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Abstract—In this paper we derive capacity regions for network
error correction with both known and unknown topologies
(coherent and non-coherent network coding) under a multiple-
source multicast transmission scenario. For the multiple-source
non-multicast scenario, given any achievable network code for
the error-free case, we construct a code with a reduced rate
region for the case with errors.

I. INTRODUCTION

Network coding has emerged as a powerful technique to
distribute information over networks. However, in unreliable or
adversarial networks, due to error propagation in the network
even a single error on a network link may lead to a corruption
of many received packets at the destination nodes.

In the coherent case, there is centralized knowledge of
the network topology and network code. Network error and
erasure correction for this case has been addressed in [1] by
generalizing classical coding theory to the network setting. In
the non-coherent case, the network topology and/or network
code are not known a priori; information transmission occurs
via the space spanned by the received packets/vectors, since
any generating set for the same space is equivalent to the
receiver [2]. Error correction techniques for this case were
recently proposed in [2] and [3] in the form of constant
dimension and rank metric codes, respectively, where the
codewords are defined as subspaces of some ambient space.
Another approach that uses global coding vectors is given
in [?]. These results primarily focus on the single source case.
An extension to multiple sources in the noncoherent case has
been recently addressed in [4], where an achievable rate region
and practical coding schemes are given for two sources and a
noncoherent multiple access channel model in the case without
errors and erasures.

We find the network error correction capacity regions for
multiple-source multicast for the coherent and noncoherent
cases, in Sections III and IV respectively. For non-multicast,
however, finding the capacity region of a general network even
in the error-free case is an open problem. Thus, in Section
V we consider the problem of constructing a network error
correction code for the multiple-source non-multicast scenario
from a given error-free network code.

II. NOTATION

Consider a network error correction problem on a directed
acyclic graph G with n source nodes S = {s1, s2, . . . , sn} and

a set of sink nodes T . Each link has unit capacity, and there
can be multiple parallel edges connecting a pair of nodes. Let
ri be the multicast transmission rate from si to each sink. For
any non-empty subset S ′ ⊆ S , let I(S ′) be the indices of the
source nodes that belong to S ′. Let mS′ be the minimum cut
capacity between any sink and S ′. For each i, i = 1, . . . , n,
let Ci be the code used by source i. Let CS′ be the Cartesian
product of the individual codes of the sources in S ′.

III. COHERENT MULTIPLE-SOURCE MULTICAST

Theorem 1 characterizes the network error correction ca-
pacity of centralized network coding over a known network G
in a multiple-source multicast scenario.

Theorem 1. Consider a multiple-source multicast network
error correction problem on network G with known topology.
For any arbitrary errors on up to z links, the capacity region
is given by:

∑

i∈I(S′)
ri ≤ mS′ − 2z ∀S ′ ⊆ S. (1)

Proof: Converse: Let li,j , j = 1, . . . , ni, be the outgoing
links of each source si, i = 1, . . . , n. Take any S ′ ⊆ S . We
construct the graph GS′ from G by adding a virtual super
source node wS′ , and ni links l′i,j , j = 1, . . . , ni, from wS′
to source si for each i ∈ I(S ′). Note that the minimum
cut capacity between wS′ and any sink is at least mS′ .
Any network code that multicasts rate ri from each source
si, i ∈ I(S ′) over G corresponds to a network code that
multicasts rate

∑

i∈I(S′)
ri from wS′ to all sinks over GS′ ; the

symbol on each link l′i,j is the same as that on link li,j , and the
coding operations at all other nodes are identical for G and GS′ .
The converse follows from applying the network Singleton bou
nd [1] to wS′ for each S ′ ⊆ S.

Achievability: Construct the graph GS for the set of all
source nodes S as in the proof of the converse. For the original
n-source problem on G, with high probability we can obtain a
random linear network code C that can correct any 2z erasures
iff the rate n−tuple (r1, r2, . . . , rn) satisfies the cut set bound
(1) [5]. This corresponds to a single-source network code CS
on GS where the symbol on each link l′i,j is the same as that
on link li,j , and the coding operations at all other nodes are
identical for G and GS .

For the single-source coherent case, the following are equiv-
alent [6]:



1) a linear network code has network minimum distance at
least 2z + 1

2) the code corrects any error of weight at most z
3) the code corrects any erasure of weight at most 2z.

This implies that CS has network minimum distance at least
2z + 1, and so it can correct any z errors.

Note that a general single-source network code on GS would
not correspond to a valid n-source network code on GS , since
for independent sources the set of source codewords in CS
must be the Cartesian product of a set of codewords from
s1, s2, . . . , sn.

IV. NONCOHERENT MULTIPLE-SOURCE MULTICAST

Next we consider the multiple-source multicast capacity
region in the non-coherent case where the network topol-
ogy/transfer matrices are not known. Following the framework
of constant-dimension noncoherent network coding in [2], let
V be the vector space of length-K vectors over the finite
field Fq , representing the set of all possible values of packets
transmitted and received in the network. Let P(V ) denote the
set of all subspaces of V . A code C consists of a nonempty
subset of P(V ), where each codeword U ∈ C is a subspace of
constant dimension. The distance between two vector spaces
U1, U2 is defined as

d(U1, U2)
.
= dim(U1) + dim(U2)− 2dim(U1 ∩ U2).

It is shown in [2] that d is a metric for P(V ) and the triangle
inequality holds. If U is the sent codeword and U ′ is the
received codeword, then subspace minimum distance decoding
is successful if and only if there is no codeword Ũ 6= U in C
for which d(Ũ , U ′) ≤ d(U,U ′). In [2] this approach is used
to design codes of minimum distance D that correct up to
a total of bD−1

2 c subspace errors (addition of vectors to the
transmitted subspace) and erasures (deletion of vectors from
the transmitted subspace).

Although the subspace coding approach is oblivious to the
network topology, we study here the dependence of the achiev-
able rates on the network topology and number of network
errors. Network errors and erasures translate differently into
subspace errors and erasures depending on the network code
rate and network topology. Thus, to avoid confusion we will
refer to subspace errors as additions and subspace erasures as
deletions, and the terms errors and erasures will be reserved
for network errors and erasures.

Theorem 2 gives the non-coherent capacity region. The code
construction uses random linear network coding at interme-
diate nodes, single-source network error correction capacity-
achieving codes at each source, and an overall global coding
vector. The error analysis shows that decoding succeeds with
high probability over the random network code. Note that
straightforward distance arguments are not sufficient to show
achievability, since a network error can potentially result in an
addition plus a deletion, corresponding to a minimum distance
requirement of 4z +1, which seems difficult to achieve in the
multisource case.

Theorem 2. Consider a multiple-source multicast network
error correction problem on network G whose topology may be
unknown. For any errors on up to z links, when random linear
network coding in a sufficiently large finite field is performed,
the capacity region is given by:

∑

i∈I(S′)
ri ≤ mS′ − 2z ∀S ′ ⊆ S. (2)

Proof: Converse. Follows from Theorem 1, since the
noncoherent region is no larger than the coherent region.
Achievability.
1) Code construction: Consider any rate vector (r1, . . . , rn)
such that

∑

i∈I(S′)
ri < mS′ − 2z ∀S ′ ⊆ S. (3)

Let each Ci, i = 1, . . . , n be a code consisting of codewords
that are ki−dimensional linear subspaces. The codeword trans-
mitted by source Si is spanned by the packets transmitted by
Si. From the single source case, for each source i = 1, . . . , n
we can construct a code Ci where

ki > ri + z (4)

that corrects any z additions [7]. This implies that Ci has
minimum distance greater than 2z [8], i.e. for any pair of
distinct codewords Vi, V

′
i ∈ Ci

d(Vi, V
′

i ) = dim(Vi) + dim(V ′
i )− 2 dim(Vi ∩ V ′

i ) > 2z.

Hence,

dim(Vi ∩ V ′
i ) < ki − z ∀Vi, V

′
i ∈ Ci. (5)

By (3), scaling all source rates and link capacities by a
sufficiently large integer if necessary, we can assume without
loss of generality that we can choose ki satisfying (4) as well
as ∑

i∈I(S′)
ki ≤ mS′ + (|S ′| − 2)z ∀S ′ ⊆ S. (6)

We can make vectors from one source linearly independent of
vectors from all other sources by means of a length-(

∑

i∈I(S)

ki)

global coding vector, which adds an overhead that becomes
asymptotically negligible as packet length grows. This ensures
that

dim(Vi ∩ Vj) = 0 ∀i 6= j, Vi ∈ Ci, Vj ∈ Cj . (7)

2) Error analysis: Let X ∈ CS be the sent codeword, and let
R be the subspace received at a sink. Consider any S ′ ⊆ S .
Let S ′ = S \ S ′. Let X = V ⊕ W , where V ∈ CS′ ,W ∈
CS′ and V is spanned by the codeword Vi from each code
Ci, i ∈ I(S ′). We will show that with high probability over the
random network code, there does not exist another codeword
Y = V ′⊕W , such that V ′ is spanned by a codeword V ′

i 6= Vi

from each code Ci, i ∈ I(S ′), which could also have produced
R under arbitrary errors on up to z links in the network.

Let R be the set of packets received by the sink, i.e. R =
span(R). Each of the packets in R can be expressed as
p = up + wp, where up is a random linear combination



of zero or more packets from V and vectors transmitted on
error links, and wp is a random linear combination of zero or
more packets from W .

Let P = span{up : p ∈ R}. We next show that for random
linear coding in a sufficiently large field, with high probability

dim(P )− dim(P ∩ V ′) > z (8)

for all V ′ spanned by a codeword V ′
i 6= Vi from each code

Ci, i ∈ I(S ′).
Consider first the network with each source i in S ′ trans-

mitting ki linearly independent packets from Vi, sources in S ′
silent, and no errors. From the maxflow-mincut bound, any
rate vector (h1, . . . , h|S′|), such that

∑

i∈S′′
hi ≤ mS′′ ∀S′′ ⊆ S′

can be achieved. Combining this with (6), we can see that in
the error-free case, each si ∈ S′ can transmit information to
the sink at rate ki − (|S′|−2)z

|S′| for a total rate of
∑

i∈I(S′)
ki − (|S ′| − 2)z. (9)

With sources in S ′ still silent, consider the addition of z
unit-rate sources corresponding to the error links. The space
spanned by the received packets corresponds to P . Consider
any V ′ spanned by a codeword V ′

i 6= Vi from each code
Ci, i ∈ I(S ′).

Let Z be the space spanned by the error packets, and let
z′ ≤ z be the minimum cut between the error sources and
the sink. Let P = PV ⊕ PZ , where PZ = P ∩ Z and PV
is a subspace of V . There exists a routing solution, which
we distinguish by adding tildes in our notation, such that
dim P̃Z = z′ and, from (9), dim P̃ ≥

∑

i∈I(S′)
ki − (|S ′| − 2)z,

so
dim(P̃V ) ≥

∑

i∈I(S′)
ki − (|S ′| − 2)z − z′. (10)

Note that, by (7), a packet from Vi is not in any V ′
j ∈ Cj , j 6=

i, and hence is in V ′ if and only if it is in V ′
i . Therefore, by

(5)

dim(P̃V ∩ V ′) ≤
∑

i∈I(S′)
dim(Vi ∩ V ′

i ) <
∑

i∈I(S′)
ki − |S ′|z.

Therefore, using (10) we have

dim(P̃V ∪ V ′) = dim(P̃V ) + dim(V ′)− dim(P̃V ∩ V ′)

> dim(P̃V ) + dim(V ′) + |S ′|z −
∑

i∈I(S′)
ki

≥
∑

i∈I(S′)
ki − (|S ′| − 2)z − z′ + |S ′|z

=
∑

i∈I(S′)
ki + 2z − z′ ≥

∑

i∈I(S′)
ki + z.

Then
dim(P̃ ∪ V ′) >

∑

i∈I(S′)
ki + z.

For random linear coding in a sufficiently large field, with
high probability by its generic nature

dim(P ∪ V ′) ≥ dim(P̃ ∪ V ′) >
∑

i∈I(S′)
ki + z,

and this also holds for any z or fewer errors, all sinks, and all
V ′ spanned by a codeword V ′

i 6= Vi from each code Ci, i ∈
I(S ′). Then, (8) follows by

dim(P )− dim(P ∩ V ′) = dim(P ∪ V ′)− dim(V ′).

By (7), if wp is in W , then up + wp is in V ′ ⊕W iff up

is in V ′. Hence, using (8),

dim(R)− dim(R ∩ (V ′ ⊕W ))

≥ dim(P )− dim(P ∩ V ′) > z.

Thus, more than z additions are needed to produce R from
Y = V ′⊕W . By the generic nature of random linear coding,
with high probability this holds for any S ′.

V. NON-MULTICAST

Consider a non-multicast problem with n independent
sources and m sinks, where each source Si, i = 1, . . . , n,
is demanded by a given set of sink nodes Ti, and arbitrary
coding across sessions is permitted. We give the following
achievability result for the coherent case.

Theorem 3. Given any linear network code C that achieves
rate vector r = (r1, r2, . . . , rn) in the no-error case, where
ri is the information rate of source Si, i = 1, . . . , n, we can
obtain a network code C̃ that achieves rate vector r̃ = (r1 −
2z, r2 − 2z, . . . , rn − 2z) under arbitrary errors on up to z
links in the network.

If the given linear network code C is a vector linear network
code with vector length y, we can consider a modified network
problem where each source is replaced with y co-located
sources and each link with y parallel links joining the same
nodes. The source rates and the number of errors are also
scaled by y. Therefore, we may view the vector linear code C
as a scalar linear code on the new network.

To prove Theorem 3, we first generalize the concept of
network distance, introduced in [6] for multicast, to non-
multicast as follows.

The Hamming weight of a vector z (the number of non-zero
components of z) is denoted by wH(z). As in [6], define a
network erasure pattern ρ with Hamming weight |ρ| as a set of
channels in which an error may have occurred, whose location
is known to all sink nodes. Abusing notation, we also use ρ to
denote the set of vectors with nonzero entries corresponding
to the erasure pattern ρ.

For any non-empty subset S ′ ⊆ S , let AS′ denote the
transfer matrix mapping the length-rS′ vector xS′ of source
symbols of sources in S ′ to the corresponding incident outgo-
ing links of the sources, where rS′ =

∑
i∈S′ ri. Let Ft be the

transfer matrix from all links in the network to the incoming
links of sink t. Let Im(Ft) be the image of the map Ft. For
any t ∈ T , let St be the subset of sources demanded by sink
node t, and St the subset of sources not demanded by t. For
any vector y ∈ Im(Ft) received at t, let

Υt(y) = {z : ∃xSt
∈ FrS′

q s.t. (xSt
ASt

+ z)Ft = y



be the set of all error patterns that could result in y being
observed at the sink. With this definition, we can, analogously
to the multicast case in [6], develop the following definitions
and results.

Definition 1. For any sink node t, the network Hamming
weight of a received vector y ∈ Im(Ft) is defined as

W rec
t (y) = min

z∈Υt(y)
wH(z).

Definition 2. For any sink node t, the network Hamming
weight of a message vector xSt ∈ FrSt

q is defined as

W msg
t (xSt) = W rec

t (xStAStFt).

Definition 3. For any sink node t, the network Hamming
distance between two received vectors y1,y2 ∈ Im(Ft) is
defined by

Drec
t (y1,y2) = W rec

t (y1 − y2).

Definition 4. For any sink node t, the network Hamming
distance between two message vectors x1

St
,x2
St

∈ FrSt
q , is

defined by

Dmsg
t (x1

St
,x2
St

) = W msg
t (x1

St
− x2

St
).

Lemma 1. For any sink node t, let xSt ,x
1
St

∈ FrSt
q be

message vectors, y,y1 ∈ Im(Ft) be received vectors. Then
we have

Drec
t (y,y1) = Drec

t (y1,y) (11)
Dmsg

t (xSt ,x
1
St

) = Dmsg
t (x1

St
,xSt) (12)

Dmsg
t (xSt ,x

1
St

) = Drec
t (xStAStFt,x

1
St

AStFt) (13)

Proof: (11) and (12) follow from definitions of W rec
t (y),

Wmsg
t (xSt) and linearity of the code. To prove (13) note that:

Dmsg
t (xSt ,x

1
St

) = W msg
t (xSt − x1

St
)

= W rec
t ((xSt − x1

St
)AStFt)

= Drec
t (xStAStFt,x

1
St

AStFt).

Lemma 2 (Triangle inequality). For any sink node t, let
xSt ,x

1
St

,x2
St
∈ FrSt

q be message vectors, y,y1,y2 ∈ Im(Ft)
be received vectors. Then we have:

Drec
t (y1,y2) ≤ Drec

t (y1,y) + Drec
t (y,y2) (14)

Dmsg
t (x1

St
,x2
St

) ≤ Dmsg
t (x1

St
,xSt) + Dmsg

t (xSt ,x
2
St

)(15)

Proof: Consider z1 ∈ Υt(y1 − y) and z2 ∈ Υt(y − y2)
such that Drec

t (y1,y) = wH(z1) and Drec
t (y,y2) = wH(z2).

By linearity of the code, z1 + z2 ∈ Υt(y1 − y2), therefore

Drec
t (y1,y2) = W rec

t (y1 − y2)

≤ wH(z1 + z2)

≤ wH(z1) + wH(z2)

≤ Drec
t (y1,y) + Drec

t (y,y2).

(15) follows from (14) and (13):

Dmsg
t (x1

St
,x2
St

)

= Drec
t (x1

St
AStFt,x

2
St

AStFt)

≤ Drec
t (x1

St
AStFt,xStAStFt) + Drec

t (xStAStFt,x
2
St

AStFt)

= Dmsg
t (x1

St
,xSt) + Dmsg

t (xSt ,x
2
St

).

Definition 5. For each sink node t, the minimum distance of
a network code is defined by:

dmin,t = min{Dmsg
t (x1

St
,x2
St

) : x1
St

,x2
St
∈ FrSt

q ,x1
St
6= x2

St
}

Definition 6. The minimum distance of a network code is
defined by:

dmin = min
t∈T

dmin,t

Theorem 4. For a sink node t, the following properties of a
network code are equivalent:

1) the code has dmin,t ≥ 2z + 1;
2) any error z such that wH(z) ≤ z can be corrected at t;
3) any erasure pattern ρt such that |ρt| ≤ 2z can be

corrected at t.

Proof: 1 ⇒ 2. For a message vector xSt ∈ FrSt
q and an

error vector z, the received vector at t is given by

yt = xStAStFt + xSt
ASt

Ft + zFt

for some xSt
∈ FrSt

q . We will show that if dmin,t ≥ 2z + 1,
the minimum distance decoding algorithm will always decode
correctly for any message vector xSt ∈ FrSt

q and any error
vector z such that wH(z) ≤ z. By (14) for any x′St

∈ FrSt
q

such that xSt 6= x′St
we have

Drec
t (xStAStFt,x

′
St

AStFt)

≤ Drec
t (xStAStFt,yt) + Drec

t (x′St
AStFt,yt). (16)

Note that

Drec
t (xStAStFt,x

′
St

AStFt)

= Dmsg
t (xSt ,x

′
St

) ≥ dmin,t ≥ 2z + 1 (17)
Drec

t (xStAStFt,yt) = W rec
t (xStAStFt − yt)

= W rec
t (xSt

ASt
Ft + zFt) ≤ wH(z) ≤ z. (18)

Now using (16)-(18), we get

Drec
t (x′St

AStFt,yt)

≥ Drec
t (xStAStFt,x

′
St

AStFt)−Drec
t (xStAStFt,yt).

≥ z + 1 > Drec
t (xStAStFt,yt).

Hence, the decoder outputs x̂ = xSt and 1 ⇒ 2 follows.
2 ⇒ 1. We will prove this by contradiction. Assume that any

error z with wH(z) ≤ z can be corrected at t, but dmin,t ≤ 2z.
Take any x1

St
,x2
St
∈ FrSt

q ,x1
St
6= x2

St
such that Wmsg

t ((x1
St
−

x2
St

)ASt
Ft) = Dmsg

t (x1
St

,x2
St

) ≤ 2z. Then by definition of
Wmsg

t (.) there exist error vectors z and xSt
∈ FrSt

q such that

(x1
St
− x2

St
)AStFt = xSt

ASt
Ft + zFt (19)

with wH(z) ≤ 2z. Hence, we can find error vectors z1 and z2

such that z = z2 − z1, wH(z1) ≤ z and wH(z2) ≤ z. Also,
by linearity of the code, we can find x1

St
,x2
St
∈ FrSt

q such
that xSt

= x2
St
−x1

St
. Therefore, if yt is received at t,by (19)

we have two indistinguishable possibilities, a contradiction:

yt = x1
St

AStFt + x1
St

ASt
Ft + z1Ft

yt = x2
St

AStFt + x2
St

ASt
Ft + z2Ft.

1 ⇒ 3. Let dmin,t ≥ 2z + 1 and |ρ| ≤ 2z. In order to prove
the implication, we need to show that for any received vector



yt, there is a unique message vector xSt ∈ FrSt
q and some

xSt
∈ FrSt

q and error z ∈ ρ, such that

yt = xStAStFt + xSt
ASt

Ft + zFt.

Call such (xSt ,xSt
, z) a solution of the decoding problem.

Suppose the problem has two distinct solutions (x1
St

,x1
St

, z1)
and (x2

St
,x2
St

, z2). Then we have

Dmsg
t (x1

St
,x2
St

) = W rec
t ((x1

St
− x2

St
)AStFt)

= W rec
t ((x2

St
− x1

St
)ASt

Ft + (z2 − z1)Ft)

≤ wH(z2 − z1).

Since both z1, z2 ∈ ρ, we have Dmsg
t (x1

St
,x2
St

) ≤ wH(z2 −
z1) ≤ 2z, which contradicts the fact that dmin,t ≥ 2z + 1.

3 ⇒ 1. Assume that any erasure pattern ρ with |ρ| ≤ 2z
can be corrected at t, but dmin,t ≤ 2z. Take any x1

St
,x2
St
∈

FrSt
q ,x1

St
6= x2

St
such that Wmsg

t ((x1
St
− x2

St
)AStFt) =

Dmsg
t (x1

St
,x2
St

) ≤ 2z. Therefore, by definition of Wmsg
t (.)

there exist error vectors z and xSt
∈ FrSt

q such that

(x1
St
− x2

St
)AStFt = xSt

ASt
Ft + zFt (20)

with wH(z) ≤ 2z. Hence, we can choose error vectors
z1, z2 ∈ ρ such that z = z2 − z1. Also, by linearity of the
code, we can find x1

St
,x2
St
∈ FrSt

q such that xSt
= x2

St
−x1

St
.

Therefore, if yt is received at t, by (20) we have two
indistinguishable possibilities

yt = x1
St

AStFt + x1
St

ASt
Ft + z1Ft

yt = x2
St

AStFt + x2
St

ASt
Ft + z2Ft.

Hence, 3 ⇒ 1 follows.
Now we use Theorem 4 to prove Theorem 3:

Proof: The network code C̃ is obtained by applying a
random linear pre-code at each source Si. That is, the length-
(ri− 2z) vector of source symbols x̃i is multiplied by Ri, an
(ri−2z)× ri matrix with entries chosen uniformly at random
from Fq , to form the input

xi = x̃iRi (21)

to the original code. Let r̃S′ =
∑

i∈S′(ri−2z) = rS′−2|S ′|z.
Consider any sink t. For any x ∈ Fr̃S

q , under the original
code C, in the absence of any errors or erasures, sink t receives

yt = xM, (22)

where M = ASFt, and applies a decoding matrix B to obtain
its demanded source symbols xMB = xSt

.
Consider any network erasure pattern ρ with |ρ| = 2z, and

any z ∈ ρ. Let s be the length-2z vector of nonzero symbols
in z, and let Q be the 2z×|Int| network transfer matrix from
the symbols in s to the symbols on the sink’s incoming links
Int. The vector received at t is

y′ = xM + sQ.

Sink t applies its original decoding matrix B to obtain

y′B = xMB + sQB = xSt + sQB. (23)

Let a ≤ 2z be the rank of QB, and let P be a submatrix of
QB consisting of a linearly independent rows. Then sQB can
be represented by sGP , where G ∈ F2z×a

q . Hence, (23) can
be rewritten as

y′B =
(

x̃St s′
) (

R
P

)
(24)

where s′ is a length-a vector of unknowns, and from (21),
R ∈ Fr̃St×rSt

q is a block diagonal matrix with blocks Ri, i ∈
St. Since each Ri has 2z fewer rows than columns and has
all entries chosen uniformly at random from Fq , the rows of
R are linearly independent of the a ≤ 2z rows of P . Thus,(

R
P

)
has full row rank and (24) can be solved for x̃St .

Therefore, we can construct code C̃ that achieves rate vector
r2z = (r1−2z, r2−2z, . . . , rn−2z) under any network erasure
pattern ρ with |ρ| ≤ 2z. Now Theorem 4 implies that C̃ has
minimum distance dmin ≥ 2z + 1 and that C̃ can correct
arbitrary errors on up to z links in the network.

VI. CONCLUSIONS

We have derived network error correction capacity regions
for multiple source multicast networks for both the coherent
and the non-coherent case. For the non-multicast case where
characterizing the capacity region is in general an open prob-
lem, we provided a technique for constructing a network error
correction code for arbitrary errors in the network by using a
given error-free network code as a starting point.
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