special case of the problem to construct minimum-
redundancy prefix condition codes when the codewords are constrained to belong to a language accepted
by a deterministic finite automaton [10, §1.1]. It is not known in general how to efficiently solve this
class of problems. The papers [11] and [12] consider a larger set of languages than the ones we discuss
here but restrict attention to sources for which pi = 1/n for all i.

2. The Algorithm
We next adapt the argument and algorithm of [5] to find a minimum-redundancy prefix condition

code where all codewords have a Hamming weight which is a multiple of w for some integer w ≥ 2.
The running time of the algorithm we propose will be O(nw+2) for w > 2 and O(n3) when w = 2.
In the case w = 2, a modification of the procedure in [6] has running time O(n2). One of the key
assumptions of [6] does not appear to extend simply when w > 2, but it is possible to adapt the scheme
of [6] for the case where w = 3.

We begin by reviewing the representation of prefix condition codes by rooted binary code trees, and
we use terminology from [5] and [9]. While we only discuss binary code alphabets, it is simple to
extend the code construction here to D-ary code alphabets if the goal is to find minimum-redundancy
prefix condition codes with codewords each having symbols which sum to a multiple of w. A binary
code tree is a labeled tree consisting of nodes and edges. If two nodes are adjacent along a path, then
the one closer to the root is called the parent of the other, and the second node is dubbed a child of
the parent node. Each edge of a binary code tree is labeled with a binary digit, and if two edges share
an endpoint then they have different labels. The binary word associated with a node in the tree is the
sequence of labels on the path from the root to the node; the root node corresponds to the empty binary
string. A node in a binary code tree may have no children, in which case it is called a leaf node, or
one child or two children. Two nodes which share a common parent are called siblings. A node with
at least one child is called an intermediate node. In a binary prefix condition code each letter of the



source alphabet is represented by a different leaf and its corresponding binary string from the binary
code tree. A binary code tree in which every intermediate node has two children is said to be full.

Following [5] and [12], we will be particularly interested in two functions of a node v of a binary code
tree. The first is the depth of node v, denoted depth(v), which is the number of symbols in the binary
word corresponding to v. The second is the type of node v, denoted type(v), which is the Hamming
weight modulo w of the binary word associated with v; i.e., type(v) ∈ {0, 1, . . . , w − 1} for every
node v in the binary code tree. Observe that the root node satisfies depth(root) = type(root) = 0
and the sibling of a type-0 node other than the root would either be of type 1 or of type w − 1. Let
C = {σ1, σ2, . . . , σn} be a prefix condition code for which all codewords have a weight which is a
multiple of w; i.e., each σi is associated with a distinct type-0 leaf in a binary code tree. Since we are
interested in minimum-redundancy codes we assume that the codeword lengths satisfy l1 ≤ l2 ≤ · · · ≤ ln.
To simplify the study of optimal codes we say that a binary code tree T is feasible if

1) T is full.
2) Suppose T has m < n type-0 leaves with depth less than d and bj type-j nodes with depth d,

j ∈ {0, 1, . . . , w−1}. Then bj ≤ n−m, j ∈ {0, 1, . . . , w−1}. Furthermore, ∑

j bj ≤ 2(n−m)
and is even.

3) Suppose T has m < n type-0 leaves with depth less than d and bj type-j nodes with depth d,
j ∈ {0, w − 1}. Then exactly min{bw−1, n − m − b0} of the type-(w − 1) nodes of depth d are
intermediate nodes.

4) If node u ∈ T is a type-j intermediate node, then every node v ∈ T with depth(v) = depth(u)
and type(v) > j is also an intermediate node of T .

5) Suppose T has m < n type-0 leaves with depth less than d and no type-0 nodes with depth d.
(This can only apply to full trees if w > 2.) Let T ⊆ {1, . . . , w − 1} be the types of the nodes
in T at depth d, and let t be the maximum element of T . If t < w − 1, then there is at least one
node in T of type t + 1 at depth d + 1. If t = w − 1, then there are min{bw−1, n − m} type-0
nodes in T at depth d + 1.

Lemma 2: For any source there is an optimal binary code tree T which is feasible.
Proof: (Sketch) For Property 1, given an optimal binary code tree which is not full one can

construct a second and larger optimal binary code tree from the first by inserting a sibling node and the
corresponding edge for every node that did not have a sibling in the original tree. Since each of the n
source symbols is mapped to a different leaf in the binary code tree, any binary code tree must have at
least n type-0 leaves, and a smallest optimal full binary code tree must have more than n leaves. These
extra leaves, which are not of type 0, do not correspond to codewords.

Next consider Property 2. Observe that if a smallest optimal full tree T has m type-0 leaves with
depth less than d, then it has n − m type-0 leaves with depth at least d. Each one of this latter set of
leaves is on some path originating at a depth-d node of T . If a pair of depth-d sibling nodes u and v of
T have the property that none of the leaves of the subtrees rooted at u and v correspond to codewords,
then there is a smaller optimal full tree in which these subtrees and u and v are removed from T and
the parent of u and v, which has depth d − 1, is converted into a leaf node. The number of nodes at
any depth d ≥ 1 is even because the tree is full.

For Property 3, we once again have that the smallest optimal full tree T has n−m type-0 leaves with
depth at least d. If m + b0 + bw−1 ≥ n, then T has b0 type-0 leaves at depth d and n − m − b0 type-0
leaves at depth d + 1 having a type-(w − 1) parent. Otherwise, suppose m + b0 + bw−1 < n and there
is a type-(w − 1) node u at depth d which is a leaf. If node u were to be converted to an intermediate
node, suppose that u0 would be its type-0 child. By our assumptions there is at least one type-0 leaf at



a depth greater than or equal to d + 2. If the maximum-depth type-0 leaf and its sibling were removed
from T and replaced by u0 and its sibling, the resulting binary code would improve.

For Property 4, let u ∈ T be a type-j intermediate node and let uj and uj+1 respectively denote the
type-j and type-(j+1) children of u. Suppose that there is a type-k leaf v ∈ T with depth(v) = depth(u)
and k > j. If none of the leaves of the subtree of T rooted at uj+1 correspond to codewords, then there
are three possibilities: (1) if uj+1 is an intermediate node, then its descendants can be removed from T
and uj+1 can be converted into a leaf without changing the average codeword length of the resulting
binary code tree or (2) if uj and uj+1 are both leaves, then they can be removed from T and u can
be converted into a leaf node without increasing the average codeword length of the resulting binary
code tree or (3) if uj is an intermediate node and uj+1 is a leaf, then the existing edges between u and
uj and uj+1 can be removed from T and the subtree of T rooted at uj can be moved to be rooted at
u without increasing the average codeword length of the resulting binary code tree. Therefore assume
that at least one codeword corresponds to a leaf from the subtree rooted at uj+1. Such a leaf is on a
path originating at a type-k node ν with depth at least depth(u) + 1. Then a better average codeword
length can be obtained by moving the subtree of T rooted at ν to v.

Finally consider Property 5. First suppose t < w − 1 and suppose that there is no type-(t + 1) node
in T at depth d + 1. Let v be a type-t leaf at depth d. Since T contains at least n type-0 leaves there
are at least n − m type-0 leaves at depth greater than d. Each one of these must be on some path of
T originating at a type-(t + 1) node at some depth greater than or equal to d + 2. Let νt+1 be such a
type-(t+1) node. If v were converted into an intermediate node, then it would have a type-(t+1) child
at depth d + 1, say vt+1. If we move the subtree of T rooted at νt+1 to vt+1, then the resulting tree
would have a smaller average codeword length than T . Next suppose t = w− 1. As we observed in the
discussion of Property 3, if m + bw−1 ≤ n then each type-(w − 1) node at depth d is an intermediate
node, and hence the type-0 children of these nodes are the bw−1 type-0 nodes of T at depth d + 1.

For a smallest optimal feasible binary code tree T , let vj, j ∈ X , be the leaf associated with the
binary codeword σj . Then the expected length, E[L], of the code can be expressed as

E[L] =
n

∑

j=1

ljpj =
n

∑

j=1

depth(vj) · pj.

The dynamic programming technique of [5] constructs binary code trees from the root based on
properties of certain subtrees of the smallest optimal feasible binary code tree. Following [5], for any
binary code tree T and non-negative integer i, let Trunci(T ) represent the subtree of T consisting of the
nodes with depth at most i + 1 and the corresponding edges. Trunci(T ) is called the i-level truncation
of T . It is not difficult to verify that if T is feasible then so is Trunci(T ) for each i. Tree T is said to
be an i-level tree if every intermediate node u ∈ T satisfies depth(u) ≤ i. We next define a “signature”
and a cost function on i-level trees which are adapted from [5].

If T is a feasible i-level tree, we define its i-level signature as an ordered (w + 1)-tuple
sigi(T ) = (m, b0, b1, . . . , bw−1)

with m = |{v ∈ T : v is a type-0 leaf, depth(v) ≤ i}|

and bt = |{v ∈ T : v is a type-t leaf, depth(v) = i + 1}|, t ∈ {0, . . . , w − 1}.

If T is a feasible i-level tree with sigi(T ) = (m, b0, b1, . . . , bw−1) and m ≤ n, then its cost function
Li(T ) is given by

Li(T ) =
m

∑

j=1

depth(vj) · pj + i ·
n

∑

j=m+1

pj,



where v1, v2, . . . , vm represent the type-0 leaves of T with depth at most i, and as usual depth(v1) ≤
· · · ≤ depth(vm).

The dynamic programming algorithm of [5] is based on the premise that an optimal binary code tree
T has “minimum cost” i-level truncations Trunci(T ) for every i. To modify this for our problem, for
signature (m, b0, b1, . . . , bw−1) let
OPT [m, b0, b1, . . . , bw−1] =

min
i
{Li(T ) : there exists a feasible i-level tree T with signature (m, b0, b1, . . . , bw−1)}.

Tree T is said to have minimum cost if T is a feasible i-level tree for some i and T satisfies sigi(T ) =
(m, b0, b1, . . . , bw−1) and Li(T ) = OPT [m, b0, b1, . . . , bw−1]. Observe that if T is a smallest optimal
feasible binary code tree with n type-0 leaves each with depth at most i, then sigi(T ) = (n, 0, . . . , 0)
and OPT [n, 0, . . . , 0] = Li(T ) = E[L] =

∑n
j=1 depth(vj) · pj. Our strategy will be to use dynamic

programming to obtain the table OPT [m, b0, b1, . . . , bw−1] and to backtrack from the solution for
OPT [n, 0, . . . , 0] to deduce the corresponding optimal feasible binary code tree T .

Suppose that T is a feasible i-level tree with signature (m, b0, b1, . . . , bw−1). Let us consider the
possible feasible (i + 1)-level trees with T as their i-level truncation. In each case, a (possibly empty)
subset of the b0 + b1 + · · · + bw−1 nodes of T with depth i + 1 remain as leaves in the (i + 1)-level
tree and the rest become intermediate nodes each having two children which are leaves of depth i + 2.
To be more precise, let integer vector q = (q0, q1, . . . , qw−1) satisfy 0 ≤ qj ≤ bj for each j. The
expansion q of T , denoted Expand(T,q), is constructed by converting qj of the type-j leaves at depth
i + 1, j ∈ {0, 1, . . . , w − 1}, to intermediate nodes with two children which are each leaves at depth
i + 2. To satisfy feasibility conditions we also require:

1) qw−1 = min{bw−1, n − m − b0}.
2) If qj > 0 for j ∈ {0, 1, . . . , w − 2}, then qk = bk for all k > j.
3) If q0 = b0 = 0, then let t be the maximum index for which bt > 0. If t < w − 1, then qt ≥ 1.

We have
Lemma 3: Given a feasible i-level tree T and an expansion vector q of T , let T̂ = Expand(T,q).

Then Li+1(T̂ ) = Li(T ) +
∑n

j=m+1 pj, and

sigi+1(T̂ ) = (m + b0 − q0, q0 + qw−1, q0 + q1, q1 + q2, . . . , qw−2 + qw−1).

The first part of the proof of Lemma 3 is similar to the proof of [5, Lemma 2] and we omit the details
here. The second part follows from the fact that if a binary string has Hamming weight w, then its
single bit extensions have Hamming weight w and w + 1. Notice that when w = 2 it is sufficient to
describe the i-level signature of a feasible i-level tree T by its first two entries since the number of
type-0 nodes and type-1 nodes of depth i + 1 are equal.

The significance of Lemma 3 is that sigi(T ) captures all of the information about i and T that are
needed to calculate the increase in cost function incurred by an expansion of the i-level tree T and
the signature of this expanded tree. Therefore, the OPT table can be computed recursively. Following
[5], let M(m̂, b̂0, b̂1, . . . , b̂w−1) denote the set of signatures that have an expansion with signature
(m̂, b̂0, b̂1, . . . , b̂w−1).
Lemma 4: The table of OPT values can be calculated as follows: OPT [0, 1, 1, 0, 0, . . . , 0] = 0. For

(m̂, b̂0, b̂1, . . . , b̂w−1) &= (0, 1, 1, 0, 0, . . . , 0),



OPT [m̂, b̂0, b̂1, . . . , b̂w−1] =

min
(m, b0, b1, ..., bw−1)∈M(m̂, b̂0, b̂1, ..., b̂w−1)







OPT [m, b0, b1, . . . , bw−1] +
n

∑

j=m+1

pj







.

The proof of Lemma 4 makes use of the existence of an optimal feasible binary code tree, and it is
nearly identical to the proof of [5, Lemma 3]. We omit most of the details here. We mention, however,
that the unique tree with signature (0, 1, 1, 0, 0, . . . , 0) is the 0-level tree consisting of the root and its
two children, which is easily seen to have zero cost.

We next define an ordering on signatures. Let (m, b0, b1, . . . , bw−1) and (m̂, b̂0, b̂1, . . . , b̂w−1)
be given. We say that (m, b0, b1, . . . , bw−1) precedes (m̂, b̂0, b̂1, . . . , b̂w−1), written

(m, b0, b1, . . . , bw−1) ≺ (m̂, b̂0, b̂1, . . . , b̂w−1),

if and only if

{m < m̂} or {m = m̂, b0 < b̂0} or {m = m̂, b0 = b̂0 > 0, b1 < b̂1}

or {m = m̂, b0 = b̂0 = 0, max
t:bt>0

t < max
t̂:b̂

t̂
>0

t̂}

We have
Lemma 5: If (m, b0, b1, . . . , bw−1) and (m̂, b̂0, b̂1, . . . , b̂w−1) are signatures for which

(m, b0, b1, . . . , bw−1) ∈ M(m̂, b̂0, b̂1, . . . , b̂w−1), then (m, b0, b1, . . . , bw−1) ≺ (m̂, b̂0, b̂1, . . . , b̂w−1).
The preceding results imply that the algorithm below correctly tabulates the OPT values and leads

to the construction of an optimal binary code tree. The algorithm proceeds so that all signatures in
M(m̂, b̂0, b̂1, . . . , b̂w−1) are processed before (m̂, b̂0, b̂1, . . . , b̂w−1). By an inductive argument
similar to the one in [5], the OPT value of any signature is correctly set before it is used to help
determine the OPT value of one of its expansions.
The Algorithm

Initialize the OPT table
For all m, b0, b1, . . . , bw−1 with 0 ≤ m ≤ n, 0 ≤ bi ≤ n − m,

∑

j bj ≤ 2(n − m) and even
Set OPT [m, b0, b1, . . . , bw−1] = ∞;

For all m such that 0 ≤ m ≤ n, Set Sm+1 =
∑n

j=m+1 pj;
OPT [0, 1, 1, 0, 0, . . . , 0] := 0;
Calculate the OPT values
for m := 0 to n

b0 := 0;
for t := 2 to w − 1

for b1 := 0 to n − m
for b2 := 0 to min{n − m, 2(n − m) − 2 − b1}

...
for bt−2 := 0 to min{n − m, 2(n − m) − 2 − b1 − b2 − · · ·− bt−3}

for bt−1 := 1 to min{n − m, 2(n − m) − 1 − b1 − b2 − · · ·− bt−2}
for bt := 1 to min{n − m, 2(n − m) − b1 − b2 − · · ·− bt−1}

with ∑

j bj even
Process the signature (m, b0, . . . , bw−1)



if t < w − 1
{for j := 1 to bt − 1
{qt := j ;
for k := 0 to t − 1

qk := 0;
for k := t + 1 to w − 1
{bk := 0; qk := 0;}

X := min (OPT [m, b0, b1, . . . , bw−1] + Sm+1,
OPT [m, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1])

if X < OPT [m, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1]
{OPT [m, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1] := X;
Q[m, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1] := (m, b0, . . . , bw−1); }}

for i := t − 1 down to 1
for j := 0 to bi

{qi := j ;
for k := 0 to i − 1

qk := 0;
for k := i + 1 to t

qk := bk;
X := min (OPT [m, b0, b1, . . . , bw−1] + Sm+1,

OPT [m, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1])
if X < OPT [m, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1]
{OPT [m, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1] := X;
Q[m, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1] := (m, b0, . . . , bw−1); }}

for b0 := 1 to n − m
for b1 := 0 to n − m

for b2 := 0 to min{n − m, 2(n − m) − b0 − b1}
...
for bw−1 := 0 to min{n − m, 2(n − m) − b0 − b1 − b2 − · · ·− bw−2}

with ∑

j bj even
Process the signature (m, b0, . . . , bw−1)
qw−1 := min{bw−1, n − m − b0};
if qw−1 < bw−1

{for k := 0 to w − 2
qk := 0;

X := min (OPT [m, b0, b1, . . . , bw−1] + Sm+1,
OPT [m + b0 − q0, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1])

if X < OPT [m + b0 − q0, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1]
{OPT [m + b0 − q0, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1] := X;
Q[m + b0 − q0, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1] := (m, b0, . . . , bw−1); }

}
else
{for i := w − 2 down to 0

for j := 0 to bi

qi := j;



if i > 0
{for k := 0 to i − 1

qk := 0; }
for k := i + 1 to w − 2

qk := bk;
X := min (OPT [m, b0, b1, . . . , bw−1] + Sm+1,

OPT [m + b0 − q0, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1])
if X < OPT [m + b0 − q0, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1]
{OPT [m + b0 − q0, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1] := X;
Q[m + b0 − q0, q0 + qw−1, q0 + q1, . . . , qw−2 + qw−1] := (m, b0, . . . , bw−1); }

}
Backtracking
m:=n;
for j := 0 to w − 1

bj := 0
repeat {(m, b0, b1, . . . , bw−1) = Q[m, b0, b1, . . . , bw−1]; print Q; }

until (m, b0, b1, . . . , bw−1) = (0, 1, 1, 0, 0, . . . , 0)
Observe that there are O(nw+1) signatures processed by the algorithm. Recall that for any expansion

q of a signature with the property qj > 0 for some j ∈ {0, 1, 2, . . . , w − 1}, one of the feasibility
conditions implies that qk = bk for all k > j. Therefore, for signature (m, b0, . . . , bw−1) there are
at most ∑

i(bi + 1) = O(n) expansion vectors to handle, and this leads to an O(nw+2) running time
for the algorithm. Although the algorithm applies for any w ≥ 2, for w = 2 it is preferable to use the
slightly simpler algorithm on [5, p. 1642], which takes advantage of the constraint b0 = b1 to reduce
the complexity to O(n3).

To illustrate backtracking, consider an example with n = 11, p1 = p2 = p3 = 0.25, p4 = p5 =
· · · = p11 = 0.03125 and w = 3. Here H(X) = 2.75 bits per symbol, and the code obtained by this
procedure uses 3.34375 bits per symbol. The sequence of signatures output by the backtracking step
are [11, 0, 0, 0], [7, 4, 0, 4], [4, 3, 1, 4], [2, 2, 1, 3], [1, 1, 1, 2], [1, 0, 1, 1], [0, 1, 1, 0]. [0, 1, 1, 0] corresponds
to the initial set of words 0 and 1. 0 is selected as a codeword and 1 is replaced by its single letter
extensions 10 and 11. Next these two-bit words are each replaced with their single letter extensions 100,
101, 110, 111. 111 is then chosen as the second codeword, and the remaining three three-bit words are
replaced by 1000, 1001, 1010, 1011, 1100, 1101. 1011 and 1101 are the next two codewords, and the
other four are replaced by 10000, 10001, 10010, 10011, 10100, 10101, 11000, 11001. The next three
codewords are 10011, 10101, 11001, and the final four are 100011, 100101, 101001, 110001.

3. Numerical results
In the following we present some numerical results and comparisons. The performance for both the

English alphabet (see, e.g., [3]) and typical discrete source distributions is given in Table 1, where
Laplace, Gaussian, and uniform distributions are obtained by a 6-bit uniform scalar quantization of the
corresponding continuous random variables. We can see that the optimal construction with w = 2 leads
to the shortest expected word-length among all codes with a minimum Hamming distance of dmin = 2,
in particular the algorithm EWVLC proposed in [3] and the variable-length error correction (VLEC)
construction from [13].

For the application of joint source-channel coding the prefix code is used as an outer source code
which is serially concatenated with an inner channel code, where decoding is carried out iteratively



Table 1. Expected word-lengths E[L] of different prefix code for both the English alphabet and
discrete source distributions derived from typical continuous random variables by 6-bit uniform

quantization. All constructions except the Huffman code have dmin = 2.

E[L] (bits)
Engl. alphabet Laplace Gaussian Uniform

Huffman 4.1557 3.3328 4.492 6
Proposed opt., w = 2 4.2263 3.3473 4.5846 6.5
EWVLC [3] 4.2366 3.3867 4.6227 6.5
VLEC dmin = 2 [13] 4.2366 3.4474 4.6227 7.875
H(X) 4.1209 3.2963 4.47 6

analogous to the decoding of serially concatenated codes (see, e.g., [3], [14]). It can be shown that in
order to ensure convergence for the iterative decoder, dmin ≥ 2 must hold in general for the outer code
[14], and therefore must be imposed on the prefix code in this setup. Further, it has been shown in
[3] that thresholds close to capacity can be obtained for such a concatenated source-channel code if, in
addition, residual source redundancy is exploited at the decoder. If a first-order Markov process Ik is
assumed for the source, the overall code rate for long source blocks is given as

R =
H(Ik|Ik−1)

H(Ik)
·
H(Ik)

E[L]
· RInner,

where RInner is the inner code rate, H(Ik|Ik−1)
H(Ik) the rate contribution due to the Markov property of the

source process, and H(Ik)
E[L] the rate associated with the prefix code.

Fig. 1 shows simulation results for different prefix codes, where the transmission is carried out over
an AWGN channel with a block length of 1000 source symbols. The source process Ik is obtained
by filtering white Gaussian noise with a first-order recursive filter having a correlation coefficient of
a = 0.9 and subsequent quantization with a 4-bit uniform quantizer. The channel code is a (15, 14)8

recursive systematic convolutional code which is obtained by an EXIT chart convergence analysis to
approximately match both the (very similar) EXIT functions for the optimal prefix code for w = 2 and
the EWVLC from [3]. The channel code is punctured to RInner = 1 by keeping only the parity sequence,
where every tenth parity bit is replaced by a systematic bit. The symbol error rate (SER) is measured
with the Levenshtein distance [15], which is defined as the minimal number of insertions, deletions or
substitutions that transform one sequence into the other one and thus accounts for the self-synchronizing
property of prefix codes. We can see from Fig. 1 that all schemes suffer from an error floor, but the
one which employs the optimal prefix code has a lower error floor than those obtained by using the
EWVLC [3] or the VLEC [13]. The code rate for the latter two schemes is R ≈ 0.6, whereas the
scheme based on the optimal prefix construction has a slightly higher rate of R ≈ 0.63 due to the better
source compression capabilities.
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