
Lossless and Lossy Source Compression with Near-Uniform
Output: Is Common Randomness Always Required?

Badri N. Vellambi
New Jersey Institute of Technology

Newark, NJ 07102
Email: badri.vellambi@njit.edu

Matthieu Bloch, Rémi Chou
Georgia Institute of Technology

Atlanta, GA 30332
Email: {matthieu, remi.chou}@gatech.edu

Jörg Kliewer
New Jersey Institute of Technology

Newark, NJ 07102
Email: jkliewer@njit.edu

Abstract—It is known that a sub-linear rate of source-
independent random seed (common randomness) can enable
the construction of lossless compression codes whose output
is nearly uniform under the variational distance (Chou-Bloch-
ISIT’13). This work uses finite-blocklength techniques to present
an alternate proof that for near-uniform lossless compression,
the seed length has to grow strictly larger than

√
n, where n

represents the blocklength of the lossless compression code. In
the lossy setting, we show the surprising result that a seed is not
required to make the encoder output nearly uniform.

Index Terms—Source coding, Lossless coding, Rate-distortion,
Finite-blocklength techniques.

I. INTRODUCTION

The relationship between vanishing error probability prob-
ability of error and the uniformity of encoder outputs for
lossless compression has received rigorous treatment [1], [2].
Specifically, Hayashi has shown that uniformity under varia-
tional distance and vanishing error probability (i.e., lossless
compression) cannot be simultaneously met for discrete mem-
oryless sources (DMSs) [2]. One way to guarantee both near-
uniform outputs as well as lossless compression is to allow
the encoder and decoder to share source-independent common
randomness. With the aid of this randomness, we can, in effect,
average of multiple codebooks. This setup was considered
previously in [3], and it was shown that a random seed whose
length that grows as the square root of the blocklength is both
necessary and sufficient for uniform lossless compression.
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�n
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 n
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�n(Xn, S)
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Fig. 1. The setup for common randomness-assisted compression.

In this work, we consider the same setup as in [3], where
a DMS is compressed by means of a source-independent
common randomness shared by both the encoder and the
decoder (see Fig. 1). The motivation of this work is to
understand the fundamental limits of the seed size for both
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lossless as well as lossy (rate-distortion) compression of DMSs
by the use of recent developments in finite-blocklength and
Gaussian approximation techniques [4]–[6]. Note that the
tradeoff between uniformity under variational distance and
operation at rates close to the rate-distortion boundary has not
been studied before. Our contributions are as follows:
• For lossless compression, we provide an alternate intuitive
proof that near-uniform outputs can be achieved only if the
seed size grows faster than the square-root of the blocklength
of the code. This is shown by arguing that for encoder output
uniformity, the seed size has to exceed the standard deviation
of n i.i.d. self-information random variables.
• For lossy compression, we show the interesting result that
there exist codes that simultaneously : (a) operate close to the
rate R(D)); (b) produce outputs whose distribution is near-
uniform under the variation distance metric; and (c) require
no random seed;. This is shown by partitioning each bin of an
optimal R-D code into Θ(2

√
nβ) bins for some β > 0. Here,

the
√
n dependence appears due to the standard deviation of

the sum of n i.i.d. D-tilted information random variables.
The remainder of the paper is organized thus. Section II

provides the notation, and Section III formally presents the
problem. Section IV presents the allied technical results
needed in this work. Lastly, Sections V and VI detail the
results on uniform lossless and lossy compression codes.

II. NOTATION

For n ∈ N, J1, nK , {1, . . . , n}. Uppercase letters (e.g., X ,
Y ) denote random variables (RVs), lowercase letters (e.g., x,
y) denote their realizations, and the script versions (e.g., X , Y)
denote their alphabets. In this work, all alphabets are assumed
to be countable. Superscripts denote the vector lengths, and
subscripts denote component indices. The variance of an RV
X is given by Var(X). For a probability mass function (p.m.f.)
pX , the set of all ε-weakly typical sequences of length n is

Wnε [pX ] ,
{
xn ∈ Xn :

∣∣ log2 pX(xn) + nH(X)
∣∣ < ε

}
.

Given a random variable X with p.m.f. pX , entropy H(X)
and Var(− log2 pX(X)) = σ2, a > b > 0 and n ∈ N,

Tn(a, b) ,
{
xn∈Xn : −a< log2 pX(xn) + nH(X)

σ
√
n

≤−b
}
.

The probability of an event E occurring is given by P(E).
Lastly, len(b) denotes the length of a binary string b.
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III. PROBLEM DEFINITION

The problem setup is identical to that in [3]. We consider the
compression of a discrete memoryless source (DMS) pX over
a countable alphabet X with the aid of a source-independent
random seed such that the following two conditions are met:
• The output of the decoding/reconstruction function meets

the lossless/lossy reconstruction constraint; and
• The output of the encoder is near-uniform under the

variational distance metric.
For the sake of completeness, we define uniform lossless and
uniform lossy compression codes as follows.

Definition 1 (Uniform Lossless Compression Code):
Given DMS pX over an alphabet X and source-independent
random seed S ∈ J1,KnK, n ∈ N, an (Mn, n,Kn, ε)-uniform
lossless compression code C of blocklength n comprises of
an encoder φn : Xn × J1,KnK → J1,MnK and a decoder
ψn : J1,MnK× J1,KnK→ Xn such that

Pe(φn, ψn) , P [Xn 6= ψn (φn(Xn, S), S)] ≤ ε

Ue(φn) ,
Mn∑
i=1

∣∣∣P[φn(Xn, S) = i
]
− 1

Mn

∣∣∣≤ ε
Definition 2 (Uniform Lossy Compression Code): Given

DMS pX over an alphabet X , finite (reconstruction)
alphabet X̂ , distortion measure d : X × X̂ → [0, dmax],
source-independent random seed S ∈ J1,KnK, n ∈ N,
and distortion D ∈ (0, Dmax), an (Mn, n,Kn, D, ε)-
uniform lossy compression code C comprises of an encoder
φn : Xn × J1,KnK → J1,MnK and a reconstruction function
ψn : J1,MnK× J1,KnK→ X̂n such that

P
[ n∑
j=1

d
(
Xi, (ψn (φn(Xn, S), S))i

)
n

> D

]
≤ ε

Ue(φn) ,
Mn∑
i=1

∣∣∣P[φn(Xn, S) = i
]
− 1

Mn

∣∣∣ ≤ ε
The remainder presents the following two main results:

1. For vanishing block error probability and near-uniform
encoder output, the seed length has to grow faster than√
n, where n is the blocklength of the compression code.

2. For lossy compression, there is no need for a common
random seed to achieve near-uniform encoder output.

However, before we present them, we present some prelimi-
nary results that we require in our proofs.

IV. SOME PRELIMINARY RESULTS

Lemma 1: Let {Xi}i∈N be emitted by a DMS pX over
a countable set X . Furthermore, suppose that pX is such
that H(X) < ∞, σ2 , Var

(
− log2 pX(X1)

)
> 0, and

ρ , E
[
| log2 pX(X1) + H(X)|3

]
< ∞. Then, there exists

an α > 0 such that for any a > b > 0,

ηa,b ,
∣∣∣P[Xn ∈ Tn(a, b)]−

(
Φ(−b)− Φ(−a)

)∣∣∣ ≤ 2αρ

σ3
√
n
,

where Φ is the cumulative distribution function of the standard
normal distribution.

Proof: Let Sn , nH(X)+
∑n

j=1 log2 pX(Xj)

σ
√
n

. Then,

P[Xn ∈ Tn(a, b)] = P [−a < Sn ≤ −b]
= P [Sn ≤ −b]− P [Sn ≤ −a] .

Hence, by triangle inequality, we have

ηa,b ≤
∑

λ∈{a,b}

∣∣P [Sn ≤ −λ]− Φ(−λ)
∣∣ ≤ 2αρ

σ3
√
n
, (1)

where (1) follows from the Berry-Esséen Theorem [7, Theo-
rem 1.5] and α depends only on the source p.m.f. pX .

Remark 1: Similarly, for b > 0,

η∞,b ,
∣∣∣P[Xn ∈ Tn(∞, b)]− Φ(−b)

∣∣∣ ≤ αρ

σ3
√
n
. (2)

Lemma 2: Let Z be a random variable over a countable
alphabet Z and let Z ′ ⊆ Z be given such that P[Z /∈ Z ′] ≤ δ1
for some δ1 > 0 . Let φ : Z → A and A′ ⊆ A be given such
that P[φ(Z) ∈ A′] ≥ 1− δ2 for some δ2 > 0. Let

B ,
{
a ∈ A′ : P

[
Z ∈ Z ′|φ(Z) = a

]
≥ 1−

√
δ1

}
.

Then, P[φ(Z) ∈ B] ≥ 1−
√
δ1 − δ2.

Proof: Define

B0 ,
{
a ∈ A : P

[
Z ∈ Z ′|φ(Z) = a

]
≥ 1−

√
δ1

}
.

Then,
δ1 ≥ P[Z /∈ Z ′] ≥ P[Z /∈ Z ′, φ(Z) /∈ B0]

≥
√
δ1 P[φ(Z) /∈ B0]. (3)

Finally, the claim follows from the following argument.

P
[
φ(Z) /∈ B] ≤ P[φ(Z) /∈ B0] + P[φ(Z) /∈ A′

]
,

which by (3) and the hypothesis is no more than
√
δ1 + δ2.

Lemma 3: Let a, b ∈ N with a > b. Let 1
a ≤ x ≤ 1

b . Then,

sup
a≤n≤b

n∑
j=1

∣∣∣ 1n − x∣∣∣ = sup
a≤n≤b

|1− nx| ≤ a− b
b

. (4)

Proof: The term |nx − 1| is the largest it can be when
nx is either the largest or smallest value it can be. Hence,
sup
a≤n≤b

|1− nx| ≤ max
{

1− b
a ,

a
b − 1

}
= a−b

b .

Lemma 4: Let n ∈ N, Mn ∈ N, γn ∈ [0,Mn], and function
φn : Xn × J1,KnK→ J1,MnK be given. Then,

Ue(φn) ≥ 2P
[
pX(Xn) > Kn

γn

]
− 2γn
Mn

. (5)

Proof: This follows directly from Lemma 2.1.2 of [8].

V. UNIFORM LOSSLESS COMPRESSION CODES

For the lossless setting, we only present a new proof of the
converse, since complete details of the achievability for the
optimal seed size is given in [3]. In the achievable scheme,
the encoder is an instance of random mapping from source
realization and seed pair to bin indices. With this construction,
a seed length of Θ(n

1
2+δ) is shown to be sufficient for any

δ > 0. A new intuitive proof of the necessity is as follows.

2172



Theorem 1 (Converse): Let a non-uniform DMS pX meet-
ing the conditions of Lemma 1 be given. For i ∈ N, let Ci be
an (Mni , ni,Kni , εi)-uniform lossless compression code with
blocklength ni, encoding function φni , and decoding function
ψni

such that

lim
i→∞

Pe(φni , ψni) = lim
i→∞

Ue(φni) = lim
i→∞

εi = 0.

Then, lim inf
i→∞

n−1i log2Mni ≥ H(X). Furthermore,

lim
i→∞

n
− 1

2
i (log2Mni

− niH(X)) =∞ (6)

lim
i→∞

n
− 1

2
i log2Kni =∞. (7)

Proof: Since pX is not uniform, Pe(φni
, ψni

) → 0 and
Ue(φni

) → 0 can be jointly met only if ni → ∞ as i → ∞.
The encoding function φni utilizes a source-independent seed,
say, Si taking values in J1,KniK. Hence, for each i ∈ N, we
can find s∗i ∈ J1,Kni

K such that

P
[
Xni 6= ψni(φni(X

n
i , s
∗
i ), s

∗
i )
]
≤ Pe(φni , ψni). (8)

Fix a > b > 0, and define Li(a, b) as

Li(a, b) ,
{
xni ∈ T ni(a, b) : xni = ψni

(φni
(xni , s∗i ), s

∗
i )
}
.

Note that

P[Xni ∈ Li(a, b)] ≥
[
P
[
Xni ∈ Tni(a, b)

]
−P
[
Xni 6= ψni(φni(X

n
i , s
∗
i ), s

∗
i )
] ]

(8)
≥ P[Xni ∈ Tni(a, b)]− Pe(φni , ψni)

≥ Φ(−b)− Φ(−a)− 2αρ

σ3
√
ni
− Pe(φni

, ψni
)︸ ︷︷ ︸

,ηi(a,b)

,

where the last inequality follows from Lemma 1. Note that
for any xni ∈ Li(a, b), pX(xni) ≤ 2−niH(X)−bσ√ni , where
σ2 , Var(− log2 pX(X1)). Hence,

|Li(a, b)|
2niH(X)+bσ

√
ni
≥ P[Xni ∈ Li(a, b)] ≥ ηi(a, b). (9)

Since Li(a, b) is a subset of source realizations for which the
code offers perfect reconstruction (when Si = s∗i ), we have

Mni ≥ |Li(a, b)|
(9)
≥ ηi(a, b) 2niH(X)+bσ

√
ni . (10)

Note that since lim
i→∞

ηi(a, b) = Φ(−b)− Φ(−a), we have

lim
i→∞

n
− 1

2
i log2 ηi(a, b) = 0

lim inf
i→∞

n−1i log2Mni
≥ H(X).

Rearranging (10), we have

lim inf
i→∞

logMni
− niH(X)√
niσ

≥ b+ lim inf
i→∞

log2 ηi(a, b)√
niσ

= b.

Since b is any arbitrary positive number, (6) follows by letting
b→∞. To prove (7), we use Lemma 4 with

γni
, ηi(a, b) 2niH(X)

Mni
≥ ηi(a, b) 2niH(X)+bσ

√
ni ,

which yields

P
[
pX(Xni) >

Kni

γni

]
≤ 1

2
Ue(φni

) +
γni

Mni

≤ 1

2
Ue(φni

) + 2−bσ
√
ni . (11)

From Remark 1 of Section IV, it follows that

P
[
pX(Xni) ≤ Kni

γni

]
= P

[
pX(Xni) ≤ Kni

ηi(a, b) 2niH(X)

]
≤ Φ

(
log2

Kni

ηi(a,b)

σ
√
ni

)
+

αρ

σ3
√
ni
. (12)

Combining (11) and (12), we obtain

Φ

(
log2

Kni

ηi(a,b)

σ
√
ni

)
≥ βi , 1− Ue(φni

)

2
− 2−bσ

√
ni − αρ

σ3
√
ni
.

Rearranging terms and applying the appropriate limit, we get

lim
i→∞

log2Kni

σ
√
ni

= Φ−1
(

Φ

(
lim
i→∞

log2Kni

σ
√
ni

))
= Φ−1

(
lim
i→∞

Φ

(
log2Kni

σ
√
ni

))
≥ Φ−1

(
lim
i→∞

βi

)
= Φ−1(1) =∞,

where in the above arguments, we have used the fact that Φ
is invertible, continuous and increasing.

Remark 2: Note that there is no requirement for the seed to
be uniform. Further, the result in Theorem 1 holds provided

1. For each n, (X1, . . . , Xn) is conditionally i.i.d. for any
si ∈ J1,KniK, and

2. There exists 0 < σ0 <∞ such that

0 < sup
si∈J1,Kni

K
Var(X1|S = si) < σ0.

VI. UNIFORM LOSSY COMPRESSION CODES

For the main result, we require the following two results
(Theorems 2 and 3) proven in [4]. Note that throughout this
section, X(x,D) denotes the D-tilted information [6, Def. 6].

Theorem 2 (Achievability): Let {Xi}i∈N generated by
DMS pX over a alphabet countable X , and distortion measure
d : X × X̂ → (0, Dmax) be given. Then, for D ∈ (0, Dmax),
there exist: (a) a sequence of codes {C∗n}n∈N (where C∗n is
a code over n symbols with encoder φ∗n, and reconstruction
function ψ∗n) operating1 at distortion level D; (b) a sequence
of variable-length binary prefix-free encoders {ϕ∗n}n∈N, where
ϕ∗n maps codewords of C∗n to binary strings; and (c) k, ν ≥ 0
such that the following holds asymptotically almost surely.

l∗n(Xn) , len
(
ϕ∗n(φ∗n(Xn))

)
≤

n∑
i=1

X(Xi, D) + k log2 n+ ν. (13)

1Both [4] and Theorem 2 employ the stringent zero excess distortion crite-
rion, i.e, the reconstruction X̂n satisfies P

[∑n
i=1 d(Xi, X̂i) > nD

]
= 0.

2173



Outline of Code Construction of [4]: The code is a
modification of the standard construction for average per-
symbol distortion constraint. Let pX̂|X be a test channel that
meets both the required distortion level D and the condition
I(X; X̂) = R(D), and let pX̂ denote the corresponding
marginal. To construct a code of length n, generate sufficiently
many codewords with components of every codeword drawn
i.i.d. according to pX̂ . For a realization Xn = xn, if there
is no such codeword meeting the distortion constraint, pick a
sequence x̂n ∈ X̂n that meets the distortion D or less and
convey that in dn log2 |X̂ |e bits. An additional flag describes
which of the two events (whether or not a suitable codeword
was found) was realized is also conveyed to the decoder.
Analysis of the required size of the codebook yields the result.

Theorem 3 (Converse): Let {Xi}i∈N be emitted by a DMS
pX over alphabet X . Let d : X × X̂ → (0, Dmax) be a
distortion measure. Let D ∈ (0, Dmax) and {bn}n∈N ∈ R+N

be such that
∑∞
j=1 2−bj <∞. Then, for any sequence of codes

{Cn}n∈N operating at distortion level D (where Cn is a code
over n symbols with encoder φn, and reconstruction function
ψn), and any sequence of variable-length binary prefix-free
encoders {ϕn}n∈N where ϕn maps codewords of Cn to binary
strings, the following holds asymptotically almost surely.

ln(Xn) , len(ϕn(φn(Xn))) ≥
n∑
i=1

X(Xi, D)− bn. (14)

We are now equipped to present the main result of this section.
Theorem 4 (Achievability): Let a DMS pX over a countable

alphabet X , and distortion measure d : X ×X̂ → [0, Dmax] be
given. Let R(D) denote the R-D function for the given source
under the measure d. Let D ∈ (0, Dmax) be given such that
R(D) < H(X) and V (D) , Var((X,D)) > 0. Then, for
each i ∈ N, we can construct a R-D code Ci of sufficiently
large blocklength ni, encoder φni : Xni → J1,MniK and a
reconstruction function ψni

: J1,Mni
K→ X̂ni such that

lim
i→∞

∑Mni
i=1

∣∣P[φni
(Xni) = i]− 1

Mni

∣∣ = 0

lim
i→∞

∣∣n−1i log2Mni −R(D)
∣∣ = 0

lim
i→∞

P
[∑ni

j=1 d
(
Xj ,

(
ψni

(
φni

(Xni)
))
j

)
> niD

]
= 0.

Proof: We begin with a sequence of codes
{(φ∗n, ψ∗n, ϕ∗n)}n∈N constructed using Theorem 2. These
codes in fact meet the more-stringent zero excess distortion
constraint [4]. Let In , φ∗n(Xn) denote the output of
the encoder φ∗n. Let the description length of a prefix-
free Shannon-Elias-Fano code for the source φ∗n(Xn)
be ln(Xn) = 1 + d− log2 pIn(φ∗n(Xn))e [9], and let
l∗(Xn) = len(ϕn(φ∗n(Xn))) denote the description length of
the variable-length code ϕ∗n for the source φ∗n(Xn). By the
competitive optimality of the Shannon-Elias-Fano code [9,
Theorem 5.10.1], we have

P
[
ln(Xn) < l∗n(Xn) + log2 n

]
≥ 1− 2

n . (15)

Since it is true that

log2

1

pIn
(
φ∗n(Xn)

) ≤ ln(Xn) ≤ log2

4

pIn
(
φ∗n(Xn)

) ,

we can combine (13), (14), and (15) with bn = 2 log2 n, to
conclude that for some κ > 0

P

[∣∣∣ log2

1

pIn
(
φ∗n(Xn)

) − n∑
i=1

X(Xi, D)
∣∣∣ > κ log2 n

]
−→
n→∞

0.

Fix ε < H(X) − R(D) and let N0 ∈ N be an integer such
that for n > N0, the above probability is no greater than ε

4 .
Also note that by the Central Limit Theorem, we have

P

[∣∣∣∣ n∑
i=1

X(Xi, D)−R(D)√
nV (D)

∣∣∣∣ > Q−1
(
ε
10

)]
−→
n→∞

ε

5
.

Let N1 ∈ N be chosen such that for n > N1, the above
probability is no more than ε

4 .
By the AEP, we have P [Xn /∈ Wnε [pX ]]→ 0 as n→∞. Let

N2 ∈ N be chosen such that the probability of realizing an
atypical sequence is no more than ε2

4 .
We see that for n > max{N0, N1, N2} such that

κ log2 n <
√
nV (D)Q−1

(
ε
10

)
, (16)

2−n(H(X)−ε) <
ε

3
2−nR(d)−3

√
nV (D)Q−1( ε

10 ), (17)

2−
√
nV (D)Q−1( ε10 ) < ε, (18)

we are guaranteed that P
[
Xn /∈ Wnε [pX ]

]
< ε2

4 as well as

P
[∣∣∣∣ log2

2−nR(D)

pIn
(
φ∗n(Xn)

) ∣∣∣∣> 2
√
nV (D)Q−1

(
ε
10

) ]
<
ε

2
. (19)

To arrive at (19), we required the description length char-
acterizations of Theorems 2 and 3, and the variable-length
code sequence {ϕ∗n}n∈N. Moving forward, we only require the
sequence of rate-distortion codes {(φ∗n, ψ∗n)}n∈N. Now, define

In ,
{
i :

∣∣∣∣ log2

2−nR(D)

pIn(i)

∣∣∣∣≤ 2
√
nV (D)Q−1

(
ε
10

)}
. (20)

Now, filter the indices in In to create In by defining

In ,
{
i ∈ In : P

[
Xn ∈ Wnε [pX ]

∣∣φ∗n(Xn) = i
]
≥ 1− ε

2

}
.

These encoder outputs are precisely those which nearly have
the same probability of occurrence, and have been generated
predominantly by typical source realizations. A straightfor-
ward application of Lemma 2 yields P[In ∈ In] ≥ 1− ε.

Using this together with (20), we conclude that

|In| ≤ 2nR(D)+2
√
nV (D)Q−1( ε10 ) (21)

|In| ≥ (1− ε)2nR(D)−2
√
nV (D)Q−1( ε10 ). (22)

Note that even though the indices in In occur with nearly
the same probability, their distribution is not close to uniform.
The next step therefore is to further subdivide the pre-images
φ∗n
−1(i) for i ∈ In so that the resultant bins occur with near-

equal probabilities. To do so, define ωn : In → N by

ωn(i) ,
⌊
pIn(i)2nR(D)+3

√
nV (D)Q−1( ε10 )

⌋
.

For i ∈ In, ωn(i) denotes the number of bins the typical se-
quences in the pre-image φ∗n

−1(i)∩Wnε [pX ] will be subdivided
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to effect near-uniformity. Now, let Mn , 1+
∑
i∈In

ωn(i). This

quantity represents the total number of bins generated after
the subdivision process. We can bound Mn as follows.

Mn ≤ 1 + P[In ∈ In]2nR(D)+3
√
nV (D)Q−1( ε10 )

≤ 1 + 2nR(D)+3
√
nV (D)Q−1( ε10 )︸ ︷︷ ︸

,Mn

. (23)

Similarly,

Mn ≥ 1 +
∑
i∈In

[
pIn(i)2nR(D)+3

√
nV (D)Q−1( ε10 ) − 1

]
(21)
≥
[

1 + (1− ε)2nR(D)+3
√
nV (D)Q−1( ε10 )

−2nR(D)+2
√
nV (D)Q−1( ε10 )

]
︸ ︷︷ ︸

,Mn

(24)

Let ζn , (1 − ε)2−nR(D)−3
√
nV (D)Q−1( ε10 ) denote the

target probability for each of the bins generated by subdividing
the pre-images φ∗n

−1(i)∩Wnε [pX ] for i ∈ In. For each i ∈ In,
partition φ∗n

−1(i)∩Wnε [pX ] into sets S(i, j), j = 1, . . . ,Ωn(i),
such that for i ∈ In and 1 ≤ j < Ωn(i), we have

P[Xn ∈ S(i, j)] ∈ (ζn, ζn + 2−n(H(X)−ε)), (25)

P[Xn ∈ S(i,Ωn(i))] ∈ (0, ζn + 2−n(H(X)−ε)). (26)

It is to be remarked here that the above partitioning can be
arbitrary as long as the conditions (25) and (26) are met. Then,

ωn(i)(ζn + 2−n(H(X)−ε))
(17)
≤ (1− 2ε

3 )P[Xn ∈ φ∗n−1(i)]

< P
[
Xn∈ φ∗n−1(i) ∩ Wnε [pX ]

]
.

< Ωn(i)(ζn + 2−n(H(X)−ε)),

where the last inequality follows from (25) and (26). Hence,
for each i ∈ In, Ωn(i) > ωn(i). We therefore have

κn ,
∑
i∈In

1≤j≤ωn(i)

P
[
Xn ∈ S(i, j)

]
≥
∑
i∈In

ζnωn(i)

≥ (1− ε)P
[
φ∗n(Xn) ∈ In

]
− ζn|In|

≥ (1− ε)2 − (1− ε)2−
√
nV (D)Q−1( ε10 ) (18)

> 1− 3ε (27)

Now, let In =
{

(i, j) : i ∈ In, 1 ≤ j ≤ ωn(i)
}
∪
{

(0, 0)
}

denote the set of ‘bin indices’ for the uniform lossy compres-
sion code to be constructed. Then, by definition, |In| = Mn.
Now, define the uniform lossy encoder map φ̂n : Xn → In by

φ̂n(xn) ,
{

(i, j) xn ∈ S(i, j), i ∈ In and j ≤ ωn(i)
(0, 0) otherwise .

The reconstruction function ψ̂n : In → X̂n for φ̂n is given by

ψ̂n(i, j) ,
{
ψ∗n(i) (i, j) 6= (0, 0)
x̂n otherwise ,

where x̂n is a particular element of X̂n. By construction, the
distortion constraint is not met only when φ̂n(Xn) = (0, 0).
The probability of this event occurring can be bounded by

P[φ̂n(Xn) = (0, 0)] = 1− κn
(27)
< 3ε. (28)

Lastly, the L1-norm between the actual distribution of φ̂n(Xn)
and the uniform distribution on In is bounded by

Ue(φ̂n) ,
∑
ι∈In

∣∣∣P[φ̂n(Xn) = ι]− 1
Mn

∣∣∣
≤


∑
ι∈In

∣∣P[φ̂n(Xn) = ι]− ζn
∣∣

+
∑
ι∈In

∣∣ζn − ζn
1−ε
∣∣+

∑
ι∈In

∣∣ ζn
1−ε − 1

Mn

∣∣
 (29)

(4)
< Mn 2−nH(X)+nε + 3ε+ ζn +

εMnζn
1− ε +

Mn−Mn

Mn

<
6ε

1− ε + o(1), (30)

where we have used Lemma 3 for the last sum in (29), since
Mn ≤ 1−ε

ζn
≤ Mn. Hence, for a sufficiently large n ∈ N,

there exists an (Mn, n, 1, D, 7ε)-uniform lossy compression
code for the DMS pX under the distortion measure d.

Now, pick {εi}i∈N such that εi ↓ 0 as i → ∞. For each
i ∈ N, we can construct an (Mni , ni, 1, D, 7εi)-uniform lossy
compression code with encoding function φ̂ni and reconstruc-
tion function ψ̂ni

using the above technique. Thus, for this
sequence of codes,

lim
i→∞

Ue(φ̂ni
) = 0,

lim
i→∞

∣∣n−1i log2Mni
−R(D)

∣∣ = 0,

lim
i→∞

P
[
n−1i

∑ni

j=1 d(Xj ,
(
ψ̂ni

(
φ̂ni(X

ni)
))
j
> D

]
= 0,

which follow from (23), (24), (28), and (30).
Remark 3: Since the explicit rates of convergence in (13)

and (14) are absent, the above proof does not guarantee
the existence of sequences of R-D codes satisfying both
1
ni

log2Mni → R(D) and DKL(pIni
||unif(J1,MniK)) → 0,

where DKL is the Kullback-Leibler divergence functional, and
unif(J1,Mni

K) is the uniform distribution over J1,Mni
K.
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