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Strong Coordination Over Multi-Hop Line
Networks Using Channel Resolvability Codebooks

Badri N. Vellambi , Senior Member, IEEE, Joerg Kliewer, Senior Member, IEEE,
and Matthieu R. Bloch, Senior Member, IEEE

Abstract— We analyze the problem of strong coordination over
a multi-hop line network in which the node initiating the coor-
dination is a terminal network node. We assume that each node
has access to a certain amount of randomness that is local to the
node, and that the nodes also have shared common randomness,
which are used together with explicit hop-by-hop communication
to achieve information-theoretic strong coordination. We derive
the trade-offs among the required rates of communication on
the network links, the rates of local randomness available at
network nodes, and the rate of common randomness to realize
strong coordination. We present an achievable coding scheme
built using multiple layers of channel resolvability codes, and
establish several settings in which this scheme offers the best
possible trade-offs among network resources.

Index Terms— Strong coordination, channel resolvability,
channel synthesis, line network.

I. INTRODUCTION

DECENTRALIZED control is an essential feature in
almost all large-scale networks such as the Internet,

surveillance systems, sensor networks, traffic and power grid
networks. Control in such networks is achieved in a distributed
fashion by coordinating various actions and response signals
of interest. Communication between various parts of the
network serves as an effective means to establish coordination.
Coordination can generally be enabled via the following two
modes of communication.

• Coordination of a system through explicit communication
where communication signals extrinsic to the control
and coordination of the system are sent from one part
of system to another to specifically coordinate/control
the system [3]. In this case, the signals for achieving
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coordination are conveyed additional to the signals used
for communication.

• Coordination of a system through implicit communica-
tion where the signals inherently sent from one part
of the system to another during its natural operation
are also used to coordinate/control the system [4]–[6].
For example, consider robot soccer, where coordination
with other robots as well as the playing of the game
is managed simultaneously by the actions/moves each
robot undertakes [7]. In this case, coordination is achieved
implicitly by pre-sharing a strategy/codebook; each robot
can use this pre-shared information in real time to guage
what future actions are going to be taken by other robots
and consequently align its own actions accordingly. Note
that no (explicit) communication signal other than the
actions are employed here.

The problem of coordination through (either modes of)
communication is very closely tied to a slew of information-
theoretic problems, including intrinsic randomness, channel
resolvability, and random number generation [8]–[10], channel
simulation and synthesis [10]–[14], and distributed random
variable generation [15], [16]. Consequently, many ideas for
the design of codes for these problems heavily feature in the
design of coordination codes. Two notions of coordination
have been studied in the literature:

• empirical coordination, where the aim is to closely match
the empirical distribution of the actions/signals at network
nodes with a prescribed target histogram/probability mass
function; and

• strong coordination, where the aim is the generation of
actions at various network nodes that are collectively
required to resemble the output of a jointly correlated
source. In this setting, by observing the actions of the
network nodes, a statistician cannot determine (with sig-
nificant confidence) as to whether the actions were gen-
erated by a jointly correlated source, or from a (strong)
coordination scheme.

A compendious introduction to the fundamental limits and
optimal coding strategies for empirical and strong coordination
in many canonical networks (e.g., one-hop, broadcast, relay
networks) can be found in [3]. However, the majority of
the networks considered therein comprised of two or three
terminals. The limits and means of the empirical coordination
of a discrete memoryless source with a receiver connected
by a point-to-point noisy channel was explored in [17]–[19].
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The effects of causality of encoding and channel feedback
were investigated in [19], and the benefits of channel state
information available acausally at the encoder was explored
in [17], [18].

Coordination over the more general three-terminal setting
in the presence of a relay was considered in [20]–[22]. Inner
and outer bounds of the required rates of communication
for coordination were derived in [20] and [21]. It must be
noted that [20] focuses on strong coordination and only one-
way communication, whereas [21] focuses on strong coor-
dination and two-way communication with actions required
only at the end terminals (and not at the relay). Inner and
outer bounds for the required rates of communication for
coordination over a noiseless triangular network with relay
was studied in [22]. The fundamental limits and optimal
schemes for empirical coordination with implicit communi-
cation over multiple-access channels with state were explored
in [23] and [24].

In this work, we quantify the network resources required
for achieving strong correlation in multi-hop line networks.
By network resources, we mean three quantities required
for establishing strong coordination: (a) the rates of hop-
by-hop communication between network nodes; (b) the rate
of randomness locally available at each node; and (c) the
required rate of common randomness shared by all network
nodes. The problem considered here is closely related to strong
coordination problems investigated in [20], [25], and [26].
As will be clear in due course, a solution to strong coordination
code is devised by first solving an allied problem of distributed
generation of actions (correlated random variables), and then
appropriately inverting the operation at one of the nodes.
Hence, the strong coordination problem and the allied action-
generation problem are closely related to channel synthesis
and the problem of generating correlated random variables
considered in [13]–[15], and our ideas and results parallel
those in these works.

In [26], the strong coordination rate region for two- and
multi-hop line networks is characterized under the secrecy
constraint that an eavesdropper does not additionally learn
anything about the joint statistics of the actions even when
they observe the communication on the network links. This
work does not consider this additional secrecy requirement.
It presents a general achievability scheme that is optimal (i.e.,
one can, in theory, derive codes using our general achievability
scheme for any point in the underlying capacity region) in the
following cases:

• when there is sufficient common randomness shared by
all the nodes in the network;

• when the intermediate nodes operate in a functional
regime in which intermediate-node processing is a deter-
ministic function of the incoming messages and the
common randomness alone; and

• when common randomness is absent, and the actions form
a Markov chain that is aligned with the network topology.

The remainder of this work is organized as follows. Section II
presents the notation used in this work. Section III presents
the formal definition of the strong coordination problem, and
Sections IV and V present the main results of this work.

Fig. 1. The strong coordination problem setup.

Finally, this work is concluded in Section VI followed by
appendices containing ancillary results and the proofs of
relevant claims made in Section IV.

II. NOTATION

For m, n ∈ N with m < n, �m, n� � {m,m + 1, . . . , n}.
Uppercase letters (e.g., X , Y ) denote random variables (RVs),
and the respective script versions (e.g., X , Y) denote their
alphabets. In this work, all alphabets are assumed to be finite.
Lowercase letters denote the realizations of random variables
(e.g., x , y). Superscripts indicate the length of vectors. Single
subscripts always refer to node indices. In case of double
subscripts, the first indicates the node index, and the next
indicates the component (i.e., time) index. Given a finite set S,
unif(S) denotes the uniform probability mass function (pmf)
on the set S. Given a pmf pX , supp(pX ) indicates the support
of pX , and T n

ε [pX ] denotes the set of all ε-letter typical
sequences of length n [27]. Given two pmfs p and q on the
same alphabet X , with supp(p) ⊆ supp(q), DKL(p||q) =�

x p(x) log p(x)
q(x) . Given an event E , P(E) denotes the proba-

bility of occurrence of the event E . The expectation operator
is denoted by E[·]. Lastly, p⊗n

X1···Xk
denotes the pmf of n i.i.d.

random k-tuples, with each k-tuple correlated according to pmf
pX1···Xk .

III. PROBLEM DEFINITION

Consider the problem of the control of traffic signaling sys-
tems over a network of busy roads. The network of signaling
systems have to route vehicular traffic smoothly, efficiently,
and nearly instantanously. To do so, the signaling systems
must be coordinated with one another taking into consideration
the periodic trends in traffic patterns. The signaling systems
have to agree on a pre-shared strategy to effect coordination,
which can potentially be randomized to incorporate random
deviations in the underlying traffic patterns. The line coordi-
nation problem studied in this work is loosely based on such
an application.

As a starting point, this work focuses on a multi-hop line
network consisting of h nodes (Nodes 1, . . . ,h) as in Fig. 1.
The communication between signaling systems is modeled as
noiseless bit pipes that connect Node i with Node i + 1, 1 ≤
i < h. The overall aim is to enable strong coordination of the
signaling pattern of the h nodes according to a design joint
pmf QX1···Xh that is assumed to be given. It is assumed that
Node 1 is specified an action sequence {X1,i}i∈N modeled by
an i.i.d process QX1 distributed over a finite set X1. Nodes
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are assumed to possess local randomness as well as common
randomness shared by all h nodes for use in establishing strong
coordination. The amount of randomness required serves as a
measure of how much complexity is required to realize strong
coordination according to the specified pattern using block
codes.

A block code of length n uses n symbols of the speci-
fied action (i.e., Xn

1 ), and common and local randomness to
generate actions X̂n

i ∈ X n
i at Nodes i , i > 2 satisfying the

following condition: the joint pmf of actions (Xn
1 , X̂n

2 , . . . , X̂n
h)

and Q⊗n
X1···Xh

(i.e., the joint pmf of n symbols output by a
given discrete memoryless source corresponding to the design
joint pmf QX1···Xh ) are nearly indistinguishable under the
variational distance metric. The overall aim is to characterize
the required rates of communication messages, and local and
common randomness to achieve such strong coordination. The
following definitions are now in order.

Definition 1: Given joint pmf QX1···Xh and ε > 0,
a strong coordination ε-code of length n at rate tuple
R � (Rc,R1, . . . ,Rh−1, ρ1, . . . , ρh) ∈ R

+2h
is a col-

lection of h + 1 independent and uniform random vari-
ables (Mc,ML1, . . . ,MLh), h − 1 message-generating func-
tions ψ1, . . . , ψh−1, and h − 1 action-generating functions
φ2, . . . , φh such that:

• Randomness constraints:

[Common] Mc ∼ unif(�1, 2nRc�),

[Local] MLi ∼ unif(�1, 2nρi �), 1 ≤ i ≤ h.

• Message-generation and action-generation constraints:

I1 � ψ1(ML1, Xn
1 ,Mc) ∈ �1, 2nR1�,

I j � ψ j (ML j , I j−1,Mc) ∈ �1, 2nR j �, 2 ≤ j < h,

X̂n
j � φ j (ML j , I j−1,Mc), 2 ≤ j ≤ h.

• Strong coordination constraint:
�
�
�
�Q⊗n

X1
QX̂n

2 ···X̂n
h|Xn

1
− Q⊗n

X1···Xh

�
�
�
� ≤ ε, (1)

where QX̂n
2 ···X̂n

h|Xn
1

is the conditional pmf of the actions
generated at Nodes 2, . . . ,h induced by the code. �

Definition 2: Strong coordination of actions of h nodes
according to QX1···Xh is achievable at a rate tuple R �
(Rc,R1, ...,Rh−1, ρ1, ..., ρh) ∈ R

+2h if for any ε > 0, there
exists a strong coordination ε-code of some length n ∈ N at
R. Further, the 2h-dimensional strong coordination capacity
region is defined as the (topological) closure of the set of all
achievable rate vectors. �

Let us suppose that the design joint pmf QX1···Xh is such that
H (X2, . . . , Xh|X1) = 0, i.e., X2, . . . , Xh are (deterministic)
functions of X1. In this simplistic case, there is no need for
local or common randomness, and the strong coordination
problem becomes purely a communication problem with the
following rate region.

Remark 1: If H (X2, . . . , Xh|X1) = 0, then strong coordi-
nation is achievable at (Rc,R1, . . . ,Rh−1, ρ1, . . . , ρh) ∈ R

+2h

iff for each � = 1, . . . ,h, R� ≥ H (X�+1, . . . , Xh). �
So without loss of generality, we may assume for the rest

of this work that the above remark does not apply to the given

Fig. 2. Three possible encoder structures. (a) Functional. (b) Action-
dependent. (c) Unrestricted.

pmf QX1···Xh . Before we proceed to the results, we introduce
three possible modes of operation for intermediate nodes.
These three modes, highlighted in Fig. 2, differ on how an
intermediate node generates a message for its next-hop node,
and are as follows.

• In the functional mode given in Fig. 2 (a), the outgoing
message at each intermediate node is generated from
the incoming message and common randomness, i.e., the
local randomness at an intermediate node is used only to
generate the action corresponding to the node.

• In the action-dependent mode given in Fig. 2 (b), the
intermediate node uses the incoming message, and local
and common randomness to generate the node’s action.
The outgoing message is then generated using the incom-
ing message, common randomness, and the generated
action. In this mode, local randomness at a node can affect
the next-hop message only through the generated action;
and finally,

• In the unrestricted mode given in Fig. 2 (c), both the
action and the next-hop message generated at an inter-
mediate node depend on the incoming message, and local
and common randomness.

In theory, the set of rate vectors achievable using the
unrestricted mode is a superset of those achievable using
the action-dependent mode, which is in turn a superset of
those achievable by the functional mode. Further, these inclu-
sions are, in general, strict (see the discussion at the end of
Section IV). Before we present an achievable coding scheme
for strong coordination, we present the following lemmas,
which characterize the rate-transfer arguments allowable in the
strong coordination problem at hand. These lemmas formalize
the intuitive ideas described in their proofs.

Lemma 1: If strong coordination is achievable under the
unrestricted mode of operation using a common randomness
rate Rc, local randomness rates (ρ1, . . . , ρh) and communica-
tion rates (R1, . . . ,Rh−1), then:
A. For any 1 ≤ � ≤ h and 0 ≤ δ ≤ ρ�, strong coordination is

also achievable under the unrestricted mode of operation
using a common randomness rate Rc + δ, local ran-
domness rates (ρ1, . . . , ρ�−1, ρ� − δ, ρ�+1, . . . , ρh) and
communication rates (R1, . . . ,Rh−1); and

B. For any 1 < � ≤ h and 0 ≤ δ ≤ ρ�, strong coordination is
also achievable under the unrestricted mode of operation
using a common randomness rate Rc, local random-
ness rates (ρ1, . . . , ρ�−1 + δ, ρ� − δ, ρ�+1, . . . , ρh) and
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communication rates (R1,R2,R3, . . . ,R�−2,R�−1 + δ,
R�, . . . ,Rh−1).

Proof: The first rate-transfer argument follows from the
fact that a part of common randomness can always be used
by precisely one node in the network to boost its local ran-
domness. The second rate transfer follows from that fact that
unused/excess local randomness at a node can be transmitted
to the next-hop node to boost its local randomness in the
unrestricted mode of operation.

Lemma 2: If strong coordination is achievable in the action-
dependent (or functional) mode of operation using a common
randomness rate Rc, local randomness rates (ρ1, . . . , ρh) and
communication rates (R1, . . . ,Rh−1), then:
A. For any 1 ≤ � ≤ h and 0 ≤ δ ≤ ρ�,

strong coordination is also achievable under the action-
dependent (or functional) mode of operation using a
common randomness rate Rc + δ, local randomness rates
(ρ1, . . . , ρ�−1, ρ� − δ, ρ�+1, . . . , ρh) and communication
rates (R1, . . . ,Rh−1); and

B. For any 1 < � ≤ h and 0 ≤ δ ≤ ρ�, strong coordination
is also achievable under the action-dependent (or func-
tional) mode of operation using a common random-
ness rate Rc, local randomness rates (ρ1 + δ, . . . , ρ�−1,
ρ� − δ, ρ�+1, . . . , ρh) and communication rates (R1 + δ,
R2 + δ, . . . ,R�−1 + δ,R�, . . . ,Rh−1).

Proof: The first rate-transfer argument follows from the
same argument as that for the first rate-transfer argument
in Lemma 1. The second rate transfer follows from that
fact that unused/excess local randomness at only the first
node can be transmitted to any other node to boost its local
randomness. Note that intermediate nodes cannot forward
unused local randomness to downstream nodes when operating
in the functional or action-dependent modes.

IV. INNER BOUND: ACHIEVABILITY

In this first section of our results, we present an inner
bound (achievability result) for the strong coordination rate
region in two stages. First, we present the achievability for a
two-hop network, and then present the achievability for the
general multi-hop network. The derived inner bound holds
for any finite-alphabet auxiliary RVs as long as they meet a
certain decomposition, and a bound on their cardinalities is not
generally known/derived. However, for the settings in Sec. V
where inner and outer bounds match, the cardinalities of the
auxiliary RVs can bounded using Carathéodory’s theorem [28].

A. Inner Bound: An Achievable Scheme for h = 3
The approach for the design of strong coordination codes

combines ideas from channel resolvability codes [3], [10],
[16] and channel synthesis [13]. In order to design a strong
coordination code, we look at an allied problem of generating
h actions X̂n

1 , . . . , X̂n
h from uniform and independent random

variables (a.k.a. indices) such that the joint pmf of the gener-
ated actions QX̂n

1 ···X̂n
h

satisfies:
�
�
�
�QX̂n

1 ···X̂n
h
− Q⊗n

X1···Xh

�
�
�
�
1 ≤ ε. (2)

The intuition behind the conversion of the strong coordina-
tion problem to the allied source generation problem can

Fig. 3. The approach for the allied action-generation problem for h = 2.

be traced to the following remark derived from a result of
Han and Verdú [11]:

Remark 2: Given a joint pmf QUY , let C =
{Cn(1), . . . ,Cn(2nR)} be a random channel codebook
of 2nR codewords with each codeword selected i.i.d.
using QU , i.e., Cn(i) ∼ Q⊗n

U , i = 1, . . . , 2nR . Let
PY n (·) = �n

i=1
1

2nR Q⊗n
Y |U (·|Cn(i)) denote the pmf of the

channel output when a codeword from this codebook is
selected uniformly at random and transmitted over the DMC
QY |U . If R > I (U ; Y ), then

lim
n→∞ E

�
�
�
�PY n − Q⊗n

Y

�
�
�
�
1 = 0, (3)

where the expectation is over all codebook realizations. �
Owing to the similarity of (2) and (3), the latter can indeed

be viewed as the generation of actions of a single node via a
codebook.

In [3], Cuff et al. used the above result to devise a two-node
strong coordination scheme by analyzing the setup described
in Fig. 3 that generates a pair of jointly correlated actions. In
this approach,

• a channel resolvability code is constructed using an aux-
iliary random variable U and a pair of parallel channels
QX1 X2|U = QX1|U QX2|U to incorporate the fact that the
actions are generated at two different nodes;

• the channel resolvability codebook is arranged in a table
and the codewords are selected by two independent
uniformly distributed indices, one of which represents the
message communicated, and the other corresponds to the
shared common randomness;

• the code rates are chosen so that: (a) the joint pmf of
the actions induced by the codebook can be made close
to the i.i.d. distribution in the sense of (2), and (b) the
index I and Xn

1 are nearly independent, i.e., the mutual
information between I and the generated action Xn

1 can
be made as close to zero as required; and lastly,

• once a realization of the channel resolvability codebook
that meets the above requirements is fixed, a strong coor-
dination scheme is generated by inverting the operation
at Node 1 (i.e., instead of generating the action given I
and J , Node 1 generates I given common randomness
J and the action Xn

1 specified by nature using the condi-
tional pmf PI |J,Xn

1
derived from the chosen codebook).

By analyzing the above two requirements, it was shown in [3]
that a strong coordination scheme of communication rate R
and the common randomness rate Rc exists iff there exists an
auxiliary RV U such that X1 ↔ U ↔ X2, and

R > I (U ; X1), (4a)

R + Rc > I (U ; X1, X2). (4b)
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Fig. 4. Transforming a solution to the problem of generating h sources to a solution for the strong coordination problem.

We now proceed to present an achievable scheme for the
h = 3 case, and will serve as an illustrative example for the
general multi-hop setting, especially since this case contains all
the intricacies and difficulties of the general multi-hop setting.
As in the h = 2 case, the approach for h ≥ 3 devises a solution
for the allied action-generation problem and then inverts the
operation at Node 1. This approach has the following three
distinct parts.

• Task 1: The first task is to devise a scheme to generate
the h = 3 actions, which is termed as the allied action-
generation problem. To do so, first, a suitable structure
of auxiliary RVs is chosen, and a codebook structure
based on the chosen auxiliary RV structure is constructed.
Appropriately distributed indices are used to select the
codewords from the codebook, and suitable test channels
are used to generate the h actions satisfying the above
strong coordination requirement. Note that the auxiliary
RV and codebook structure, and the corresponding test
channels must be such that the actions are generated in a
distributed fashion, incorporating the fact that, in an appli-
cation, these actions may in fact be decided/undertaken
by separate entities at different locations.

• Task 2: The next task is to assign roles to indices by
partitioning the set of indices as common randomness,
local randomness at each node, and messages to be
communicated between nodes.

• Task 3: The last task is to then invert the operation at
Node 1, which transforms the operation of generating the
action at Node 1 to generating the messages intended for
communication from the specified action and the shared
randomness.

An illustration of the three steps for the three-node setting is
given in Fig. 4. Note that much of the detail presented therein
such as the exact structure and form of the auxiliary RVs,
test channels and the assignments to the network resources
(communication, local randomness and common randomness
rates) will be elaborated in due course. In the figure, we notate
X �→ Y to indicate that the RV X is associated as a part of the
RV Y , and hence a part of Y is used to realize X . As of now,
the figure is only intended to indicate the overall procedure.
However, we will repeatedly refer back to this figure (and the
tasks) as we develop various technical aspects of the strong
coordination scheme.

It would be natural to extend the two-node approach of
Fig. 3 to three nodes by the introduction of two auxiliary RVs
U, V such that

X1 ↔ U ↔ (X2, V )

(X1,U, X2) ↔ V ↔ X3,

where U plays the role of coordinating X1 and X2, and V
is ‘generated’ at Node 2 for coordinating with the actions
of Node 1 and Node 2 with that of Node 3. The aims is to
devise a scheme where only Node 2 knows and uses both
U and V codewords. Simple at it may be, we do not have a
way to realize such a scheme. The complication arises because
we require all the indices used to select the codewords to
be jointly uniform to exploit the channel resolvability result
(Remark 2), which is possible if the random codebook for
either U or V is constructed conditionally based on that of
the other. Consequently, for a node to be able to identify the
codeword of the variable with the conditional codebook, it
must also know the codeword of the variable on which the
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conditional codebook is constructed, which then means that
either Node 1 or Node 3 knows both (U and V ) codewords,
which contradicts our goal of devising a scheme where only
Node 2 knows both U and V codewords.

One possible way to circumvent this issue is to introduce
an auxiliary RV for each pair of nodes. For h = 3 nodes,
we introduce 3 auxiliary RVs A1,3, A1,2, A2,3, where each
Ai, j is envisaged as the auxiliary RV whose codeword index
(in part or in full) is conveyed from Node i to Node j , and
hence can be used by Nodes i , i + 1, . . . , j to generate their
actions. Since A1,2 is known only to Nodes 1 and 2, A2,3
is known only to Nodes 2 and 3, and A1,3 is known to all
nodes, the codebooks for A1,2 and A2,3 can be constructed
conditionally on that of A1,3; however, to ensure that the
codewords for A1,3, A1,2, A2,3 via jointly uniform random
indices, we additionally impose the following chain.

A1,2 ↔ A1,3 ↔ A2,3. (5)

Note that this chain is imposed so as to exploit a suit-
able three-source extension of the channel resolvability result
(Remark 2), where we use uniform random indices to select
the three codewords, and then use the codewords and appropri-
ate test channels to generate the three actions. If we take this
approach, we can generate the three actions as the marginals
of a joint pmf that takes the following form:

Q A1,3 Q A1,2 |A1,3 Q A2,3 |A1,3 QX1|A1,2 A1,3

× QX2|A1,2 A1,3 A2,3 QX3|A1,3 A2,3 , (6)

where the three parallel test channels that are used to gen-
erate the actions from the three auxiliary RVs are given by
QX1|A1,2 A1,3 , QX2|A1,2 A1,3 A2,3 , and QX3|A1,3 A2,3 .

However, we can devise an improved achievability scheme
if for each i = 1, 2, we introduce an additional auxiliary
RV Bi,i+1 that is generated by Node i and is intended for
Node i + 1. Let the joint pmf between the 5 auxiliary RVs
and the 3 actions decompose as follows.

Q A1,2 A1,3 Q A2,3 |A1,3 QX1|A1,2 A1,3 QB1,2|A1,2 A1,3 X1

× QX2|A1,2 A1,3 A2,3 B1,2 QB2,3|A2,3 A1,3 X2 QX3|A1,3 A2,3 B2,3 .

Note that for i = 1, 2, RVs Ai,i+1 and Bi,i+1 are both
generated by Node i and intended for Node i + 1; despite this
similarity, the roles played by these auxiliary RVs are quite
different. The following discussion highlights the difference
between these auxiliary RVs.

Discussion 1: Suppose that we build a scheme with auxil-
iary RVs A1,2, A1,3, A2,3, i.e, we set B1,2 and B2,3 as constant
RVs. Then the joint pmf that we can emulate is given by (6).
Since we have A1,2 ↔ A1,3 ↔ A2,3 we see that the joint pmf
can be rearranged as

Q A1,3 QX1,A1,2 |A1,3 QX2|A1,2 A1,3,A2,3 Q A2,3,X3|A1,3 . (7)

Therefore, when B1,2 and B2,3 are set as constant RVs, no
matter what the choices for A1,2 and A2,3 are, X1 and X3 must
be conditionally independent given A1,3, which effectively is
a restriction on the choice of A1,3. Now, suppose that we build
a scheme with auxiliary RVs A1,3, B1,2, B2,3, i.e, we set A1,2

Fig. 5. An illustration of the structure of auxiliary random variables and
actions when h = 3.

and A2,3 as constant RVs. Then the joint pmf that we can
emulate is given by

Q A1,3,X1,B1,2 QX2|B1,2,A1,3 QB2,3|X2,A1,3 QX3|B2,3,A1,3 , (8)

which does not necessarily imply the conditional independence
of X1 and X3 given A1,3. Hence, employing non-trivial
(B1,2, B2,3) or (A1,2, A2,3) allows for different choices for
A1,3, which in turn could potentially translate into different
resource requirements. �

Now, we finally supplement the suite of 5 auxiliary RVs
with two more C2 and C3 which, unlike the A and the B
RVs, are not communicated between nodes, but are local to
Nodes 2 and 3, respectively. Their role is solely to enable
us to quantify the amount of local randomness required at
Nodes 2 and 3. The reader might find it helpful to know that
our eventual choice will be Ci = Xi for i > 1. This also
explains the obvious absence of an auxiliary RV named C1
since Node 1’s action is specified by nature, and only actions
at Nodes 2 and 3 are generated by the scheme. Finally, the
joint pmf of the 7 auxiliary RVs and the three actions that we
would like to emulate is given as follows:

Q A1,2 A1,3 X1 Q A2,3 |A1,3 QB1,2|X1 A1,2 A1,3 QC2 X2|A1,2 A1,3 A2,3 B1,2

× QB2,3|A2,3 A1,3 X2 QC3,X3|A2,3 A1,3 B2,3 (9)

A graphical illustration of the dependencies among the ten RVs
for h = 3 is given in Fig. 5. In this illustration, each RV is
conditionally independent of the rest given its neighbors (in the
undirected sense). It will be precisely this dependency between
the auxiliary RVs that will be used to build the codebooks.

To build the codebooks, we first fix a pmf that decomposes
as in (9). We then select 12 rates:

• column rates (μ+
1,3, μ

+
1,2, μ

+
2,3) and row rates

(μ−
1,3, μ

−
1,2, μ

−
2,3) for A1,3, A1,2, and A2,3 codebooks,

respectively;
• column rates (κ+

1 , κ
+
2 ) and row rates (κ−

1 , κ
−
2 ) for B1,2,

and B2,3 codebooks, respectively; and
• rates λ2, and λ3 for C2, and C3 codebooks, respectively;

Using these rates, we construct the codebooks in the following
order:
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Fig. 6. An illustration of the structure of codebooks for the h = 3 setting.

Fig. 7. A fallacious attempt at generating the three actions.

• Construct a random codebook of 2n(μ+
1,3+μ−

1,3) codewords
each generated using Q A1,3 and arranged in a table of

2nμ+
1,3 rows and 2nμ−

1,3 columns.
• For each A1,3 codeword, construct a random (conditional)

codebook for A1,2 with 2n(μ+
1,2+μ−

1,2) codewords each
generated using Q A1,2 |A1,3 , and arranged in a table of

2nμ+
1,2 rows and 2nμ−

1,2 columns.
• Similarly, construct random codebooks for A2,3 using

Q A2,3 |A1,3 .
• For each pair of A1,3 and A1,2 codewords, con-

struct a random (conditional) codebook for B1,2 with
2n(κ+

1 +κ−
1 ) codewords each generated using QB1,2|A1,2 A1,3 ,

and arranged in a table of 2nμ+
1,2 rows and 2nμ−

1,2 columns.
• Similarly, construct random codebooks for B2,3 using

QB2,3|A2,3 A1,3 .
• For each tuple of A1,3, A1,2, A2,3, and B1,2 codewords,

generate a random codebook of 2nλ2 codewords using
QC2|A1,2 A2,3 A1,3 B1,2 .

• Similarly, construct random codebooks for C3 using
QC3|A2,3 A1,3 B2,3

Note that the codebooks for A1,3, A1,2, A2,3, B1,2, and
B2,3 are tabular as opposed to being rectangular. Now, for
Task 1, one can naïvely attempt to use twelve indepen-
dent and uniformly distributed random indices to select the
7 auxiliary RV codewords and generate the three actions
using appropriate test channels as illustrated in Fig. 7.
Specifically, independent and uniformly distributed indices
M± � (M+

1,2,M−
1,2,M+

1,3,M−
1,3,M+

2,3,M−
2,3), K +

1 , K −
1 , K +

2 ,
K −

2 , L2, and L3 can be used to select codewords from A1,2,

Fig. 8. The 3 subproblems for the h = 3 setting.

A1,3, A2,3, B1,2, B2,3, C2 and C3 codebooks and three test
channels can be used to generate the nodes’ actions. One can
hope that the three actions derived thus have the right joint
statistics.

However, this approach does not yield the right joint pmf of
actions due to the manner in which codebooks are constructed.
To see this, note that not all joint pmfs that decompose
as in (8) satisfy I (B1,2; B2,3|A1,2 A1,3 A2,3) = 0. How-
ever, since the codebooks for B1,2 and B2,3 are constructed
conditionally on those of (A1,2, A1,3) and (A2,3, A1,3),
respectively, selecting codewords uniformly from the five
codebooks will not ensure that the empirical distribution
of (A1,2, A1,3, A2,3, B1,2, B2,3) derived from the randomly
selected codewords matches the marginal derived from the
joint pmf in (8). Hence, an alternate and more intricate
means to generate actions from the codebooks has to be
devised.

Our approach to generating the three actions involves
breaking the action-generation problem to the following three
generalized channel resolvability problems that are illustrated
in Fig. 8.

• In the first problem, we let random vector of indices
M± � (M+

1,2,M−
1,2,M+

1,3,M−
1,3,M+

2,3,M−
2,3) to be

uniform over its alphabet. Let this random vector
be used to select the corresponding codeword triple
An

1,2(M
±), An

1,3(M
±), An

2,3(M
±) and let the actions be

generated using the test channel QX1 X2 X3|A1,2 A1,3 A2,3 .
The resultant joint pmf of the generated actions is then
given by

�Q(1)
X̂n

1 X̂n
2 X̂n

3
�

�

m±
Q⊗n

X1 X2 X3|A1,2 A1,3 A2,3

⎛

⎝·
�
�
�
�
�
�

An
1,2(m

±)
An

1,3(m
±)

An
2,3(m

±)

⎞

⎠

2n(μ+
1,2+μ−

1,2+μ+
1,3+μ−

1,3+μ+
2,3+μ−

2,3)
.

The aim in this problem is to find constraints on the six
rates μ+

1,2, μ−
1,2, μ+

1,3, μ−
1,3, μ+

2,3, and μ−
2,3 such that:

1) the joint pmf �Q(1)
X̂n

1 X̂n
2 X̂n

3
is close to the design pmf

Q⊗n
X1 X2 X3

, i.e.,

lim
n→∞ E

	

DKL(�Q
(1)
X̂n

1 X̂n
2 X̂n

3
� Q⊗n

X1 X2 X3
)




= 0. (10)
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2) X̂n
1 is nearly independent of random indices M− �

(M−
1,2,M−

1,3,M−
2,3), i.e.,

lim
n→∞

�

m−
E

	

DKL(�Q
(1)
X̂n

1 |M−(·|m−) � �Q(1)
X̂n

1
)




2n(μ−
1,2+μ−

1,3+μ−
2,3)

= 0,

(11)

where �Q(1)
X̂n

1 |M−(·|m̃−) is the conditional pmf of X̂n
1

given M− = m̃− given by (12) at the top of the next
page.

Note that we have expectations in both constraints due
to the random construction of the codebooks. Since
our overall goal is to generate the actions whose joint
statistics nearly match that of an i.i.d. source QX1 X2 X3 ,
the first constraint seems natural. The second constraint,
however, appears rather unnecessary at first glance. It is
an artifact of the proposed scheme and not a requirement
of the problem per se. It is imposed so as to be able
to eventually interpret the random indices corresponding
to row selection (i.e., the (·)− indices) as originating
from the common randomness Mc, which by the setup,
is independent of the action specified at Node 1.

• The second problem is a generalized channel resolv-
ability problem in which we focus on generating a
pair of actions (X̂n

1 , X̂n
2 ). First suppose that we fix

a vector of indices m± that selects the three A
codewords. Now, let (K +

1 , K −
1 , L2) be jointly uniform

indices that together with m± identify unique code-
words for A1,2, A1,3, A2,3, B1,2, and C2 from the
respective codebooks. Let these random codewords be
used to generate the pair of actions (X̂n

1 , X̂n
2 ) using

the test channel QX1 X2|A1,2 A1,3 A2,3 B1,2C2 , which decom-
poses into two parallel channels QX1|A1,2 A1,3 A2,3 B1,2 and
QX2|A1,2 A1,3 A2,3 B1,2C2 . The resultant joint pmf of the gen-

erated actions �Q(2,m±)
X̂n

1 X̂n
2

is given by (13) at the top of the

next page.
In this problem, we aim to find constraints on codebook
rates κ+

1 , κ
−
1 and λ2 such that:

– for almost all m±, pmf �Q(2,m±)
X̂n

1 X̂n
2
(·, ·) is close to

the pmf Q⊗n
X1 X2 X3|A1,2 A1,3 A2,3

⎛

⎝·
�
�
�
�
�
�

An
1,2(m

±)
An

1,3(m
±)

An
2,3(m

±)

⎞

⎠ in the

sense of (15) at the top of the next page.
– for almost all m±, the action X̂n

1 and K −
1 are nearly

independent, which is enforced by satisfying (16).
Note that the conditional pmf �Q(2,m±)

X̂n
1 |K −

1
in (16) is

defined in (14), as shown at the top of the next page.
As in the previous problem, the second constraint is
imposed with the goal of eventually being able to interpret
K −

1 as a part of the common randomness Mc. The first
constraint ensures that the codebooks for B1,2 and C2
are sufficiently large to ensure that the pmf pair of
action sequences appear independent (in time) condi-
tioned on the A-codewords. The need for this constraint
will become clear shortly when we describe our solution
to the allied action-generation problem.

• Lastly, as is evident from Fig. 8, the third problem is
identical to the second problem except that each subscript
index is incremented by 1. Analogous to the previous
problem, here we focus on generating action sequence
pair (X̂n

2 , X̂n
3 ) using the B2,3 and C3 codebooks requiring

two constraints similar to (15) and (16). The joint pmf of
the pair of action sequences for each realization of m±

in this case is denoted by �Q(3,m±)
X̂n

2 X̂n
3
(·, ·).

Now, let us suppose that we can find codebook rates such
that the above six constraints (two for each problem) are met.
Let us define a scheme for generating the three sequence of
action as follows:

• Let M± = (M+
1,2,M−

1,2,M+
1,3,M−

1,3,M+
2,3,M−

2,3) be a
random vector uniform over its alphabet, i.e., any subset
of components constitute of uniform and independent
random variables.

• Let X̂n
1 be the action sequence generated by transmitting

An(M±) � (An
1,2(M

±), An
1,3(M

±), An
2,3(M

±)) over the
channel QX1|A1,2 A1,3 A2,3 = QX1|A1,2 A1,3 . The resulting
pmf of X̂n

1 is given by Problem 1 to be �Q(1)
X̂n

1
.

• Using the realizations of M± and X̂n
1 , generate (K ±

1 , L2)
distributed according to QK ±

2 ,L2|X̂n
1 ,M

± induced by
Problem 2, and transmit codewords An(M±),
Bn

1,2(M
±, K ±

1 ) and C2(M±, K ±
1 , L2) over the channel

QX2|A,B1,2,C2 to generate X̂n
2 .

• Similar to the previous step, using the realizations of
M± and X̂n

2 , generate (K ±
2 , L3) distributed according to

QK ±
2 ,L3|Xn

2 ,M
± induced by Problem 3, and transmit code-

words An(M±), Bn
2,3(M

±, K ±
2 ) and Cn

2 (M
±, K ±

2 , L3)

over the channel QX3|A,B2,3,C3 to generate X̂n
3 .

At this point, the following fact must be highlighted. First,
by dividing the problem into three, we have ensured that
even though the codebooks for B1,2 and B1,3 are constructed
conditionally independent given A = (A1,2, A1,3, A2,3), the
codeword selection is such that the conditional empirical distri-
bution of (B1,2, B1,3) given A matches correlation QB1,2,B1,3|A
induced by (8), thereby avoiding the issue in the fallacious
attempt given in Fig. 7. In other words, in the above approach,
(M±, K ±

1 , L2) is a collection of independent and uniform
random indices, (M±, K ±

2 , L3) is a collection of independent
and uniform random indices, but not (M±, K ±

1 , K ±
2 ). It is not

difficult to see that the above scheme yields actions jointly
correlated according to pmf Q̆ X̂n

1 X̂n
2 X̂n

3
given by (17) at the top

of the next page.
Now, if we can identify the codebook rate conditions for the

three problems, and prove that Q̆ X̂n
1 X̂n

2 X̂n
3

can be made arbi-

trarily close to Q⊗n
X1 X2 X3

under the variational distance metric
as n is allowed to grow unboundedly, then we have a solution
for the allied action-generation problem. Theorems 1 and 2,
and Lemma 3, detailed in Section IV-B, establish exactly that.

In specific, Theorem 1 of Sec. IV-B3 guarantees that (10)
and (11) of Problem 1 hold provided the following eight rate
conditions are met, of which the first four are required to
meet (10), and the last four, to meet (11).

μ+
1,3 + μ−

1,3 > I (X1 X2 X3; A1,3) (18a)
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�Q(1)
X̂n

1 |M−(·|m̃−) �
�

m±:m−=m̃−

Q⊗n
X1|A1,2 A1,3 A2,3

(·|An
1,2(m

±), An
1,3(m

±), An
2,3(m

±))

2n(μ+
1,2+μ+

1,3+μ+
2,3)

. (12)

�Q(2,m±)
X̂n

1 X̂n
2
(·, ·) =

�

k+
1 ,k

−
1 ,l2

Q⊗n
X1 X2|A1,2 A1,3 A2,3 B1,2C2

(·, ·|An
1,2(m

±)An
1,3(m

±)An
2,3(m

±)Bn
1,2(m

±, k±
1 )C

n
2 (m

±, k±
1 , l2))

2n(κ+
1 +κ−

1 +λ2)
, (13)

�Q(2,m±)
X̂n

1 |K −
1
(·|k−

1 ) =
�

k+
1

Q⊗n
X1|A1,2 A1,3 A2,3 B1,2

(·|An
1,2(m

±), An
1,3(m

±), An
2,3(m

±), Bn
1,2(m

±, k+
1 , k−

1 ))

2nκ+
1

. (14)

lim
n→∞

�

m±

E

	

DKL

�
�Q(2,m±)

X̂n
1 X̂n

2

�
�
�
�
�
�Q⊗n

X1 X2|A1,2 A1,3 A2,3


 · |An
1,2(m

±), An
1,3(m

±), An
2,3(m

±)
�
�


2n(μ+
1,2+μ−

1,2+μ+
1,3+μ−

1,3+μ+
2,3+μ−

2,3)
= 0. (15)

lim
n→∞

�

m±,k−
1

E

	

DKL

�
�Q(2,m±)

X̂n
1 |K −

1
(·|k−

1 )
�
�
�
�
�
�Q⊗n

X1|A1,2 A1,3 A2,3


 · |An
1,2(m

±), An
1,3(m

±), An
2,3(m

±)
�
�


2n(μ+
1,2+μ−

1,2+μ+
1,3+μ−

1,3+μ+
2,3+μ−

2,3+κ−
1 )

= 0. (16)

Q̆ X̂n
1 X̂n

2 X̂n
3
(xn

1 , xn
2 , xn

3 ) �
�

m±

Q⊗n
X1|A1,2 A1,3 A2,3

(xn
1 |An(m±)) ·

�Q(2,m±)
X̂n

1 X̂n
2
(xn

1 ,x
n
2 )

�Q(2,m±)
X̂n

1
(xn

1 )
·

�Q(3,m±)
X̂n

2 X̂n
3
(xn

2 ,x
n
3 )

�Q(3,m±)
X̂n

2
(xn

2 )

2n(μ+
1,2+μ−

1,2+μ+
1,3+μ−

1,3+μ+
2,3+μ−

2,3)
. (17)

	
μ+

1,2 + μ−
1,2

+μ+
1,3 + μ−

1,3




> I (X1 X2 X3; A1,2 A1,3) (18b)

	
μ+

1,3 + μ−
1,3

+μ+
2,3 + μ−

2,3




> I (X1 X2 X3; A1,3 A2,3) (18c)

	
μ+

1,2 + μ−
1,2 + μ+

1,3
+μ−

1,3 + μ+
2,3 + μ−

2,3




> I (X1 X2 X3; A1,2 A1,3 A2,3) (18d)

μ+
1,3 > I (X1; A1,3) (18e)

μ+
1,2 + μ+

1,3 > I (X1; A1,2 A1,3) (18f)

μ+
1,3 + μ+

2,3 > I (X1; A1,3 A2,3) (18g)

μ+
1,2 + μ+

1,3 + μ+
2,3 > I (X1; A1,2 A1,3 A2,3) (18h)

Next, Theorem 2 of Sec. IV-B3 guarantees that (15) and (16)
of Problem 2, and the respective conditions of Problem 3 hold
provided the following six rate conditions are met.

κ+
1 + κ−

1 + λ2 > I (X1 X2 X3; B1,2C2|A1,2 A1,3 A2,3) (19a)

κ+
1 + κ−

1 > I (X1 X2 X3; B1,2|A1,2 A1,3 A2,3) (19b)

κ+
1 > I (X1; B1,2|A1,2 A1,3 A2,3) (19c)

κ+
2 + κ−

2 + λ3 > I (X1 X2 X3; B2,3C3|A1,2 A1,3 A2,3) (19d)

κ+
2 + κ−

2 > I (X1 X2 X3; B2,3|A1,2 A1,3 A2,3) (19e)

κ+
2 > I (X1; B2,3|A1,2 A1,3 A2,3) (19f)

Thus, from the above, we see that if the codebook rates satisfy
the fourteen constraints in (18) and (19), then as a consequence
of Lemma 3 of Sec. IV-B4, the above approach is a solution
to the allied action-generation problem. This solution can be
translated to a solution to our strong coordination problem by
inverting the operation at Node 1 (i.e., by selecting correspond-
ing indices from the specified action, instead of generating the
action for Node 1 from random indices). The resulting solution

to the strong coordination problem is as follows.

A1 The nodes agree on a joint pmf that satisfies (9) with
additional constraints C2 = X2 and C3 = X3.

A2 The nodes collectively decide on the twelve codebook
rates meeting the fourteen constraints in (18) and (19),
and agree on a realization of the codebooks.

A3 The nodes use disjoint parts of the shared common
randomness to identify random indices specifying the
columns for A- and B-codewords, i.e., all nodes extract
(M−

1,2,M−
1,3,M−

2,3, K −
1 , K −

2 ) from Mc.
A4 Given Xn

1 and the selected (M−
1,2,M−

1,3,M−
1,2), Node 1

generates random indices (M+
1,2,M+

1,3,M+
1,2) using the

pmf QM+
1,2 M+

1,3 M+
1,2|Xn

1 M−
1,2 M−

1,3 M−
1,2

induced by Problem 1.
The randomness required to generate this random
indices is obtained by using the local randomness avail-
able at Node 1. Since (M−

1,2,M−
1,3,M−

1,2) is extracted
from Mc, (M−

1,2,M−
1,3,M−

1,2) and Xn
1 are necessar-

ily independent. We must therefore explicitly enforce
the independence of (M−

1,2,M−
1,3,M−

1,2) and Xn
1 in

our design, and hence the requirement of (11) in
Problem 1.

A5 Node 1 then uses (M±
1,2,M±

1,2, K +
1 ) and actions Xn

1
to generate an index K +

1 distributed according to
QK +

1 |Xn
1 M±

1,2,M
±
1,3,K

−
1

induced by Problem 2. Again, the
randomness required to generate this index is derived
from the local randomness available at Node 1.

A6 Node 1 then conveys (M+
1,2,M+

1,3, K +
1 ) to Node 2.

A7 Node 2 uses the received indices (M+
1,2,M+

1,3, K +
1 )

and the column indices identified from the common
randomness to identify the codewords for A1,2, A1,3,
and B1,2. Additionally, it uses its local randomness to
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select a uniform random index L2 independent of all
other indices.

A8 Node 2 then uses the received/selected indices to
identify codewords for A1,2, A1,3, B1,2, and C2, and
declares its sequence of actions Xn

2 to be the same as
Cn

2 (M
±
1,2,M±

1,3,M±
2,3, K ±

1 , L2).
A9 Node 2 then uses the generated action Xn

2 and the
indices (M±

1,2,M±
1,3,M±

2,3, K −
2 ) and its local random-

ness to generate index K +
2 distributed according to pmf

QK +
2 |Xn

2 M±
1,2,M

±
1,3,M

±
2,3,K

−
1

induced by Problem 2. Just as
in A2, it is for this step that we require (16) to hold.

A10 Node 2 then conveys (M+
1,3,M+

2,3, K +
2 ) to Node 3.

A11 Node 3 generates a uniform random index L3 indepen-
dent of all other indices using its local randomness.

A12 Node 3 uses the received messages and the column
indices extracted from local and common randomness
to identify A1,3, A2,3, B2,3 and C3 codewords. As in
the case of Node 2, Node 3 declares its actions to be
the selected codeword Cn

3 (M
±
1,3,M±

2,3, K ±
2 , L3).

At this juncture, the reader will be able to corroborate the
details of the above scheme with those presented in Fig. 4.
A straightforward computation then reveals that the joint pmf
of the actions generated by the above scheme can be made
vanishingly close to Q̆ X̂n

1 X̂n
2 X̂n

3
as n grows, which in turn can be

made arbitrarily close to Q⊗n
X1,X2,X3

if (a) the codebooks satisfy
(18) and (19), and (b) the local and common randomness rates
are sufficiently large to ensure that the above steps can be
realized. We therefore require the following:

1) The common randomness rate should be sufficiently
large so as to perform Step A3, which requires

Rc ≥ μ−
1,2 + μ−

1,3 + μ−
2,3 + κ−

1 + κ−
2 . (20)

2) The local randomness at Node 1 is required to select the
indices (M+

1,2,M+
1,3) at Step A3 and K +

1 at Step A4. The
rates of local randomness required to achieve these ran-
dom index selection is quantified by Theorems 6 and 7
of Appendices D and E, respectively, to be:

ρ1 ≥
�
μ+

1,2 + μ+
1,3 − I (X1; A1,2, A1,3)

�

+ 

κ+

1 − I (X1; B1,2|A1,2, A1,3)
�
. (21)

3) The local randomness at Node 2 is required to select L2
at Step A7 and K +

2 at Step A9. Again, by Theorem 7
of Appendix E, we see that the required rate of local
randomness is

ρ2 ≥ λ2 + κ+
2 − I (X1; B2,3|A1,2, A1,3, A2,3). (22)

4) The local randomness at Node 2 is only required to
select L3, which necessitates

ρ3 ≥ λ3. (23)

5) Lastly, the communication rates on the two links must
be sufficient for the conveyance of the corresponding
indices in Steps A6 and A10, for which we require

R1 ≥ μ+
1,2 + μ+

1,3 + κ+
1 , (24)

R2 ≥ μ+
1,3 + μ+

2,3 + κ+
2 . (25)

Fig. 9. An illustration of the auxiliary RV structure for h = 4.

Piecing all the results together, we obtain the implicit
achievability result for h = 3 setting that a rate tuple
(Rc,R1,R2, ρ1, ρ2, ρ3) is achievable if we can find twelve
codebook rates satisfying (18) and (19) such that (20)-(25)
also hold. Lastly, we can possibly enlarge the space of achiev-
able tuples by incorporating the rate-transfer arguments of
Lemma 1 thereby yielding all rate tuples achievable using the
above strong coordination scheme. Note that since we have not
imposed any constraints on the operation of intermediate node,
the constraints correspond to the unrestricted mode. We can
derive similar implicit achievability results for schemes based
on functional and action-dependent modes. Detailed treatment
for these two modes are only provided in the general multi-hop
setting in the following section.

B. Inner Bound: An Achievable Scheme for General
Multi-Hop Line Networks

The approach for strong coordination in general multi-
hop networks is a natural extension of the two-hop scheme
presented in Section IV-A. As in the two-hop setting, we divide
the problem into three tasks, the first of which considers
the appropriate allied action-generation problem. This prob-
lem is solved by first choosing an appropriate structure for
auxiliary RVs, suitably constructing codebooks that reflect the
dependencies in the chosen RV structure, and subdividing the
problem appropriately to solve each of them separately and
then by piecing them together to find the general solution
to the action-generation problem. Next, we assign each index
corresponding to an auxiliary RV codeword to either common
or local randomness at a particular node, and lastly, we
invert the operation at Node 1, and identify the required rates
of communication, and local and common randomness. The
reader is redirected to Fig. 4 for an illustration of this approach.

1) Choice of Auxiliary Random Variables (Task 1): We
use


h
2

� + 2h − 2 auxiliary RVs in a specific way to generate
the h actions in the allied problem. For an illustration of the



1142 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 2, FEBRUARY 2018

auxiliary RV structure for the allied action-generation problem
when h = 3 and h = 4, the reader is directed to Figs. 5 and 9,
respectively. The details of the general auxiliary RV structure
are as follows:

• There are three different groups of Auxiliary RVs collec-
tively indicated by the letters A, B , and C . There are


h
2

�

random variables {Ai, j : 1 ≤ i < j ≤ h}, h − 1 random
variables {Bi,i+1 : 1 ≤ i < h}, and h−1 random variables
{Ci : 2 ≤ i ≤ h}.

• For 1 ≤ i < j ≤ h, auxiliary RV Ai, j represents message
generated at Node i intended for Node j , and hence can
be used by Nodes i, i + 1, . . . , j .

• As a generalization of (5), for each 1 ≤ i < j ≤ h, we
impose the following Markov chain.1

Ai, j ↔ A�(i, j ) ↔ A \ {Ai, j }, (26)

where we use the following notation.

F � {(i, j) : 1 ≤ i < j ≤ h},
�(i, j) �

�
(i �, j �) : i � ≤ i < j ≤ j �} \ {(i, j)

�
,

AS � {As}s∈S, S ⊆ F ,
A � AF .

Note that A�(i, j ) represents RVs generated by nodes prior
to and including Node i and are intended for Node j
or nodes situated after Node j except RV Ai. j . Fig. 9
presents an illustration of A�(2,3) for h = 4. In the figure,
the subset of auxiliary RVs that are connected by directed
edges with heads at RV Ai, j form A�(i, j ). Since Nodes
i, . . . , j have access to the codewords corresponding to
A�(i, j ), we can allow arbitrary correlation between Ai, j

and A�(i, j ). Further, for each (i �, j �) /∈ �(i, j)∪ {(i, j)},
there is at least one k � such that i ≤ k � ≤ j and Node
k � does not have access to Ai �, j � . Hence, A�(i, j )∪{(i, j )}
is the unique maximal subset of auxiliary RVs that
Nodes i, . . . , j together share. The Markov conditions
of (26) generalize (5) in the two-hop setting, and are
required to ensure that jointly uniform random indices can
be used to select auxiliary RV codewords (from a suitable
codebook setup) whose joint empirical pmf matches that
of the design pmf.

• For each i = 1, . . . ,h − 1, auxiliary RV Bi,i+1 is
generated by Node i and is intended for Node i + 1 one
hop away. As in the two-hop setting, the auxiliary RVs
Ai,i+1 and Bi,i+1 play different roles (see Discussion 1 of
Section IV-A); auxiliary random variables {Ai, j : 1 ≤ i <
j ≤ h} are selected prior to the generation of any action
sequence, i.e., X̂n

2 , . . . , X̂n
h . However, for each 1 ≤ i < h,

Bi,i+1 is selected after the action X̂n
i is generated. The

curious reader might wonder if the fact that auxiliary RVs
Ai,i+1 and Bi,i+1 play different roles is reason enough
to introduce the B RVs. The fact that B auxiliary RVs

1The authors thank the anonymous reviewer who suggested approaching the
problem via a combination of Slepian-Wolf coding/random binning exploiting
of [15, Lemma 1] (also of [30, Th. 1]) that does not require the Markov
assumptions in (26). The random binning approach however, in theory,
requires at least h3 binning operations/rates. In this work, we have restricted
our focus on an achievable scheme using channel resolvability codebooks.

are indeed essential and that they strictly improve the
achievability scheme is established at the end of this work
in Section V-C.

• Lastly, the h − 1 auxiliary RVs {C2, . . . ,Ch} are intro-
duced solely to quantify the use of local randomness
required at each node in the network. The indices and
the codewords corresponding to these auxiliary RVs are
not communicated between nodes.

The joint pmf of the actions and auxiliary RVs
Q A,B1,2,...,Bh−1,h,C2,...,Ch,X1,...Xh that we aim to emulate must
factorize as

Q A1,2 ···Ah−1,h QX1|A�(1)

×
h−1�

j=1

�
QB j, j+1|X j A�( j, j+1)

QC j+1|A�( j+1)B j, j+1

×QX j+1|A�( j+1)B j, j+1C j+1

�

, (28)

where Q A1,2,...,Ah−1,h satisfies the conditions described by (26)
and the marginal QX1···Xh = QX1···Xh . In (28), we let

�(i, j) � �(i, j) ∪ {(i, j)}, (29a)

�(i) � {(i �, j �) ∈ F : i � ≤ i ≤ j �}. (29b)

Note that A�(i, j ) = A�(i, j )∪{(i, j )} is exactly the set of all
A auxiliary RVs that Nodes i, . . . , j have access to, and
A�(i) represents all auxiliary RVs generated by Nodes 1, . . . , i
intended for Nodes i, . . . ,h. An illustration of �(2, 3), �(2)
for h = 4 can be found in Fig. 9.

As in the two-hop case, while it is preferable that there be
only one RV per hop that encapsulates completely the role of
the message conveyed on a hop, we do not have the tools to
devise an achievable scheme with such a property. The joint
pmf in (28) is the most general structure of RVs for which
we are able to devise an achievable scheme using the channel
resolvability codebook approach. We now present the precise
codebook structure and construction that emulates (28).

2) Codebook Construction (Task 1): The construction of
codebooks that incorporate the specific structure of auxiliary
RVs is accomplished using the following (total) ordering of
index pairs. Codebooks for A auxiliary RVs are constructed
starting from the leftmost index pair.

(1,h) � (1,h − 1) � · · · � (1, 2) � (2,h) � · · · � (2, 3)

� (3,h) � · · · � (3, 4) � · · · � (h − 1,h).

To define the codebooks, we define the rates for each code-
books as in Table I. As in the two-hop case, we assign two
rates for the codebooks for each A and B auxiliary RV and
one for each C codebook. For A or B auxiliary RV codebooks,
the rates with superscript + will correspond to messages
communicated over edges, and the rates with the superscript −
will correspond to indices extracted from common randomness
shared by all nodes.

We use the following notation.

M±
S � ×

(i �, j �)∈S

�
M+

i �, j � × M−
i �, j �

�
, S ⊆ F ,

m±
i, j � (m+

i, j ,m−
i, j ), (i, j) ∈ F ,

mx
S � {mx

s }s∈S, S ⊆ F and x ∈ {+,−,±},
mx � mx

F , x ∈ {+,−,±}.
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Fig. 10. The h subproblems.

TABLE I

CODEBOOK PARAMETERS AND NOTATION

The codebooks for the auxiliary RVs are constructed as
follows.

B1 For each m±
1,h ∈ M+

1,h × M−
1,h, generate codeword

An
1,h(m

±
1,h) ∼ Q⊗n

A1,h
independently.

B2 For (i, j), (i �, j �) ∈ F such that (i, j) � (i �, j �), the
codebook for Ai, j is constructed before that for Ai �, j � .
By design, the codebook for Ai �, j � is constructed after
those for Ai ��, j �� , (i ��, j ��) ∈ �(i �, j �).

B3 For each 1 ≤ i < j ≤ h, m±
�(i, j )

∈ M±
�(i, j )

,

generate An
i, j (m

±
�(i, j )

) ∼ Q⊗n
Ai, j |A�(i, j)

(·|An
�(i, j )(m

±
�(i, j )))

independently using previously selected An
�(i, j )(m

±
�(i, j )).

B4 For each i = 1, 2, . . . ,h − 1, and index tuple
(m±

�(i,i+1)
, k±

i ) ∈ M±
�(i,i+1)

× K±
i , independently gen-

erate random codeword Bn
i,i+1(m

±
�(i,i+1)

, k±
i ) distributed

according to Q⊗n
Bi,i+1 |A�(i,i+1)

(·|An
�(i,i+1)

(m±
�(i,i+1)

)).

B5 For 1 < i ≤ h, and index tuple (m±
�(i), k±

i−1, li ) ∈
M±

�(i) × K±
i−1 × Li , independently generate random

codeword Cn
i (m

±
�(i), k±

i−1, li ) distributed according to
Q⊗n

Ci |A�(i)Bi−1,i
(·|An

�(i)(m
±
�(i)), Bn

i−1,i (m
±
�(i), k±

i−1)).

While the above description is notation-heavy, it is, in reality,
a multi-hop generalization of the description of the codebooks

for h = 3 given in Section IV-A and Fig. 6. For the sake of
succinctness, we introduce the following notation:

An(m±) �
�

An
i, j (m

±
�(i, j )

)
�

(i, j )∈F

and for 1 < i ≤ h,

Bn
i−1,i (m

±, k±
i−1) � Bn

i−1,i (m
±
�(i−1,i)

, k±
i−1),

Cn
i (m

±, k±
i−1, li ) � Cn

i (m
±
�(i), k±

i−1, li ).

Note that we have so far neither specified the rates μ+
i, j , μ

−
i, j ,

κ+
i , κ

−
i , and λi in the above description, nor have we described

how the codewords are going to be selected for generating the
actions. In the following, we will identify the required rates so
that appropriate channel resolvability code design techniques
can be employed to generate the actions.

3) Identifying Codebook Rates (Task 1): Similar to the two-
hop setting, the allied action-generation problem is decom-
posed into h problems whose solutions will be pieced together
to form a solution for the allied action-generation problem.
Consider h problems illustrated in Fig. 10, and formally
defined below.

Definition 3: Problem 1 pertains to characterization of the
rates required for codebooks corresponding to auxiliary RVs
{Ai, j : (i, j) ∈ F}. Let a realization of the A codebooks be

fixed. Let M± ∼ unif

�

×
(i, j )∈F

M±
i, j

�

be used to select the

A-codewords, which are then transmitted through the DMC
QX1···Xh|A to obtain X̂n

1 , . . . , X̂n
h. Let �Q(1)

X̂n
1 ···X̂n

h M± denote the

induced joint pmf. Then,

�Q(1)
X̂n

1 ···X̂n
h

�
�

m±

Q⊗n
X1···Xh|A(·|An(m±))

2
n

�

(i, j)∈F
(μ+

i, j +μ−
i, j )

=
�

m±

Q⊗n
X1|A(·|An(m±))

h�

j=2

Q⊗n
X j X j−1|A(·|An(m±))

Q⊗n
X j−1|A(·|An(m±))

2
n

�

(i, j)∈F
(μ+

i, j +μ−
i, j )

(33)

denote the pmf of the output (X̂n
1 , . . . , X̂n

h) from the chan-
nel QX1···Xh|A when the codewords are selected from the
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codebooks uniformly at random. Problem 1 aims to derive
conditions on codebook rates {(μ+

i, j , μ
−
i, j )}(i, j )∈F such that:

lim
n→∞

�

E

	

DKL(�Q
(1)
X̂n

1 ···X̂n
h

� Q⊗n
X1···Xh

)


�

= 0, (34)

lim
n→∞

⎛

⎜
⎜
⎝

�

m−

E

	

DKL(�Q
(1)
X̂n

1 |M−(·|m−) � �Q(1)
X̂n

1
)




2
n

�

(i, j)∈F
μ−

i, j

⎞

⎟
⎟
⎠ = 0, (35)

where �Q(1)
X̂n

1 |M−(·|m−) is the conditional pmf of X̂n
1 given

M− = m−, and similar to (12), is given by

�Q(1)
X̂n

1 |M−(·|m̃−) �
�

m±:m−=m̃−

Q⊗n
X1|A(·|An(m±))

2
n

�

(i, j)∈F
μ+

i, j
.

�
As in the two-hop setting the first constraint concerns our goal
of generating actions that are statistically indistinguishable
from those of a DMS QX1···Xh , whereas the second is imposed
with the eventual goal of identifying M− � {M−

i, j }(i, j )∈F as
random indices extracted from the randomness common to all
nodes, which by the nature of the setup is independent of the
specified action. The following result provides conditions on
the A codebook rates that ensure that the two constraints of
Problem 1 are satisfied.

Theorem 1: Suppose that the finite-alphabet auxiliary RV2

codebooks are constructed using Steps B1-B5. For S � F , let
JS �

�
(i, j) : �(i, j) ∩ S �= ∅�. Then,

• (34) is met if for each S ⊆ F \ {(1,h)},
�

s∈F\S

(μ+
s + μ−

s ) > I


X1, . . . , Xh; AF\JS

�
. (36)

• (35) is met if for each S ⊆ F \ {(1,h)},
�

s∈F\S

μ+
s > I



X1; AF\JS

�
. (37)

Proof: See Appendix A.
The two conditions of the above theorem are the natural

multi-variable generalizations of the two-node coordination
capacity [3] (also see (4)). The first constraint prescribes a
minimum size for each of the codebooks, which appears as
a sum of row- and colum-rates for codebooks, whereas the
second condition prescribes the minimum row-rate for the
codebooks, or equivalently, the maximum binning possible for
each of the codebooks, since the column rates will be eventu-
ally interpreted as indices extracted from common randomness
as in the earlier two-hop setting. The theorem prescribes 2(

h
2)

rate conditions that need to be met for Problem 1, however,
as in the example below, many equations can be redundant.
In fact, the only non-trivial constraints correspond to those sets
S for which S = JS . When imagined pictorially using Fig. 9,

2If instead of a KL divergence requirement, our requirements were formu-
lated using variational distance between the corresponding distributions, we
could have used the techniques developed in [13] and [30] to establish the
result for general (i.e., not necessarily finite) auxiliary RV alphabets. However,
in this work, we restrict ourselves to RVs with finite alphabets.

the non-trivial constraints correspond to sets S for which there
is no edge from an element of Sc to an element of S.

Example 1: Consider the rate constraints imposed by (36)
for S = {(1, 3)}, {(1, 2), (1, 3)}, {(1, 3), (2, 3)} and
{(1, 2), (1, 3), (2, 3)} corresponding to h = 4. For each of
these choices for S, F \JS = {(1, 4), (2, 4), (3, 4)}, and there-
fore the RHS of the constraints imposed by (36) are identical.
However, the LHS terms differ, and of these 4 constraints,
only the one corresponding to S = {(1, 2), (1, 3), (2, 3)} is
non-trivial (i.e., the constraints corresponding to the remaining
three choices for S are redundant), and is given by

�
μ+

1,4 + μ−
1,4 + μ+

2,4

+μ−
2,4 + μ+

3,4 + μ−
3,4

�

> I ({Xi }4
i=1; {Ai,4}3

i=1).

�
Now that we have identified rate constraints that meet (34),

by invoking Pinsker’s and Jensen inequalities [28], [31], the
following result can be established.

Remark 3: When the rate constraints given by (36) are met,

lim
n→∞ E

�
�
�
�
�
��Q

(1)
X̂n

1 ···X̂n
h
− Q⊗n

X1···Xh

�
�
�
�
�
�
1

= lim
n→∞ E

�
�
�
�

�
�
�
�

�

m±

Q⊗n
X1···Xh|A(·|An(m±))

2

�

(i, j)∈F
n(μ+

i, j +μ−
i, j )

− Q⊗n
X1···Xh

�
�
�
�

�
�
�
�
1

(38)

= lim
n→∞ E

�
�
�
�

�
�
�
�

�

m±
Q⊗n

X1|A(·|An(m±))
h�

j=2

Q⊗n
X j X j−1|A(·|An(m±))

Q⊗n
X j−1|A(·|An (m±))

2
n

�

(i, j)∈F
(μ+

i, j +μ−
i, j )

− Q⊗n
X1···Xh

�
�
�
�

�
�
�
�
1

= 0, (39)

where the expectation is over only the A-codebooks. �
Thus, by choosing the A-codebook rates satisfying the

constraints of Theorem 1, we are guaranteed the existence of
codebooks using which we can generate the h actions. At this
point, it might seem that the generation of the h actions is
complete, and can proceed with identifying the indices used
for codeword selection with the appropriate resources, and
inverting the operation at Node 1. However, this is not the case
since our aim is to devise a scheme that generates the actions
in a distributed fashion (cf. Task 1 of Section IV, and Fig. 4).
We do not yet have distributed generation of actions, since
QX1,...,Xh|A does not decompose into h parallel channels, i.e.,

QX1,...,Xh|A = QX1|A

n�

i=2

QXi |A,Xi−1 �= QX1|A

n�

i=2

QXi |A.

In order to decompose the channel QX1,...,Xh|A into h parallel
channels, we need to use B- and C-codebooks, and we do that
via the following h − 1 subproblems.

Definition 4: For i = 2, . . . ,h, Problem i quantifies the
codebook rates correspon for auxiliary RVs B1,2, . . . , Bh−1,h
and C2, . . . ,Ch. Fix a realization of all codebooks,
i ∈ {2, . . . ,h}, and m± ∈ M±

F . Let (K ±
i−1, Li ) ∼

unif

K+

i−1 × K−
i−1 × Li

�
and the given m± be used to select

codewords An(m±), Bn
i−1,i (m

±, K ±
i−1) and Cn

i (m
±, K ±

i−1, Li ),
which are then transmitted over QXi−1 Xi |ABi−1,i Ci to obtain
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�Q(i,m±)
X̂n

i−1 X̂n
i
(·, ·) =

�

k±
i−1,li

Q⊗n
Xi−1 Xi |ABi−1,i Ci

(·, ·|An(m±), Bn
i−1,i (m

±, k±
i−1),Cn

i (m
±, k±

i−1, li ))

2n(κ+
i−1+κ−

i−1+λi )
. (40)

�Q(i,m±)
X̂n

i−1 |K −
i−1
(·|k−

i−1) =
�

k̃±
i−1 :k̃−

i−1=k−
i−1

Q⊗n
Xi−1|ABi−1,i

(·|An(m±), Bn
i−1,i (m

±, k̃±
i−1))

2nκ+
i−1

. (41)

lim
n→∞

�

m±

E

�
DKL

�
�Q(i,m±)

X̂n
i−1 X̂n

i

�
� Q⊗n

Xi−1 Xi |A


 · |An(m±)
�� 

2
n

�

(i, j)∈F
(μ+

i, j +μ−
i, j )

= 0. (42)

lim
n→∞

�

m±,k−
i−1

E

�
DKL

�
�Q(i,m±)

X̂n
i−1 |K −

i−1
(·|k−

i−1)
�
� Q⊗n

Xi−1 |A


 · |An(m±)
�� 

2
n

�

κ−
i−1+ �

(i, j)∈F
(μ+

i, j +μ−
i, j )

� = 0. (43)

X̂n
i−1 and X̂n

i . Let �Q(i,m±)
X̂n

i−1 X̂n
i K ±

i−1 Li
denote the induced joint

pmf of the indices used for codeword selection and the pair
of channel outputs, whose marginal corresponding of the
pair of channel outputs is given in (40) at the top of this
page. Since Xi−1 ↔ (A, Bi−1,i ) ↔ Ci , for i ∈ {2, . . . ,h},
m± ∈ M±

F and k−
i−1 ∈ K−

i−1, we can define a conditional

pmf �Q(i,m±)
X̂n

i−1 |K −
i−1
(·|k−

i−1) as in (41) at the top of this page. The

aim of Problem i , i = 2, . . . ,h, is to derive conditions on
κ+

i−1, κ
−
i−1, λi such that (42) and (43), are shown at the top of

this page, are met. �
Problem i , 2 ≤ i ≤ h, also poses two constraints, each

similar to the corresponding ones in Problem 1.
• The first constraint enables us to approximate the con-

ditional pmfs that appear within the product in (33) by
conditional pmfs in (40) derived from outputs of suitable
channel resolvability codes.

• The second constraint ensures for each m± the action
X̂n

i−1 generated by averaging over the Bi−1,i and Ci

codebooks is nearly independent of K −
i−1, which will

be needed when we transform the scheme for the allied
action-generation problem into a scheme for strong coor-
dination, at which time, K −

i−1 will be viewed as a part of
common randomness.

The following result characterizes sufficient conditions on the
codebook rates for (42) and (43) to hold.

Theorem 2: Fix i ∈ {2, . . . ,h}. Let the auxiliary RV code-
books be constructed using B1-B5. Then, (42) holds if the
rates are chosen such that

κ+
i−1 + κ−

i−1 + λi > I (Xi−1, Xi ; Bi−1,i ,Ci |A), (44a)

κ+
i−1 + κ−

i−1 > I (Xi−1, Xi ; Bi−1,i |A). (44b)

Further, (43) is met provided

κ+
i−1 > I (Xi−1; Bi−1,i |A). (45)

Proof: See Appendix B.
Analogous to Remark 3, an application of Pinsker’s and

Jensen inequalities to (42) yields the following.

Remark 4: When the rate constraints (44a) and (44b) are
met for each i = 2, . . . ,h,

lim
n→∞

�

m±
E

�
�
�
�
�
��Q

(i,m±)
X̂n

i−1 X̂n
i

− Q⊗n
Xi−1 Xi |A(·|An(m±))

�
�
�
�
�
�
1

2
n

�

(i, j)∈F
(μ+

i, j +μ−
i, j )

= 0, (46)

where �Q(i,m±)
X̂n

i−1 X̂n
i

is defined in (40). �
We are now ready to combine together the solutions for the

h problems to obtain a code for generating the h sources from
the auxiliary RVs via their codebooks.

4) A Solution for the Allied Action-generation Problem
(Task 1): We start with the following result that enables to
replace ideal conditional pmfs in the product term of (39)
with those obtained from channel resolvability codes using
the solutions to Problem i , i = 2, . . . ,h.

Lemma 3: For the random codebook construction given in
B1-B5, if the rate constraints given in Theorems 1 and 2 are
met, then, in addition to (39) and (46), the following also
holds.

�

xn
1 ,...,x

n
h

E

�
�
�
�

�

m±

Q⊗n
X1|A(x

n
1 |An(m±))

2
n

�

(i, j)∈F
(μ+

i, j +μ−
i, j )

h�

j=2

�Q( j,m±)
X̂n

j−1 X̂n
j
(xn

j−1, xn
j )

�Q( j,m±)
X̂n

j−1
(xn

j−1)

− Q⊗n
X1···Xh

(xn
1 , . . . , xn

h)

�
�
�
�

n→∞−→ 0. (47)

Proof: See Appendix C.
The key to devising a solution to the allied action-generation

problem lies in the summation term in (47). Let us take a closer
look at this term, since it actually yields a distributed solution
to the action-generation problem as detailed in Fig. 11. Sup-
pose that the codebooks for the auxiliary RVs are constructed
according to B1-B5. Let M± ∼ unif

�
M±

F
�

be used to select
codewords for A1,2, . . . , Ah−1,h from their codebooks. Then,

• The first term Q⊗n
X1|A(·|An(M±)) is the pmf of the output

when An(M±) is fed into DMC QX1|A. By (28), X1 ↔
(A1,2, . . . , A1,h) ↔ A. So, even though we use the
channel QX1|A, it is effectively QX1|A1,2,A1,3 ...,A1,h , and
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Fig. 11. A solution to the allied action-generation problem in the multi-hop setting.

only codewords {An
1, j (M

±) : j > 1} affect the output
and its distribution.

• Consider the product term in (47). From Fig. 10, we see

that the conditional pmf
�Q( j,m±)

X̂n
j−1 X̂n

j
(xn

j−1,x
n
j )

�Q( j,m±)
X̂n

j−1
(xn

j−1)
is achieved by:

(1) generating (K ±
j−1, L j ) ∼ �Q( j,m±)

K ±
j−1 L j |X̂n

j−1
(·, · | xn

j−1),

(2) selecting the A, B j−1, j , and C j codewords cor-
responding to m± and the realizations of (K ±

j−1, L j ),
and (3) transmitting the selected codewords through
QX j |A,B j−1, j ,C j to obtain X̂n

j . Notice from Fig. 10 that
L j is used only to determine the codeword for C j ,
and is independent of K ±

j−1 and X̂n
j−1. Thus, generating

(K ±
j−1, L j ) ∼ �Q( j,m±)

K ±
j−1 L j |X̂n

j−1
(·, · | xn

j−1) is the same as

generating K ±
j−1 ∼ �Q( j,m±)

K ±
j−1|X̂n

j−1
(· | xn

j−1) and indepen-

dently generating L j according to a uniform distribution.
Further, from the second constraint (43) enforced in
Problem j , we also ensure that K −

j−1 is nearly independent

of X̂n
j−1. Thus, generating K ±

j−1 ∼ �Q( j,m±)
K ±

j−1|X̂n
j−1
(· | xn

j−1)

is nearly the same as generating K −
j−1 independently

according to a uniform distribution, and then generating
K +

j−1 ∼ �Q( j,m±)
K +

j−1|X̂n
j−1,K

−
j−1

.

Combining the above facts, we see that

�

m±

Q⊗n
X1|A(x

n
1 |An(m±))

2
n

�

(i, j)∈F
(μ+

i, j +μ−
i, j )

h�

j=2

�Q( j,m±)
X̂n

j−1 X̂n
j
(xn

j−1, xn
j )

�Q( j,m±)
X̂n

j−1
(xn

j−1)

is the joint pmf of the h actions generated as in Fig. 11. In light
of Lemma 3 above, we then infer that the illustration in Fig. 11
is indeed a solution to the allied action-generation problem.
We are finally ready to state the achievable scheme for strong
coordination using that of the allied action-generation problem.

5) A Scheme for Strong Coordination and the Resources
Required (Task 2 and Task 3): Now that we have essentially
completed the design of a scheme that generates the h actions,
we are done with Task 1 described in Fig. 4. Before we present

the details of Task 2 of Fig. 4 that relates to identifying the
resources used for corresponding codebook rates, we detail
Task 3 that relates to inverting the operation at Node 1 to
generate the messages from the specified action. The strong
coordination scheme derived from the above action-generation
scheme is as follows.

C1 Pick a pmf meeting (28) with the additional constraint
that Ci = Xi for i > 1. Let {(μ+

i, j , μ
−
i, j ) : (i, j) ∈ F},

{(κ+
i , κ

−
i ) : 1 ≤ i < h}, and {λi : 1 < i ≤ h} satisfy

(36), (37), (44), and (45).
C2 Generate codebooks for {Ai, j }(i, j )∈F , {Bi,i+1}h−1

i=1 , and
{Ci }h

i=2 via Steps B1-B5.
C3 Generate an instance ({m−

i, j }(i, j )∈F , {k−
i }1≤i<h) of RVs

({M−
i, j }(i, j )∈F , {K −

i }1≤i<h) distributed according to

unif
� ×
(i, j )∈F

�1, 2nμ−
i, j � × ×

1≤�<h
�1, 2nκ−

� �

�

.

These RVs are assumed to be extracted from the com-
mon randomness available to all nodes.

C4 Generate an instance {m+
i, j : 2 ≤ i < j ≤ h} of

{M+
i, j }2≤i< j≤h ∼ unif

�

×
2≤i< j≤h

�1, 2nμ+
i, j �

�

. Random

index M+
i, j is assumed to be generated by Node i .

C5 Given Xn
1 = xn

1 , Node 1 uses the joint pmf of
(M±, X̂n

1 ) obtained from Problem1 to generate instances
(m+

1,2,m+
1,3, . . . ,m+

1,h) of (M+
1,2,M+

1,3, . . . ,M+
1,h) dis-

tributed according to

�Q(1)
M+

1,2 M+
1,3···M+

1,h|X̂n
1 M−

1,2 M−
1,3···M−

1,h
(·|xn

1 ,m−
1,2, . . . ,m−

1,h).

Let m± be the instance of the realized and generated
indices in Steps C3-C5.

C6 For i = 2, . . . ,h − 1, repeat the following four steps in
the given order, and for increasing i .

C7 Using the joint pmf obtained from Problem i +1, Node i
generates a realization k+

i of K +
i ∈ �1, 2nκ+

i � such that

K +
i ∼ �Q(i+1,m±)

K +
i |X̂n

i ,M
±,K −

i
(·|x̂ n

i , k−
i ).

C8 Node i forwards {m+
i �, j � : i � ≤ i < j �}, and k+

i to
Node i + 1.
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C9 Node i + 1 generates realization li+1 of Li+1 ∼
unif(�1, 2nλi+1 �) independent of all other RVs.

C10 Declare X̂n
i+1 � Cn

i+1(m
±, k+

i , k−
i , li+1).

What remains now is the task of associating the rates of the
various indices to that of the resources (i.e., communication
rates, and (local and common) randomness rates), which is
Task 2 as described in Fig. 4. Note that this association
requires the identification of the resource required to realize
Steps C3, C4, C5, C7, C8, and C9, and depends on the
mode of intermediate node operation illustrated in Fig. 2. This
association for each mode is as follows.

a) Unrestricted mode: In this mode, the following asso-
ciations are allowable.

• Communication Rate: Step C8 quantifies the transmission
by all nodes. For 1 ≤ i < h, Node i communicates
{M+

i � , j � : i � ≤ i < j �}, and K +
i to Node i + 1.

Thus,

Ri ≥ κ+
i +

�

(i �, j �)∈�(i)
μ+

i �, j �, 1 ≤ i < h. (48)

• Common randomness: Common randomness is needed
only to identify {M−

i, j : (i, j) ∈ F} and {K −
i : 1 ≤ i < h}

in Step C3, and hence, we require

Rc ≥ (κ−
1 + · · · + κ−

h−1)+
�

(i, j )∈F
μ−

i, j . (49)

• Local randomness at Node 1: At Node 1, we need to use
local randomness at Steps C5 and C7 to generate indices
M+

1,2, . . . ,M+
1,h and K +

1 so as to select A1,2, . . . , A1,h
and B1,2 codewords using the given realization of Xn

1 ,
and available common randomness. Using Theorem 6
of Appendix D, we can identify the amount of local
randomness needed to generate these indices to be

ρ1 ≥ κ+
1 − I (X1; A1,2, . . . , A1,h, B1,2)+

h�

j=2

μ+
1, j .

(50)

• Local randomness at intermediate Nodes: For 2 ≤ i < h,
the local randomness at Node i serves three purposes:
(1) to select messages {M+

i, j : j > i} at Step C4, which
requires a rate of μ+

i, j ; (2) to generate K +
i at Step C7,

which by Theorem 7 of Appendix E, requires a rate of
κ+

i − I (Xi ; Bi,i+1|A); and lastly, (3) to generate Li at
Step C9 for use in generating the Node i ’s action, which
requires a rate λi . Thus, for 1 < � < h,

ρ� ≥ 

κ+
� − I (X�; B�,�+1|A)

� + λ� +
h�

j=�+1

μ+
�, j . (51)

• Local randomness intermediate Node h: Local ran-
domness ρh is only needed to generate Lh at
Step C9 to output action X̂n

h at Step C10.
Thus,

ρh ≥ λh. (52)

b) Functional mode: In this mode, local randomness at
a node other than Node 1 can only be used to generate the
node’s actions. This imposes two constraints specific to this
mode.

1. From Step C8 we see that for 1 ≤ i < h, Node i
transmits {M+

i � , j � : i � ≤ i < j �}, and K +
i to Node

i + 1. For i > 1, K +
i is selected based on the action

for Node i (see (28) and Step C7), which can depend on
the local randomness of Node i . Hence, for i > 1, K +

i
can depend on the local randomness of Node i . Since
in this mode, communicated messages cannot depend on
local randomness of intermediate nodes, we must require

H (Bi,i+1) = κ+
i = κ−

i = 0, i > 1. (53)

Further, B1,2 can be absorbed into A1,2 since both are
generated using Node 1’s actions. Thus, without loss of
generality, we can assume that (53) holds for i = 1 as
well.

2. Random indices {M+
i, j : (i, j) ∈ F} in Step C4 must

be selected using either the incoming message or the
common randomness. Hence, for any i > 1, it must
be true that Node i − 1 is also aware of M+

i, j . Thus,
Node i − 1 is also aware of the exact the chosen Ai, j

codeword. Proceeding inductively, we can argue that
Node 1 must be aware of the Ai, j codeword. Thus,
for i > 1 and for each j = 3, . . . ,h, we can embed
auxiliary RVs A2, j , . . . , A j−1, j into auxiliary RV A1, j

without affecting the communication, local randomness
or common randomness requirements. Thus,

H (Ai, j ) = μ+
i, j = μ−

i, j = 0, 2 < i < j. (54)

Incorporating these two conditions, we obtain the following
resource requirements for this mode.

Ri ≥ μ+
1,i+1 + · · · + μ+

1,h, 1 ≤ i < h, (55a)

Rc ≥ μ−
1,i+1 + · · · + μ−

1,h, (55b)

ρ� ≥

⎧
⎪⎨

⎪⎩

h�

j=2
μ+

1, j − I (X1; A1,2, . . . , A1,h) � = 1

λ� � > 1.

(55c)

c) Action-dependent mode: As in the case of the func-
tional mode, two conditions specific to the action-dependent
mode arise due to the restrictions intermediate node operation.

• Just as in the functional mode, here too it can be shown
that auxiliary RVs A2,3, . . . , Ah−1,h can be absorbed
into auxiliary RVs A1,2, . . . , A1,h. Thus, without loss of
generality, we may assume that

H (Ai, j ) = μ+
i, j = μ−

i, j = 0, 2 < i < j. (56)

• Since an intermediate node’s local randomness cannot
be used to generate the next-hop messages (see Fig. 2),
the randomness required to implement Step C7 must
be extracted from either the incoming message and the
common randomness. Proceeding inductively, we can
infer that the randomness usable from the incoming
message must indeed originate from Node 1 and must
be communicated in a hop-by-hop fashion. Thus, for
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i = 1, . . . ,h − 1, the link between Node i and Node
i + 1 must be used to communicate {M+

1,� : � > i}, K +
i ,

and the randomness required for selecting {K +
� : � > i}

at Step C7 for all downstream nodes.
Piecing together these requirements, we obtain the following
resource requirements. For 1 ≤ i < h,

Rc ≥
h�

k=2

μ−
1,k +

h−1�

�=1

κ−
� , (57a)

Ri ≥ κ+
i +

h�

k=i+1

μ+
1,k +

h−1�

�=i+1

(κ+
� − I (X�; B�,�+1|A)), (57b)

ρ1 ≥

⎛

⎜
⎜
⎜
⎝

h�

j=2
μ+

1, j − I (X1; A1,2, . . . , A1,h)

+
h−1�

�=1
(κ+
� − I (X�; B�,�+1|A))

⎞

⎟
⎟
⎟
⎠
, (57c)

ρ� ≥ λ�, � > 1. (57d)

6) Inner Bound: Now that we have completed the three
steps, the general inner bound to the capacity region achievable
only by schemes in the (a) functional mode is given by
the conditions in (55) along with the rate-transfer arguments
allowed by Lemma 2; (b) action-dependent mode is given by
the conditions in (57) along with the rate-transfer arguments
allowed by Lemma 2; and (c) in the unrestricted mode is given
by the conditions in (48)-(52) along with the rate-transfer
arguments allowed by Lemma 1. In each mode, the codebook
parameters must also satisfy (36), (37), (44), and (45).

V. CAPACITY REGIONS

In this section, we derive outer bounds for specific settings
that establish the optimality of previously derived achievable
scheme i.e., the trade-offs achieved by proposed scheme
cannot be surpassed/improved by any other scheme.

A. Functional-Mode Capacity Region

We begin this section with the capacity result characterizing
the trade-offs among network resources to establish strong
coordination using exclusively the functional mode of inter-
mediate node operation.

Theorem 3: A rate point (Rc,R1, . . . ,Rh−1, ρ1, . . . , ρh) is
achievable with the functional mode if and only if there exist
auxiliary RVs Z2, . . . , Zh jointly correlated with the actions
according to pmf QX1,...,Xh,Z2,Z3,...,Zh such that:

1. QX1,...,Xh = QX1,...,Xh ;

2. QX1,...,Xh,Z2,Z3,...,Zh = QX1,Z2,Z3,...,Zh

h�

�=2
QX�|Z�,...,Zh ;

and
3. for 1 ≤ i < h, S ⊆ {i + 1, . . . ,h}, and T ⊆ {2, . . . ,h},

Ri ≥ I (X1; Zi+1, . . . , Zh),

Rc + Ri +
�

s∈S

ρs ≥ I (X1, . . . , Xh; X S, Zi+1, . . . , Zh),

Rc +
�

s∈T∪{1}
ρs ≥ I (X2, . . . , Xh; Z2, . . . , Zh, XT |X1),

Proof: We begin with the achievability part. Given
QX1···Xh Z2 Z3···Zh , consider the achievable scheme of
Section IV-B with the following choices:

Ai, j � constant, 1 < i < j ≤ h, (58a)

Bi,i+1 � constant, 1 ≤ i < h, (58b)

A1,� � Z�, 1 < � < h, (58c)

C� � X�, 1 < � < h, (58d)

λ� � H (X�|Z2, . . . , Zh), 1 < � < h. (58e)

For the above choice of auxiliary variables, note that the
decomposition in condition 2 of Theorem 3 is in accordance
with the joint pmf structure in (28). Using the above assign-
ments and constraints in (55) for the functional setting, we see
that the following rate region is achievable.

Rc ≥ μ−
1,2 + . . .+ μ−

1,h,

Ri ≥ μ+
1,i+1 + . . .+ μ+

1,h, 1 ≤ i < h,

ρi ≥
%
μ+

1,2 + . . .+ μ+
1,h − I (X1; Z2, . . . , Zh) i = 1

H (Xi |Zi , . . . , Zh) i > 1,

where the code parameters μ+
1,2, . . . , μ

+
1,h, μ

−
1,2, . . . , μ

−
1,h can

take non-negative values satisfying the following conditions
derived in Theorems 1 and 2:

h�

k=i

(μ+
1,i + μ−

1,i ) ≥ I (X1, . . . , Xh; Zi , . . . , Zh), 1 < i ≤ h,

h�

k=i

μ+
1,i ≥ I (X1; Zi , . . . , Zh), 1 < i ≤ h.

Now, applying the rate-transfer arguments in Lemma 2 to the
above region, we see that the achievable region includes the
following region.

Rc ≥ μ−
1,2 + . . .+ μ−

1,h + δ1 + . . .+ δh,

Ri ≥
h�

k=i+1

(μ+
1,k + εk), 1 ≤ i < h,

ρ1 ≥
h�

k=2

(μ+
1,k + εk)− I (X1; Z2, . . . , Zh)− δ1,

ρi ≥ H (Xi |Zi , . . . , Zh)− δi − εi , 1 < i ≤ h,

h�

k=i

(μ+
1,i + μ−

1,i) ≥ I (X1, . . . , Xh; Zi , . . . , Zh), 1 < i ≤ h,

h�

k=i

μ+
1,i ≥ I (X1; Zi , . . . , Zh), 1 < i ≤ h,

where in addition to the non-negativity constraints of the code
parameters, we also impose

δ j ≥ 0, 1 ≤ j ≤ h,

ε j ≥ 0, 1 < j ≤ h.
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In the above, δi denotes the portion of common randomness
that is used only by Node i as its local randomness (see the
first rate-transfer condition of Lemma 2), and εi denotes the
portion of local randomness of Node 1 that is communicated
to Node i to be used as its local randomness (see the second
rate-transfer condition of Lemma 2). Finally, an application
of Fourier-Motzkin elimination [28, Appendix D] to dispose
of the code and rate-transfer parameters yields the required
result.

Now, for the converse part, suppose that rate tuple
R � (Rc,R1, . . . ,Rh−1, ρ1, ρ2, . . . , ρh) is achievable. Fix
ε > 0 and an ε-code of length n operating at R that outputs
X̂n

i at Node i , i > 1. Then,
�
�
�
�Q⊗n

X1
QX̂n

2 ···X̂n
h|Xn

1
− Q⊗n

X1···Xh

�
�
�
�
1 ≤ ε. (61)

For notational ease, denote X̂n
1 � Xn

1 . Since (61) holds,
we infer from [16, Sec. V. A] that for any S ⊆ {1, . . . ,h}
and i ∈ {1, . . . ,h},

H ({X̂n
j } j∈S) ≥

n�

k=1

H ({X̂ j,k} j∈S)− nδ�n,ε, (62)

H ({X̂n
j } j∈S|X̂n

i ) ≥
n�

k=1

H ({X̂ j,k} j∈S|X̂i,k)− nδ�n,ε, (63)

for some δ�n,ε → 0 as ε → 0. Then, for any i ∈ �1,h − 1�,

nRi ≥ H (Ii) ≥ H (Ii |Mc)

≥ I (X̂n
1 ; Ii |Mc)

(a)= I (X̂n
1 ; Ii , . . . , Ih−1|Mc)

(b)= I (X̂n
1 ; Mc, Ii , . . . , Ih−1)

(c)=
n�

k=1

I (X̂1,k; Mc, {I j }h−1
j=i , X̂ k−1

1 )

(d)=
n�

k=1

I (X̂1,k; {Z j,k}h
j=i+1)

(e)= nI


X̂1,U ; {Z j,U }h

j=i+1 | U
�

(f)= nI


X̂1,U ; {Z∆

j }h
j=i+1

�
,

where
(a) follows from the fact that in functional mode, local ran-

domness at intermediate nodes is not used for generating
next-hop messages. Hence, Ik+1 is a function of only Mc

and Ik for any k > 1.
(b) because X̂n

1 = Xn
1 , and Mc are independent;

(c) because X̂n
1 = Xn

1 is i.i.d.;
(d) by defining Z j,k � (Mc, I j−1, X̂ k−1

1 ) for 2 ≤ j ≤ h and
1 ≤ k ≤ n;

(e) by defining time-sharing RV U ∼ unif(�1, n�); and
( f ) by setting Z∆

j � (U, Z j,U ) for 2 ≤ j ≤ h, and since

X̂1,U and U are independent.
Lastly, we need to ensure that

X̂1,U ↔ {Z∆
k }h

k=2 ↔ (X̂2,U , . . . , X̂h,U ), (64)

and for 1 < i ≤ h,

X̂i,U ↔ {Z∆
k }h

k=i ↔ ({Z∆
j }i−1

j=2, {X̂ j,U : j �= i}). (65)

To do that, note that

0
(a)= I (X̂n

1 ,Mc,ML1; ML2, . . . ,MLh)

(b)= I (X̂n
1 ,Mc,ML1, I1, . . . , Ih−1; ML2, . . . ,MLh)

≥ I (X̂n
1 ; {ML�}h

�=2|Mc, I1, . . . , Ih−1)

=
n�

k=1

I (X1,k ; {ML�}h
�=2|Mc, I1, . . . , Ih−1, X̂ k−1

1 )

(c)=
n�

k=1

I (X̂1,k ; {ML�, X̂n
� }h
�=2|Mc, {I�}h−1

�=1 , X̂ k−1
1 )

≥
n�

k=1

I (X̂1,k ; X̂2,k, . . . , X̂h,k |Mc, {I�}h−1
�=1 , X̂ k−1

1 )

= nI (X̂1,U ; X̂2,U , . . . , X̂h,U |{Z∆
k }h

k=2),

where in (a) we use the independence of the local randomness
of Nodes 1, . . .h, common randomness shared by all nodes,
and the action specified at Node 1; in (b) we use the fact that I1
is a function of (Mc,ML1, X̂n

1 ), and for any k = 1, . . . ,h − 2,
Ik+1 is a function of (Mc, Ik) (and by induction, a function of
Mc, ML1 , and X̂n

1 ) in the functional mode; and in (c) we use
the fact that X̂n

j is a function of (Mc,ML j , I j−1) for j > 1.
Similarly, for i > 1 and k ∈ {1, . . . , n},

0 = I (MLi ; Mc, {ML�}i−1
�=1, {ML�}h

�=i+1, X̂n
1 )

(a)≥ I (MLi ; Mc, {I�}h−1
�=1 ,ML1, X̂ k−1

1 , {X̂ j,k : j �= i})
≥ I (MLi ; {I�}i−2

�=1, {X̂ j,k : j �= i} | Mc, {I�}h−1
�=i−1, X̂ k−1

1 )

(b)≥ I (X̂i,k ; {I�}i−2
�=1, {X̂ j,k : j �= i} | Mc, {I�}h−1

�=i−1, X̂ k−1
1 ),

where in (a) we first use: (i) for j ≥ 1, I j is a function of
(Mc,ML1 , X̂n

1 ) in the functional mode, and (ii) X̂n
j is a function

of (Mc, I j−1,ML j ) for j > 1, and then drop appropriate
terms from the mutual information term. Similarly, in (b),
we introduce X̂i,k since it is a function of (Mc, Ii−1,MLi ),
and then drop MLi . Finally, summing over all k yields
I (X̂i,U ; {Z∆

j }i−1
j=2, {X̂ j,U : j �= i} | {Z∆

k }h
k=i ) = 0 for i > 1,

and consequently, the chain in (65).
Next, pick i ∈ {1, . . . ,h − 1} and subset S ⊆ �i + 1,h�.

Now, consider (66)-(67) shown at the top of the next page,
where
(a) follows due to functional mode of operation, and because

H (X̂n
j |Mc, I j−1,ML j ) = 0 for j > 1;

(b) follows by dropping {MLs }s∈S from the mutual informa-
tion term;

(c) uses the chain rule, and then (62) to get rid of the
conditioning;

(d) follows by introducing the uniform time-sharing RV U ;
and lastly,

(e) follows by defining δ��n,ε � δ�n,ε + I ({X̂�,U }h
�=1; U), and

by noting that (61) ensures that (X̂n
1 , . . . , X̂n

h) are nearly
i.i.d., we can invoke [16, eq. (5)] to infer

I (X̂1,U , . . . , X̂1,U ; U)
ε→0−→ 0. (70)
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n


Rc + Ri +

�

s∈S

ρs
� ≥ H (Mc, Ii , {MLs }s∈S) (66)

(a)= H (Mc, Ii , . . . , Ih−1, {MLs }s∈S{X̂n
s }s∈S)

≥ I (X̂n
1 , . . . , X̂n

h; Mc, Ii , . . . , Ih−1, {MLs }s∈S, {X̂n
s }s∈S)

(b)≥ I (X̂n
1 , . . . , X̂n

h; Mc, Ii , . . . , Ih−1, {X̂n
s }s∈S)

(c)≥
n�

k=1

I

{X̂�,k}h

�=1; Mc, Ii , . . . , Ih−1, {X̂ k−1
� }h

�=1, {X̂n
s }s∈S

� − nδ�n,ε

≥
n�

k=1

I

{X̂�,k}h

�=1; {Z j,k}h
j=i+1, {X̂s,i}s∈S

� − nδ�n,ε

(d)= nI

{X̂�,U }h

�=1; {Z j,U }h
j=i+1, {X̂s,U }s∈S | U

� − nδ�n,ε
(e)≥ nI


{X̂�,U }h
�=1; {Z∆

j }h
j=i+1, {X̂s,U }s∈S

� − nδ��n,ε. (67)

n


Rc + ρ1 +

�

s∈S

ρs
� ≥ H (Mc,ML1{MLs }s∈S) (68)

≥ I (X̂n
1 , . . . , X̂n

h; Mc,ML1{MLs }s∈S)

(a)= I ({X̂n
� }h
�=2; Mc,ML1, {MLs }s∈S|X̂n

1 )

(b)= I ({X̂n
� }h
�=2; Mc,ML1, {MLs }s∈S, {I�}h−1

�=1 |X̂n
1 )

(c)= I ({X̂n
� }h
�=2; Mc,ML1, {MLs }s∈S, {I�}h−1

�=1 , {X̂n
s }s∈S|X̂n

1 )

(d)≥
n�

k=1

I ({X̂�,k}h
�=2; Mc,ML1 , {I�}h−1

�=1 , {X̂n
s }s∈S, {X̂ k−1

� }h
�=1, X̂n

1 |X̂1,k)− nδ�n,ε

≥
n�

k=1

I ({X̂�,k}h
�=1; Mc, {I�}h−1

�=1 , {X̂s,k}s∈S, X̂ k−1
1 |X̂1,k)− nδ�n,ε

(e)≥
n�

k=1

I ({X̂�,k}h
�=1; {Z j,k}h

j=2, {X̂n
s,k}s∈S|X̂1,k)− nδ�n,ε

( f )≥ nI ({X̂�,U }h
�=1; {Z j,U }h

j=2, {X̂n
s,U }s∈S|X̂1,U ,U)− nδ�n,ε

(g)≥ nI ({X̂�,U }h
�=1; {Z∆

j }h
j=2, {X̂n

s,U }s∈S|X̂1,U )− nδ̃n,ε, (69)

Next, for S ⊆ {2, . . . ,h}, consider (68)-(69) shown at the top
of this page, where
(a) follows because common and local randomness are inde-

pendent of the action specified at Node 1;
(b) holds since H (I1| Mc,ML1, X̂n

1 ) = 0, and due to the
functional mode of operation at other nodes;

(c) follows because H (X̂n
j |Mc,ML j , I j−1) = 0 for j > 1;

(d) uses the chain rule, then drops {MLs }s∈S , and lastly
employs (63) to get rid of the conditioning;

(e) follows by introducing the auxiliary RVs defined earlier;
( f ) follows by introducing the uniform time-sharing RV U ;

and lastly,
(g) follows by defining δ̃n,ε � δ�n,ε + I ({X̂�,U }h

�=1; U |X̂1,U ),
and from (70), we see that

I ({X̂�,U }h
�=1; U |X̂1,U ) ≤ I ({X̂�,U }h

�=1; U)
ε→0−→ 0. (71)

Lastly, since we have the correct structure for the auxil-
iary RVs, we can just as in [3], restrict their cardinalities
using Carathéodory’s theorem. The proof is then complete by
limiting ε → 0, by invoking the continuity of the information

functional, the compactness of the space of joint pmfs of the
actions and the auxiliary RVs, and from the facts that δ��n,ε → 0
and δ̃n,ε → 0.

Remark 5: Unlike usual source-coding outer-bound proofs,
the joint pmf of (X̂1,U , . . . , X̂h,U ) depends on ε. However,�
�
�
�QX̂1,U ,...,X̂h,U

− QX1···Xh

�
�
�
�
1 → 0 as ε → 0. �

The above result automatically yields the trade-offs between
common randomness rate and communication rates when local
randomness is absent at Nodes 2, . . . ,h, since in this case,
intermediate nodes can only operate in is the functional mode.
In this case, Theorem 3 yields the following.

Remark 6: When ρ2 = · · · = ρh = 0, the trade-offs
between common randomness rate and the rates of communi-
cation are given by:

R� ≥ I (X1; X�+1, . . . , Xh), 1 ≤ � < h, (72a)

Rc + R� ≥ H (X�+1, . . . , Xh), 1 ≤ � < h, (72b)

Rc + ρ1 ≥ H (X2, . . . , Xh|X1). (72c)

�
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We conclude this section with the following result that
argues that when the common randomness shared by all the
nodes is sufficiently large, it is sufficient to focus on strong
coordination schemes where intermediate nodes operate in the
functional mode. Hence, the trade-offs defined by Theorem 3
approximate the strong coordination capacity region at large
rates of common randomness.

Theorem 4: Suppose that the rate of common randomness
available to all nodes is large, i.e., Rc > H (X2, . . . , Xh|X1).
Then, the requirements for local randomness rates and com-
munication rates are decoupled, and are given by:

ρi ≥ 0, i = 1, . . . ,h, (73a)

Ri ≥ I (X1; Xi+1, . . . , Xh), i = 1, . . . ,h − 1. (73b)

Further, in this regime, it suffices to focus on functional
schemes alone.

Proof: For the achievability, consider the functional
scheme of Theorem 3 with the following choices:

A1,i = Xi , i = 2, . . . ,h, (74a)

μ+
1,i =

%
I (X1; Xi |Xi+1, . . . , Xh), 1 < i < h

I (X1; Xh), i = h,
(74b)

μ−
1,i = H (Xi |Xi+1, . . . , Xh, X1), i = 2, . . . ,h. (74c)

From (55), we see that the least rate of common random-
ness required for this achievable scheme is

�h
i=2 μ

−
1,i =

H (X2, . . . , Xh|X1), and the communication rate between
Node i and Node i + 1 is I (X1; Xi+1, . . . , Xh). Further, for
this choice, we do not require Nodes 1, . . . ,h to possess any
local randomness, thus establishing the achievability of the
region claimed.

The optimality of this scheme is evident from the cut-set
argument that for 1 ≤ i < h, the rate between Node i and
Node i + 1 can be no smaller than the smallest rate in a one-
hop network where the first node is specified the action Xn

1
and the second node requires the action (Xn

i+1, . . . , Xn
h). For

the one-hop network, the smallest rate of communication is
I (X1; Xi+1, . . . , Xh) [3, Th. 10].

B. Markov Actions

In this part, we investigate the case where the h actions
form a Markov chain that is aligned with the network
topology, i.e.,

X1 ↔ X2 ↔ · · · ↔ Xh−1 ↔ Xh. (75)

For this specific class of actions, while we do not have a
complete characterization of the optimal trade-offs among
the common and local randomness at various nodes and
the communication rates on the links, we derive two partial
characterizations that correspond to the two extreme cases of
common randomness rates. More specifically, we quantify the
required rates of local randomness and the communication
rates on each link of the network when:

(a) common randomness is sufficiently large, i.e., Rc >
H (X2, . . . , Xh|X1); and

(b) common randomness is absent;

The first setting when the common randomness is sufficiently
large is a direct consequence of Theorem 4, and the corre-
sponding result for Markov actions is as follows.

Remark 7: The requirements on local randomness rates and
communication rates when the rate of common randomness
Rc > H (X2, . . . , Xh|X1) are given by:

ρi ≥ 0, i = 1, . . . ,h, (76a)

Ri ≥ I (X1; Xi+1), i = 1, . . . ,h − 1. (76b)

Further, it suffices to use functional schemes to achieve the
above lower bounds. �

The following is the main result of this section
that quantifies the trade-offs in the absence of common
randomness.

Theorem 5: Strong coordination is achievable at local
randomness rates (ρ1, . . . , ρh) and communication rates
(R1, . . . ,Rh−1) and zero common randomness rate (i.e., in the
absence of common randomness) provided there exist auxiliary
RVs Z1, . . . , Zh−1 such that

X1 ↔ Z1 ↔ X2 ↔ Z2 ↔ · · · ↔ Xh−1 ↔ Zh−1 ↔ Xh,

and for each 1 ≤ i ≤ j ≤ h,

Ri +
j�

k=i+1

ρk ≥
	

H ({X�} j
�=i+1|Xi )+ I (Xi ; Zi)

+ I (X j+1; Z j |X j )




, (77a)

j�

k=1

ρk ≥ H ({X�} j
�=2|X1)+ I (X j+1; Z j |X j ). (77b)

Note that in (77), Xh+1 and Zh are viewed as constant RVs.
Proof: For the achievable part of the proof, pick

QX1,...,Xh,Z1,...,Zh−1 such that the above Markov chain holds,
and QX1,...,Xh = QX1,...,Xh . To build a code using this joint
pmf, we adapt the code design of Section IV-B with the
following assignments:

Ai, j � constant, 1 ≤ i < j ≤ h, (78a)

Bi,i+1 � Zi , 1 ≤ i < h, (78b)

Ci � Xi , 1 < i ≤ h. (78c)

such that the joint pmf of actions and the auxiliary RVs
are:

QX1 QB1,2|X1

h�

j=2



QC j |B j−1, j QX j |B j−1, j C j QB j, j+1|X j

�
,

with QX1,...,Xh = QX1,...,Xh . Note that this assignment meets
the decomposition specified in (28). Now, from the analysis
in Section IV-B, and specifically from Theorem 2 we see that
we can build a strong coordination code with the following
codebook parameters.

(μ+
i, j , μ

−
i, j ) � (0, 0), 1 ≤ i < j ≤ h,

(κ+
i , κ

−
i ) �



I (Xi Xi+1; Bi,i+1), 0

�
, 1 ≤ i < h,

λi � I (Xi−1 Xi ; Ci |Bi−1,i ), 1 < i ≤ h.

Now, using the assignments (for the unrestricted mode of
intermediate-node operation) in Section IV-B5, we infer that
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a code can be built with the following common, local and
communication rates.

Rc � 0,

ρ j �

⎧
⎪⎨

⎪⎩

I (X2; Z1|X1), j = 1

I (X j+1; Z j |X j )+ H (X j |Z j−1), 1 < j < h
H (Xh|Zh−1), j = h,

R j � I (X j , X j+1; Z j ), 1 ≤ j < h.

Since the rate-transfer from ρ j to ρ j−1 is allowable by
communicating local randomness from Node j − 1 to Node j
(Lemma 1), we see that the following randomness and com-
munication rates also suffice to achieve strong coordination.

Rc � 0,

ρ j �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I (X2; Z1|X1)+ δ2, j = 1�
I (X j+1; Z j |X j )

+ H (X j |Z j−1)− δ j + δ j+1

 
,

1 < j < h

H (Xh|Zh−1)− δ j , j = h,

R j � I (X j , X j+1; Z j )+ δ j , 1 ≤ j < h,

where the rate-transfer variables δi ’s are subject to
non-negativity constraints. An application of Fourier-Motzkin
elimination to dispose of the rate-transfer variables yields the
requisite rate region.

Now, to prove the converse, suppose that there exists a
scheme requiring a local randomness rate of ρi at Node i
and a communication rate of Ri from Node i to Node i + 1
such that the joint pmf of the actions satisfies

�
�
�
�QX̂n

1 ···X̂n
h

− Q⊗n
X1···Xh

�
�
�
�
1 ≤ ε, (84)

where X̂n
1 = Xn

1 is the action specified at Node 1. Then, for
any 1 ≤ j < h, the argument in (81)-(82) shown at the top of
the next page holds, where
(a) follows because I1 is a function of (X̂n

1 ,ML1) in the
absence of common randomness, and for i = 2, . . . , j ,
I j is a function of I j−1 and ML j ;

(b) follows from two steps: 1) introducing action vari-
ables {X̂�,k} j

�=2, since they are functions of {I�} j−1
l=1 and

{ML�} j
�=2; and then 2) by dropping {ML�} j

�=2;
(c) follows from (63), since the actions are nearly i.i.d.;
(d) by defining Y j � I j ;
(e) by introducing a time-sharing variable U that is uniform

over {1, . . . , n};
( f ) from by setting Ȳ j � (Y j ,U) and defining

δ̃n,ε � δ�n,ε + I (X̂2,U , . . . , X̂h,U ; U |X1,U ), (85)

which due to (71), is guaranteed to vanish as we let
ε → 0; and finally,

(g) follows by defining for j = 1, . . . ,h − 1,

δ̄ j,n,ε � δ̃n,ε + I (X̂ j+1,U ; {X̂�,U } j−1
�=1 |X̂ j,U ), (86)

which, due to the Markovity of the actions (75) and
Remark 5, is also guaranteed to vanish as ε → 0.

While this establishes (77b) for j < h, the argument for j = h
follows from the same argument by interpreting Ih, Xh+1, and
Yh to be constant RVs.

Now, to prove (77a), we proceed as follows. Let 1 ≤ i ≤
j < h. Then, the argument (87)-(88) shown at the top of the
page after next holds, where

(a) holds because Ik+1 is a function of (Ik,MLk+1) in the
absence of common randomness for any k ≥ 1.

(b) follows since X̂n
� is a function of (I�−1,ML� ) for � =

i + 1, . . . , j ;
(c) follows from a time-sharing argument with auxiliary RVs

{Ȳ j : 1 ≤ j < h} defined previously; and
(d) follows by the use of δ̄ j,n,ε defined in (86).

Also, as before, the proof of (77a) for j = h follows similarly
by by setting Ih, Xh+1, and Yh as constants.

We are left to establish the Markov condition to be met
by the actions and the auxiliary RVs. Note that the auxiliary
RVs as they are defined do not satisfy X1 ↔ Ȳ1 ↔ X2 ↔
· · · ↔ Ȳh−1 ↔ Xh. This is because our choice of the
auxiliary RV Ȳ j = I j ensures that we have conditional
independence of actions at adjacent nodes given the message
communicated over the hop connecting the two nodes (i.e.,
X j,U ↔ Ȳ j ↔ X j+1,U for all j = 1, . . . ,h− 1); however, we
are not guaranteed the conditional independence of messages
conveyed on adjacent hops conditioned on the action of the
node in-between (i.e., we do not have Ȳ j ↔ X j+1,U ↔ Ȳ j+1).
Note however that the information functionals in (77a) and
(77b) only contain one auxiliary RV. Hence, it is possible to
define a new set of auxiliary RVs that would both satisfy
the long chain in the claim and preserve the information
functionals. To do so, define RVs X̃k , k = 1, . . . ,h, and Z j ,
j = 1, . . . ,h − 1, such that their joint pmf is given by

QX̃1,...,X̃h
� QX̂1,U ,...,X̂h,U

,

QZ1,...,Zh−1|X̃1,...,X̃h
(z1, . . . , zh−1|x1, . . . , xh)

�
h−1�

j=1

QȲ j |X̂ j,U X̂ j+1,U
(z j |x j , x j+1).

Note that we have X̃1 ↔ Z1 ↔ X̃2 ↔ · · · ↔ Zh−1 ↔ X̃h,
and further for 1 ≤ i < j ≤ h,

H (X̃i+1, . . . , X̃ j |X̃i ) = H (X̂i+1,U , . . . , X̂ j,U |X̂i,U ),

I (X̃ j+1; Z j |X̃ j ) = I (X̂ j+1,U ; Ȳ j |X̂ j,U ),

I (X̃ j ; Z j ) = I (X̂ j,U ; Ȳ j ).

The proof is completed by bounding the sizes of the auxiliary
RVs {Z j }h−1

j=1, and then by letting ε → 0, which ensures
that QX̃1,...,X̃h

→ QX1,...,Xh , and that each infinitesimal δ̄ j,n,ε,
1 ≤ j < h vanishes.

We conclude this section on outer bounds with a short
discussion on the indispensability of auxiliary RVs {Ai, j :
(i, j) ∈ F} and {Bi,i+1 : i = 1, . . .h − 1}.
C. The Need for {Ai, j : (i, j) ∈ F} and {Bi,i+1 : 1 ≤ i < h}

So far in the capacity results derived above, we have always
set {Ai, j : (i, j) ∈ F} to be constant RVs. A natural question
then is: are these RVs are even useful? The following example
should establish the need for non-trivial choices for these
RVs. Suppose that U ∼ Bern(0.5) and V = U ⊕ Z , where
Z ∼ Bern(p) for some 0 < p < 0.5 independent of U .
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n
j�

k=1

ρk ≥ H (ML1, . . . ,ML j ) (81)

≥ H (ML1, . . . ,ML j |X̂n
1 )

≥ I ({X̂n
� } j+1
�=2; {ML�} j

�=1|X̂n
1 )

(a)≥ I ({X̂n
� } j+1
�=2; {I�} j

�=1, {ML�} j
�=1|X̂n

1 )

=
n�

k=1

I ({X̂n
�,k} j+1

�=2; {I�} j
�=1, {ML�} j

�=1 | X̂n
1 , {X̂ k−1

� } j+1
�=2)

(b)≥
n�

k=1

I ({X̂n
�,k} j+1

�=2; {I�} j
�=1, {X̂�,k} j

�=2 | X̂n
1 , {X̂ k−1

� } j+1
�=2)

(c)≥
n�

k=1

I ({X̂n
�,k} j+1

�=2; {I�} j
�=1, {X̂�,k} j

�=2, X̂n
1 , {X̂ k−1

� } j+1
�=2 |X̂1,k)− nδ�n,ε

≥
n�

k=1

I ({X̂n
�,k} j+1

�=2; I j , {X̂�,k} j
�=2|X̂1,k)− nδ�n,ε

(d)=
n�

k=1

I ({X̂n
�,k} j+1

�=2; Y j , {X̂�,k} j
�=2|X̂1,k)− nδ�n,ε

(e)= nI ({X̂n
�,U } j+1

�=2; Y j , {X̂�,U } j
�=2|X̂1,U ,U)− nδ�n,ε

( f )≥ nI ({X̂n
�,U } j+1

�=2; Ȳ j , {X̂�,U } j
�=2|X̂1,U )− nδ̃n,ε

= nH ({X̂n
�,U} j

�=2|X̂1,U )+ nI (X̂ j+1,U ; Ȳ j |{X̂n
�,U } j

�=1)− nδ̃n,ε

(g)= nH ({X̂n
�,U} j

�=2|X̂1,U )+ nI (X̂ j+1,U ; Ȳ j , {X̂n
�,U } j−1

�=1 |X̂ j,U )− nδ̄ j,n,ε

≥ nH ({X̂n
�,U} j

�=2|X̂1,U )+ nI (X̂ j+1,U ; Ȳ j |X̂ j,U )− nδ̄ j,n,ε, (82)

Consider a h = 5 setting where X1 = X3 = X5 = U and
X2 = X4 = V . Suppose that strong coordination is to be
achieved with no shared randomness, and no local randomness
at Node 1. From the general structure of the joint pmf of the
actions and the auxiliary RVs given in (28), we infer that the
following chains must hold.

X1 ↔ (A1,2, A1,3, A1,4, A1,5, B1,2) ↔ X5

X2 ↔ (A1,4, A1,5, A2,3, A2,4, A2,5, A3,4, A3,5, X3) ↔ X4

In the absence of any randomness at Node 1, the only non-
trivial choice for B1,2 and A1, j , j > 1, is U . Since X1 =
X5 = U , at least one of A1,2, A1,3, A1,4, A1,5, B1,2 must be
U . Further, since X2 = X4 = V ,

0 = H (V |A1,4, A1,5, A2,3, A2,4, A2,5, A3,4, A3,5, X3)

= H (U ⊕ Z | U, A2,3, A2,4, A2,5, A3,4, A3,5)

= H (Z | U, A2,3, A2,4, A2,5, A3,4, A3,5).

Since Z is independent of U , a non-trivial choice for
(A2,3, A2,4, A2,5, A3,4, A3,5) is a must. Though contrived, this
example illustrates that in some settings allowed by the prob-
lem formulation, we do require auxiliary RVs to be generated
at intermediate nodes to be non-trivial. It is straightforward to
extend this to arbitrary hop lengths and auxiliary RVs.

The auxiliary RVs {Ai, j : (i, j) ∈ F} have a seemingly
natural purpose: Node i uses Ai, j to coordinate its actions with

that of Node j . However, the need for {Bi,i+1 : 1 ≤ i < h}
is technical, and arises from the fact that not all joint pmfs
for {Ai, j : (i, j) ∈ F} can be realized via a scheme based
on channel resolvability codebooks. For example, their joint
pmf must satisfy the chains in (26). For simpilicity, let us
focus on the following setting. Let random variables V1 and
V2 be jointly correlated according to some QV1,V2 that has full
support and I (V1; V2) > 0. Let us focus on the h = 3 setting,
where: (a) actions X1 = V1, X2 = (V1, V2), and X3 = V2;
(b) common randomness is absent; and (c) the local random-
ness at each node is large, say ρi > H (V1, V2), i = 1, 2, 3.
Since, X1 ↔ X2 ↔ X3, the rates for communication required
for strong coordination as specified by Theorem 5 are

Ri ≥ H (Vi), i ∈ {1, 2}. (90)

An achievable code for the corner point of the above region
can be constructed by setting A1,2 = A1,3 = A2,3 = constant,
and by choosing B1,2 = X1 = V1 and B2,3 = V2 = X3. We
will now show that it is impossible to attain the corner point
(R1,R2) = (H (V1), H (V2)) by use of only A1,2, A1,3, A2,3.

Using the rate expressions for the unrestricted mode of
operation at Node 2 given in Section IV-B5, we see that we
can build a code with common randomness rate Rc = 0,
local randomness rates ρ1 = ρ2 = ρ3 = H (V1, V2), and
communication rates R1 = H (V1) and R2 = H (V2) with
only auxiliary RVs A1,2, A1,3, A2,3 if there exists a joint pmf
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nRi + n
j�

k=i+1

ρk ≥ H (Ii , {ML�} j
�=i+1) (87)

(a)≥ H ({I�} j
�=i , {ML�} j

�=i+1)

≥ I ({X̂n
� } j+1
�=i ; {I�} j

�=i , {ML�} j
�=i+1)

≥ I (X̂n
i ; {I�} j

�=i , {ML�} j
�=i+1)+ I ({X̂n

� } j+1
�=i+1; {I�} j

�=i , {ML�} j
�=i+1 | X̂n

i )

≥ I (X̂n
i ; Ii )+ I ({X̂n

� } j+1
�=i+1; {I�} j

�=i , {ML�} j
�=i+1 | X̂n

i )

(b)= I (X̂n
i ; Ii )+ I ({X̂n

� } j+1
�=i+1; {I�} j

�=i , {ML�} j
�=i+1, {X̂n

� } j
�=i+1 | X̂n

i )

≥ I (X̂n
i ; Ii )+ I ({X̂n

� } j+1
�=i+1; I j , {X̂n

� } j
�=i+1 | X̂n

i )

=
n�

k=1

�
I (X̂i,k ; Ii |X̂ k−1

i )+ I ({X̂�,k} j+1
�=i+1; I j , {X̂n

� } j
�=i+1 | X̂n

i , {X̂ k−1
� } j+1

�=i+1)
�

(62),(63)≥
n�

k=1

�
I (X̂i,k ; Ii )+ I ({X̂�,k} j+1

�=i+1; I j , {X̂�,k} j
�=i+1 | X̂i,k )

�
− 2nδ�n,ε

(c)≥ nI (X̂i,U ; Ȳi )+ nI ({X̂�,U } j+1
�=i+1; Ȳ j , {X̂�,U } j

�=i+1 | X̂i,U )− 2nδ̃n,ε

= nI (X̂i,U ; Ȳi )+ nH ({X̂�,U} j
�=i+1|X̂i,U )+ nI (X̂ j+1,U ; Ȳ j |{X̂�,U } j

�=i )− 2nδ̃n,ε,

(d)≥ n


I (X̂i,U ; Ȳi )+ H ({X̂�,U} j

�=i+1|X̂i,U )+ I (X̂ j+1,U ; Ȳ j , {X̂�,U } j−1
�=i |X̂ j,U )− 2δ̄ j,n,ε

�

≥ n


I (X̂i,U ; Ȳi )+ H ({X̂�,U} j

�=i+1|X̂i,U )+ I (X̂ j+1,U ; Ȳ j |X̂ j,U )− 2δ̄ j,n,ε
�
, (88)

QX1 X2 X3 A1,2,A1,3,A2,3 such that

A1,2 ↔ A1,3 ↔ A2,3, (91)

V1 = X1 ↔ (A1,2, A1,3) ↔ (X2, X3) = (V1, V2), (92)

V2 = X3 ↔ (A1,3, A2,3) ↔ (X1, X2) = (V1, V2). (93)

provided there exist codebook rates that satisfy the following
conditions imposed by the unrestricted mode of operation and
by Theorems 1 and 2, i.e,

Rc
(49)= μ−

1,2 + μ−
2,3 + μ−

1,3 = 0, (94a)

R1
(48)= μ+

1,2 + μ+
1,3 = H (V1), (94b)

R2
(48)= μ+

2,3 + μ+
1,3 = H (V2), (94c)

μ+
1,3 ≥ I (V1, V2; A1,3), (94d)

μ+
1,3 + μ+

1,2 ≥ I (V1, V2; A1,2, A1,3), (94e)

μ+
1,3 + μ+

2,3 ≥ I (V1, V2; A1,3, A2,3), (94f)

μ+
1,3 + μ+

1,2 + μ+
2,3 ≥ I (V1, V2; A1,2, A1,3, A2,3). (94g)

Then, it must be true that

I (V2; A1,3|V1) = 0, (95)

since

I (V2; A1,2 A1,3|V1) = I (V1, V2; A1,2 A1,3V1)− H (V1)
(92)= I (V1, V2; A1,2 A1,3)− H (V1)

(94b),(94e)≤ R1 − H (V1) = 0.

Similarly, I (V1; A1,3|V2) = 0, since

I (V1; A1,3 A2,3|V2) = I (V1, V2; A1,3 A2,3V2)− H (V2)
(93)= I (V1, V2; A1,3 A2,3)− H (V2)

(94c),(94f)≤ R2 − H (V2) = 0.

Thus, we have A1,3 ↔ V1 ↔ V2 and V1 ↔ V2 ↔ A1,3. Since
QV1,V2 has full support, it follows that for any (a1,3, v1, v2) ∈
A1,3 × V1 × V2, we have

Q A1,3 |V1(a1,3|v1) = Q A1,3 V1V2(a1,3, v1, v2)

QV1V2(v1, v2)

= Q A1,3 |V2(a1,3|v2). (96)

Hence, for any (a1,3, v1) ∈ A1,3 × V1,

Q A1,3 |V1(a1,3|v1) =
�

v2

Q A1,3 |V1(a1,3|v1)QV2(v2)

(96)=
�

v2

Q A1,3 |V2(a1,3|v2)QV2(v2)

= Q A1,3 (a1,3).

Hence, A1,3 is independent of V1. Combining this fact with
(95), we see that

I (V1, V2; A1,3) = 0. (97)

Since (92) and (93) imply that V1 is a function of (A1,2, A1,3),
and V2 is a function of (A1,3, A2,3), it then follows that

0 < I (V1; V2)
(97)= I (V1; V2, A1,3)

(97)= I (V1; V2|A1,3)

≤ I (A1,2; A2,3|A1,3), (98)
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which is a contradiction since (98) violates (91). Hence,
we cannot achieve this corner point with the use of
A1,2, A1,3, A2,3 alone. This above argument also establishes
that the corner point is not achievable using the functional
mode of operation at intermediate nodes, thereby establishing
the following fact.

Remark 8: The portion of the strong coordination capacity
region achievable by schemes in the functional mode of oper-
ation is, in general, a strict subset of the strong coordination
capacity region.

VI. CONCLUSION

In this work, we have analyzed the communication and
randomness resources required to establish strong coordination
over a multi-hop line network. To derive an achievable scheme,
we first build an intricate multi-layer structure of channel
resolvability codes to generate the actions at all the nodes,
which is then appropriately inverted to obtain a strong coor-
dination code. The resultant strong coordination code is not
generally optimal (i.e., it is not known to achieve the optimal
trade-offs among common randomness rate, local randomness
rates, and hop-by-hop communication rates); however, it is
shown to achieve the best trade-offs in several settings, includ-
ing when all intermediate nodes operate under a functional
regime, and when common randomness is plentiful.

The need for an intricate multi-layer scheme stems from a
basic limitation in our understanding of the design of strong
coordination codes for general multi-terminal problems: unlike
in typicality-based schemes for a multi-user settings, where
we can use joint typicality as the criterion to use a received
message (at some intermediate network node) to select a
codeword for transmission, we do not have a similar criterion
here to translate messages from one hop to the next. In other
words, we do not have a covering-type result to translate
codewords of one channel resolvability codebook to another
directly. However, by the operation of inverting actions to
select messages, we have been able to translate between
messages selecting codewords from auxiliary RV codebooks
for specific patterns of correlation among the RVs. However, a
general approach allowing arbitrary correlation patterns using
channel resolvability codebooks is still missing.

APPENDIX

A. Proof of Theorem 1

Before we proceed, we first use the following notation to
simplify the analysis.

Y � (X1, . . . , Xh),

Ŷ � (X̂1, . . . , X̂h),

N � 2
n

�

(i, j)∈F
(μ+

i, j +μ−
i, j )

.

Let for any S ⊆ F , JS �
�
(i, j) : �(i, j) ∩ S �= ∅�. Now,

to find the conditions on the rates, we proceed in a fashion
similar to [20] and [25]. The notation and arguments for the
manipulations in (100)-(104) shown at the top of the next page
are as follows:

• (101) follows by the use of the law of iterated expec-
tations, where the inner conditional expectation denotes
the expectation over all random codeword constructions
{An(m̃±) : m̃± �= m±} given codeword An(m±);

• (102) follows from Jensen’s inequality; and
• (103) follows by splitting the inner sum in (102)

according to the indices where m± and m̃± differ. Let

(m±, m̃±) � {s ∈ F : m±

s �= m̃±
s }. For any pair of

indices (m±, m̃±), the following hold:

– if (i, j) /∈ J
(m±,m̃±), then An
i, j (m

±) = An
i, j (m̃

±).
This is because if (i, j) /∈ J
(m±,m̃±), then by
definition, m±

�(i, j )
= m̃±

�(i, j )
, and both An

i, j (m
±) and

An
i, j (m̃

±) denote the Ai, j codeword corresponding to
m±
�(i, j )

= m̃±
�(i, j )

.
– if (i, j) ∈ J
(m±,m̃±), then the random variables

An
i, j (m

±), An
i, j (m̃

±) are conditionally independent
given {An

i, j (m
±) : (i, j) /∈ J
(m±,m̃±)}, which by the

earlier remark, is exactly the same as {An
i, j (m̃

±) :
(i, j) /∈ J
(m±,m̃±)}.

Combining both, we see that

An(m±) ↔ An
J c

(m±,m̃±)

(m̃±) ↔ An(m̃±). (105)

Given m±, let Hm±,S �
�
m̃± : 
(m̃±,m±) = S

�
. Then,

we see that

E

	�

m̃±

Q⊗n
Y |A(yn|An(m̃±))

NQ⊗n
Y (yn)

�
�
�
�An(m±)




(106)

=
�

S

�

m̃±∈Hm±,S

E

�
Q⊗n

Y |A(yn |An(m̃±))
�
�An(m±)

 

NQ⊗n
Y (yn)

.

(107)

Note that if (1,h) ∈ S, then JS = F and hence An(m±)
and An(m̃±) are independent, and hence

�

S:(1,h)∈S

�

m̃±∈Hm±,S

E

�
Q⊗n

Y |A(yn |An(m̃±))
�
�An(m±)

 

NQ⊗n
Y (yn)

=
�

S:(1,h)∈S

�

m̃±∈Hm±,S

1

N
≤ 1. (108)

Further, when (1,h) /∈ S, then JS � F . Using the chain
in (105), we see that when (1,h) /∈ S,

�

m̃±∈Hm±,S

E

�
Q⊗n

Y |A(yn|An(m̃±))
�
�An(m±)

 

NQ⊗n
Y (yn)

=
�

m̃±∈Hm±,S

Q⊗n
Y |AJ c

S

(yn |An
J c

S
(m±))

NQ⊗n
Y (yn)

. (109)

Combining the above arguments, we see that

E

	�

m̃±

Q⊗n
Y |A(yn |An(m̃±))

NQ⊗n
Y (yn)

�
�
�
�An(m±)




(110)
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E
&
DKL(Q

(1)

Ŷ
n � Q⊗n

Y )
' = E

⎡

⎣
�

yn

��
m± Q⊗n

Y |A(yn |An(m±))

N

�

log

��
m̃± Q⊗n

Y |A(yn |An(m̃±))

NQ⊗n
Y (yn)

�⎤

⎦ (100)

=
�

yn,m±
E

	 Q⊗n
Y |A(yn|An(m±))

N
E

	

log

��

m̃±

Q⊗n
Y |A(yn|An(m̃±))

NQ⊗n
Y (yn)

��
�
�
�An(m±)





(101)

≤
�

yn,m±
E

	 Q⊗n
Y |A(yn|An(m±))

N
log

�

E

	�

m̃±

Q⊗n
Y |A(yn|An(m̃±))

NQ⊗n
Y (yn)

�
�
�
�An(m±)


�


(102)

≤
�

yn,m±
E

	 Q⊗n
Y |A(yn|An(m±))

N
log

�

1 +
�

S:(1,h)/∈S

Q⊗n
Y |AJ c

S

(yn |An
J c

S
(m±))



2n

�
s /∈S(μ

+
s +μ−

s )
�
Q⊗n

Y (yn)

�


(103)

≤
�

yn,an

Q⊗n
Y A(yn, an) log

	

1 +
�

S:(1,h)/∈S

Q⊗n
Y |AJ c

S

(yn |an
J c

S
)

2n

�

s /∈S(μ
+
s +μ−

s )
�

Q⊗n
Y (yn)




. (104)

≤ 1 +
�

S:(1,h)/∈S

�

m̃±∈Hm±,S

Q⊗n
Y |AJ c

S

(yn|An
J c

S
(m±))

NQ⊗n
Y (yn)

= 1 +
�

S:(1,h)/∈S

|Hm±,S| Q⊗n
Y |AJ c

S

(yn|An
J c

S
(m±))

NQ⊗n
Y (yn)

(a)≤ 1 +
�

S:(1,h)/∈S

Q⊗n
Y |AJ c

S

(yn|An
J c

S
(m±))

2
n
�

s /∈S
(μ+

s +μ−
s )

Q⊗n
Y (yn)

, (111)

where in (a) we use a counting argument that yields

|Hm±,S | ≤ 2n(
�

s∈S (μ
+
s +μ−

s )). (112)

Finally, the required rate conditions can be derived from (104)
by splitting the outer sum depending on whether (yn, an) ∈
T n
ε [QY A] or not. The sum for atypical realizations in (104) is

no more than

P
&
(Y n, An) /∈ T n

ε [QY A]' · log
�

1 + 2h2
η−n

Y

�
, (113)

where ηY = min
y∈supp(X1,...,Xh)

QY (y). This term goes to zero

as n → ∞. The contribution from typical realizations can
be made to vanish asymptotically, if for each S ⊆ F ,
{(μ+

i, j , μ
−
i, j ) : (i, j) ∈ F} satisfy:

�

s /∈S

(μ+
s + μ−

s ) > I


Y ; AJ c

S

� = I


X1, . . . , Xh; AJ c

S

�
.

That completes the proof of sufficient conditions for meet-
ing (34). Now, to ensure that (35) is met, we note that by the
random construction of the codebooks,

�

m−

E

	

DKL(�Q
(1)
X̂n

1 |M−(·|m−) � �Q(1)
X̂n

1
)




2n(
�
(i, j)∈F μ−

i, j )

= E

	

DKL(�Q
(1)
X̂n

1 |M−(·|1) � �Q(1)
X̂n

1
)




= E

	

DKL(�Q
(1)
X̂n

1 |Mh
(·|1) � Q⊗n

X̂1
)− DKL(�Q

(1)
X̂n

1
� Q⊗n

X̂1
)




,

where 1 denotes the all-one vector of length |F | = 
h
2

�
. Note

that the analysis in (100)-(104) yields conditions when the
the second term in the above equation vanishes as we let n
diverge. So, we only need to focus on the first term. To do so,
we proceed just as in the first part of this proof.

E
&
DKL(�Q

(1)
X̂n

1 |M−(·|1) � Q⊗n
X1
)
'

(a)= E

⎡

⎢
⎢
⎣

�

xn
1

⎛

⎜
⎜
⎝

�
�

m±:m−=1
Q⊗n

X1|A(x
n
1 |An(m±))

N�

�

× log

⎛

⎜
⎜
⎝

�

m̃±:m̃−=1

Q⊗n
X1|A(x

n
1 |An(m̃±))

N�Q⊗n
X1
(xn

1 )

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

(b)≤
�

x1
n,an

Q⊗n
X1 A(x

n
1 , an) log

	 �

S⊆F

Q⊗n
X1

|AJ c
S
(xn

1 |an
J c

S
)

2n

�

s /∈S μ
+
s
�

Q⊗n
X1
(xn

1 )




,

where

• (a) follows by notating N� = 2
n

�

(i, j)∈F
μ+

i, j
; and

• (b) follows from steps identical to those between (100)
and (104). The sole difference is that (Xn

1 , . . . , Xn
h) is

replaced by Xn
1 , and the sums correspond to only all

possible values taken by M+, since M− = 1.

As before, the sum of terms in the equation above corre-
sponding to atypical sequences yields a quantity no more
than

P
&
(Xn

1 , An) /∈ T n
ε [QX1 A]' · log

�
1 + 2h2

η−n
X1

�
,

where ηX1 = min
y∈supp(X1)

QX1(x1); this quantity vanishes as

n → ∞. On the other hand, the contribution from typical
sequences can be made arbitrarily small if for any S ⊆ F ,

�

s /∈S

μ+
s > I



X1; AJ c

S

�
.
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B. Proof of Theorem 2
We proceed in a way similar to the proof of Theorem 1.

We use the following notation in this proof.

Dn
i (m

±, k±
i−1, li ) �



Bn

i−1,i (m
±, k±

i−1),Cn
i (m

±, k±
i−1, li )

�
,

Y i � (Xi−1, Xi ),

�i � (k±
i−1, li ),

Ni � 2n(κ+
i−1+κ−

i−1+λi ).

Now, to find the conditions on the rates, we proceed in a
fashion similar to [20] and [25]. The notation and arguments
for the manipulations in (115)-(116) shown at the bottom of
the next page are as follows:

• (a) follows since the codebooks for A, Bi−1,i , and Ci are
generated in an i.i.d. fashion.

• in (b), the expectation is over the codebooks for Bi−1,i ,
and Ci and the realization of An(1).

• (c) follows by the use of the law of iterated expecta-
tions, where the inner conditional expectation is over all
random codeword constructions {Dn

i (1, �
��
i ) : ���i �= ��i }

conditioned on codeword Dn
i (1, �

�
i );

• (d) follows from Jensen’s inequality; and
• similar to (103), (e) follows by splitting the inner summa-

tion according to the components where ��i � (k±
i−1

�, l �i )
and ���i � (k±

i−1
��, l ��i ) differ. Unity is an upper bound when

the expectation is evaluated for terms corresponding to
k±

i−1
� �= k±

i−1
��, the second term is the result when the

expectation is evaluated for ��i = ���i , and lastly, the third is
the result from terms for which k±

i−1
� = k±

i−1
�� and l �i �= l ��i .

Finally, the rate conditions can be extracted from (116)
by splitting the outer sum depending on whether
(yn, an, bn, cn) ∈ T n

ε [QY i ADi ] or not. The sum for
non-typical realizations in (116) is no more than

P
&
(Y n, An, Dn

i ) /∈ T n
ε [QY i ADi ]

' · log
�

1 + 2η−n
Y i

�
,

where ηY i = min
y∈supp(Xi−1,Xi )

QY i (y); this term goes to zero

as n → ∞. The contribution from typical realizations can be
observed to vanish asymptotically, provided

κ+
i−1 + κ−

i−1 + λi > I (Xi−1, Xi ; Bi−1,i ,Ci |A),

κ+
i−1 + κ−

i−1 > I (Xi−1, Xi ; Bi−1,i |A).

Now, to ensure (43), let N�
i � 2n(κ+

i−1+λi ). Consider then the
argument from (117)-(118) shown at the bottom of the next
page, where

• (a) follows since the codebooks for A, Bi−1,i , and Ci are
generated in an i.i.d. fashion.

• in (b), the expectation is over the portion of Bi−1,i -,
and Ci -codebooks corresponding to k−

i−1 = 1 and the
codeword An(1).

• (c) follows from arguments similar to (115)-(116).
Lastly, by splitting the contributions of typical and non-typical
sequences, the terms in (118) can be shown to vanish if:

κ+
i−1 + λi > I (Xi−1; Bi−1,i ,Ci |A)

(28)= I (Xi−1; Bi−1,i |A),

κ+
i−1 > I (Xi−1; Bi−1,i |A).

The proof is complete by noting that the former constraint is
redundant.

C. Proof of Lemma 3

Fix ε > 0, and let N � 2
n

�

(i, j)∈F
(μ+

i, j +μ−
i, j )

. Recall from
Remarks 3 and 4 that

lim
n→∞ E

	

� �Q(1)
X̂n

1 ···X̂n
h

− Q⊗n
X1···Xh

�1

+
h�

i=2

�

m±

� �Q(i,m±)
X̂n

i−1 X̂n
i
− Q⊗n

Xi−1 Xi |A(·|An(m±)) �1

N




= 0.

(126)

Let for j = 1, . . . ,h − 1,

δi � lim
n→∞

�
1

N

�

m±
E

�
�
�
�
�
�Q⊗n

Xi |A(·|An(m±))
h�

j=i+1

�Q( j,m±)
X̂n

j |X̂n
j−1

− Q⊗n
Xi ···Xh|A(·|An(m±))

�
�
�
�
�
�
1

�

,

where

Q̂( j,m±)
X̂n

j |X̂n
j−1

�
Q̂( j,m±)

X̂n
j−1 X̂n

j

Q̂( j,m±)
X̂n

j−1

.

First, consider δh−1, which is proven to be zero due to
the argument in (121)-(122). Then, one can argue that for
j > 1, δh− j ≤ δh− j+1 using the argument in (123)-(125).
Note that in (124), we have used the fact that (28) implies
Xi ↔ (Xi+1, A) ↔ (Xi+2, . . . , Xh), which then allows us
to eliminate Xh− j within the third variational distance term.
By induction, we have δ1 = 0. Finally, by transferring the
summation inside the norm, the following can be shown.

lim
n→∞

	

E

�
�
�
�
�
�
�

m±

�
Q⊗n

Xi |A(·|An(m±))
h�

j=i+1
Q̂( j,m±)

X̂n
j |X̂n

j−1

�

− �

m±
Q⊗n

Xi ···Xh|A(·|An(m±))
�
�
�
�
�
�
1




N
= 0.

The proof is then complete by invoking the triangle inequal-
ity to combine the above result with (38).

D. Message Selection at Node 1

Let pmf QD1,D2Y be given. Consider the a nested channel
resolvability code for generating Y ∼ QY via the chan-
nel QY |D1,...D2 . Let the codebook structure be as given in
Fig. 12, where the codebook for Di is constructed randomly
using QDi |Di−1···D1 . Suppose that the rates of the codebooks
satisfy

ν1 + · · · + νi > I (Y ; D1, . . . , Di ), i = 1, . . . , k. (127)

Using the approaches in [1] or [15], it can be shown that

lim
n→∞ E

&� QŶ n − Q⊗n
Y �1

' = 0,

where

QŶ n �
�

l1,...,lk

Q⊗n
Y |D1···Dk

(·|Dn
1 (l1), . . . , Dn

k (l1, . . . , lk))

2n(ν1+···+νk)
.
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Fig. 12. A nested codebook structure for channel resolvability and the
codeword selection problem.

Now suppose that we aim to realize a random selection of
indices (L̂1, . . . , L̂k) using a function �C that depends on the
codebooks C and takes as inputs, an independent and uniform
random seed S and the output of the channel Ŷ n . Suppose that
we require the conditional pmf of the selected indices given

the channel output to match the a posteriori probability of the
indices (L1, . . . , Lk) given Ŷ n , i.e.,

E

�
� QL̂1,...,L̂k,Ŷ n − QL1,...,Lk ,Ŷ n �1

 
≤ ε.

The following result characterizes the rate of random seed
required to realize such a random selection.

Theorem 6: Fix n ∈ N. Consider the random codebook
structure given in Fig. 12 with rates ν1, . . . , νk that satisfy
(127). Let Ŷ n denote the output of the channel when the input
is a codeword tuple that is uniformly selected from channel
resolvability codebook. Let S ∼ unif(�1, 2nRS �), where

RS > ν1 + · · · + νk − I (Y ; D1, . . . , Dk).

Then, there exists a function �C : Yn × �1, 2nRS � →
�1, 2nν1� × · · · × �1, 2nνk � (that depends on the instance of
the realized codebooks) such that (L̂1, . . . , L̂k) � �C(Ŷ n, S)
satisfies:

lim
n→∞ E

�
� QL̂1,...,L̂k ,Ŷ n − QL1,...,Lk ,Ŷ n �1

 
= 0, (128)

where the expectation is over all random codebooks.

�

m±

E

	

DKL

�
�Q(i,m±)

Ŷ
n
i

� Q⊗n
Y i |A(·|An(m±))

�


2n(μ+
1,2+μ−

1,2+···+μ+
h−1,h+μ−

h−1,h)

(a)= E

	

DKL

�
�Q
(i,1)

Ŷ
n
i

� Q⊗n
Y i |A(·|An(1)

�


(115)

(b)= E

⎡

⎣
�

yn

��
��i Q⊗n

Y i |ADi
(yn|An(1)Dn

i (1, �
�
i ))

Ni

�

log

��
���i Q⊗n

Y i |ADi
(yn |An(1)Dn

i (1, �
��
i ))

NiQ
⊗n
Y i |A(yn|An(1))

�⎤

⎦

(c)=
�

yn,��i

E

�
Q⊗n

Y i |ADi
(yn|An(1)Dn

i (1, �
�
i ))

Ni
E

�

log

�
���i Q⊗n

Y i |ADi
(yn|An(1)Dn

i (1, �
��
i ))

Ni Q
⊗n
Y i |A(yn |An(1))

�
�
�
�

An(1)

Dn
i (1,�

�
i ))

��

(d)≤
�

yn,��i

E

�
Q⊗n

Y i |ADi
(yn|An(1)Dn

i (1, �
�
i ))

Ni
log E

��
���i Q⊗n

Y i |ADi
(yn|An(1)Dn

i (1, �
��
i ))

Ni Q⊗n
Y i |A(yn |An(1))

�
�
�
�

An(1)

Dn
i (1,�

�
i ))

��

(e)≤
�

yn,an

bn,cn

Q⊗n
Y i ADi

(yn, an, bn, cn) log

�

1 + Q⊗n
Y i |ADi

(yn |an, bn, cn)

Ni Q⊗n
Y i |A(yn |an)

+
Q⊗n

Y i |ABi−1,i
(yn|an, bn)

Ni
2nλi

Q⊗n
Y i |A(yn|an)

�

. (116)

�

m±,k−
i−1

E

	

DKL

�
�Q(i,m±)

X̂n
i−1 |K −

i−1
(·|k−

i−1) � Q⊗n
Xi−1|A


 · |An(m±)
�
�


2n((μ+
1,2+μ−

1,2)+···+(μ+
h−1,h+μ−

h−1,h)+κ−
i−1)

(117)

(a)= E

	

DKL

�
�Q(i,1)

X̂n
i−1 |K −

i−1
(·|1)

�
�
�
�
�
�Q⊗n

Xi−1 |A


 · |An(1)
�
�


(b)= E

⎡

⎢
⎢
⎢
⎣

�

yn

�

�̂�i :k̂−
i−1=1

Q⊗n
Xi−1 |ADi

(xn
i−1|An(1)Dn

i (1, �̂i ))

N�
i

log

�

�̃i :k̃−
i−1=1

Q⊗n
Xi−1 |ADi

(xn
i−1|An(1)Dn

i (1, �̃i ))

N�
iQ

⊗n
Xi−1|A(x

n
i−1|An(1))

⎤

⎥
⎥
⎥
⎦

(c)≤
�

xn
i−1,a

n

bn,cn

Q⊗n
Xi−1 ADi

(xn
i−1, an, bn, cn) log

⎡

⎣1 + Q⊗n
Xi−1 |ADi

(xn
i−1|an, bn, cn)

N�
i Q⊗n

Xi−1 |A(x
n
i−1|an)

+
Q⊗n

Xi−1|ABi−1,i
(xn

i−1|an, bn)

N�
i

2nλi
Q⊗n

Xi−1|A(x
n
i−1|an)

⎤

⎦. (118)
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δh−1 � lim
n→∞

�
1

N

�

m±
E

�
�
�
�
�
�Q⊗n

Xh−1|A(·|An(m±))�Q(h,m±)
X̂n

h |X̂n
h−1

− Q⊗n
Xh−1,Xh|A(·|An(m±))

�
�
�
�
�
�
1

�

(121)

≤ lim
n→∞

⎡

⎢
⎣

1
N

�

m±
E

�
�
�
�
�
�Q⊗n

Xh−1|A(·|An(m±))�Q(h,m±)
X̂n

h |X̂n
h−1

− �Q(h,m±)
X̂n

h−1 X̂n
h

�
�
�
�
�
�
1

+ 1
N

�

m±
E

�
�
�
�
�
��Q

(h,m±)
X̂n

h−1 X̂n
h

− Q⊗n
Xh−1,Xh|A(·|An(m±))

�
�
�
�
�
�
1

⎤

⎥
⎦

= lim
n→∞

⎡

⎢
⎣

1
N

�

m±
E

�
�
�
�
�
�Q⊗n

Xh−1|A(·|An(m±))− �Q(h,m±)
X̂n

h−1

�
�
�
�
�
�
1

+ 1
N

�

m±
E

�
�
�
�
�
��Q

(h,m±)
X̂n

h−1 X̂n
h

− Q⊗n
Xh−1,Xh|A(·|An(m±))

�
�
�
�
�
�
1

⎤

⎥
⎦

(126)= 0. (122)

δh− j � lim
n→∞

�
�

m±

�
�
�
�
�
�Q⊗n

Xh− j |A(·|An(m±))
h�

s=h− j+1

�Q(s,m±)
X̂n

s |X̂n
s−1

− Q⊗n
Xh− j ···Xh|A(·|An(m±))

�
�
�
�
�
�
1

�

N
(123)

≤ lim
n→∞

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�

m±

�
�
�
�
�
�
�

Q⊗n
Xh− j |A(·|An(m±))− �Q(h− j+1,m±)

X̂n
h− j

 h�

s=h− j+1

�Q(s,m±)
X̂n

s |X̂n
s−1

�
�
�
�
�
�
1

+ �

m±

�
�
�
�
�
�
�
�Q(h− j+1,m±)

X̂n
h− j X̂ n

h− j+1
− Q⊗n

Xh− j Xh− j+1|A(·|An(m±))
 h�

s=h− j+2

�Q(s,m±)
X̂n

s |X̂n
s−1

�
�
�
�
�
�
1

+ �

m±

�
�
�
�
�
�Q⊗n

Xh− j Xh− j+1|A(·|An(m±))
h�

s=h− j+2

�Q(s,m±)
X̂n

s |X̂n
s−1

− Q⊗n
Xh− j ···Xh|A(·|An(m±))

�
�
�
�
�
�
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

N

≤ lim
n→∞

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�

m±

�
�
�
�
�
�Q⊗n

Xh− j |A(·|An(m±))− �Q(h− j+1,m±)
X̂n

h− j

�
�
�
�
�
�
1

+ �

m±

�
�
�
�
�
��Q

(h− j+1,m±)
X̂n

h− j X̂ n
h− j+1

− Q⊗n
Xh− j Xh− j+1|A(·|An(m±))

�
�
�
�
�
�
1

+ �

m±

�
�
�
�
�
�Q⊗n

Xh− j+1|A(·|An(m±))
h�

s=h− j+2

�Q(s,m±)
X̂n

s |X̂n
s−1

− Q⊗n
Xh− j+1···Xh|A(·|An(m±))

�
�
�
�
�
�
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

N
(124)

(126)= δh− j+1. (125)

Proof: Let K � |D1||D2| · · · |Dk||Y|. Choose δ, ε > 0
such that

RS −
k�

�=1

ν� + I (Y ; D1, . . . , Dk)− 4δ log2 K > ε. (129)

Let (L1, . . . , Lk) ∼ unif(�1, 2nν1� × · · · × �1, 2nνk �),
Li � (L1, . . . , Li ) and L̂i � (L̂1, . . . , L̂i ) for 1 ≤ i ≤
k. By the random codebook construction, it follows that
(Dn

1 (L1), Dn
2 (L

2), . . . , Dn
k (L

k), Ŷ n) is indistinguishable from
the output of a DMS QD1···DkY . Hence, by [27, Th. 1.1], it
follows that

P

�
(Dn

1 (L1), Dn
2 (L

2), . . . , Dn
k (L

k), Ŷ n) /∈ T n
δ [QD1···DkY ]

 

≤ 2K e−nδ2η, (130)

where η � min
Q D1···Dk Y ∈supp(Q D1···Dk Y )

QD1···DkY (d1, . . . , dk, y).

Now, given any particular realization of codebooks C◦ �
{(dn

1 (l1), . . . , dn
l (l

k))}lk∈�1,2nν1�×···×�1,2nνk �, and channel out-
put yn ∈ Yn , let

NC◦(y
n) �

�
lk : (dn

1 (l1), . . . , dn
k (l

k), yn) ∈ T n
δ [QD1···DkY ]

�
.

(131)

Then, by Lemma 4 below, for sufficiently large n.

E

�
|NC(Ŷ n)|

 
≤ (k + 1)2

n

�
k�

�=1
ν�−I (Y ;D1...,Dk)+2δ log2 K

�

.

Define G to be the set of all codebook realiza-
tions C◦ � {(dn

1 (l1), . . . , dn
l (l

k)) : lk ∈ �1, 2nν1� ×
· · · × �1, 2nνk �} such that the following two conditions
are met:

P

�
(dn

1 (L1), . . . , dn
k (L

k), Ŷ n) /∈ T n
δ [QD1···DkY ] ��C = C◦

 

≤
.

2K e−nδ2η,

E

�
|NC(Ŷ n)| ��C = C◦

 

k + 1
≤ 2

n

�
k�

�=1
ν�−I (Y ;D1···Dk)+3δ log2 K

�

.

By Markov’s inequality, we then have

P[C /∈ G] ≤
.

2K e−nδ2η + 2−nδ log2 K . (132)

Pick C∆ �
�
(d∆

1
n(l1), . . . , d∆

l
n(lk))

�
lk∈�1,2nν1�×···×�1,2nνk � ∈ G

and let GC∆ to be the set of channel outputs yn such that the
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following two conditions are met.

P

�
(d∆

1
n(L1), . . . , d∆

k
n(Lk), Ŷ n) /∈ T n

δ [QD1···DkY ]
�
�
� Ŷ n=yn

C=C∆
 

≤ 4
.

2K e−nδ2η, (133)

|NC∆(yn)| ≤ (k + 1)2n(ν1+···+νk−I (Y ;D1...,Dk)+4δ log2 K).

Then, by Markov’s inequality, it follows that

P[Ŷ n /∈ GC∆ |C = C∆] ≤ 4
.

2K e−nδ2η + 2−nδ log2 K . (134)

Further, it also follows that for each yn ∈ GC∆ ,
�

lk /∈NC∆ (yn)

QL1···LkŶ n (l
k , yn)

(133)≤ 4
.

2K e−nδ2η, (135)

where QL1···LkŶ n is the joint pmf between indices and the
output induced by C∆. Then, from Lemma 5 below, for each
yn ∈ GC∆ , we can find fyn : �1, 2nRS � → �1, 2nν1� × · · · ×
�1, 2nνk � such that

� Q fyn (S) − QL1···Lk |Ŷ n=yn �1

≤ |NC∆(yn)|
2nRS

+ 4
.

2K e−nδ2η

≤ (k + 1)
2

n

�
k�

�=1
ν�−I (D1...,Dk ;Y )+4δ log2 S

�

2nRs
+ 4

.
2K e−nδ2η

(129)≤ (k + 1)2−nε + 4
.

2K e−nδ2η,

where S ∼ unif(�1, 2nRS �). Pick l∆k ∈ �1, 2nν1� × · · · ×
�1, 2nνk �. Now, we can piece together these functions to define

�C∆(yn, S) �
%

fyn (S), yn ∈ GC∆

l∆k, yn /∈ GC∆ .
(136)

By construction, we now have
�

yn∈GC∆
QŶ n |C=C∆(yn) � Q�C∆ (yn,S) − QLk |Ŷ n=yn �1

≤ (k + 1)2−nε + 4
.

2K e−nδ2η. (137)

Combining the above bound with (134) and the fact that the
variation distance between two pmfs is bounded above by 2,
we obtain
�

yn

QŶ n |C=C∆(yn) � Q�C∆ (yn,S) − QLk |Ŷ n=yn �1

≤ (k + 1)2−nε + 3
4
.

2K e−nδ2η + 2 · 2−nδ log2 K .

Since the RHS does not depend on the choice of C∆ in G,
it follows that

E

�
� Q�C (yn,S) − QLk |Ŷ n=yn �1

�
� C ∈ G

 

≤ (k + 1)2−nε + 3
4
.

2K e−nδ2η + 2 · 2nδ log2 K .

Next, using the fact that the variational distance between two
pmfs is no more than 2, we also have

E

�
� Q�C(yn,S) − QLk |Ŷ n=yn �1

�
� C /∈ G

 
≤ 2. (138)

Finally, combining the above two equations with (132) com-
pletes the claim.

Lemma 4: Consider the codebook construction of Fig. 12
with codebook sizes satisfying (127). Let NC(·) and K be as
in the proof of Theorem 6. Then, for n sufficiently large,

E

�
|NC(Ŷ n)|

 
≤ (k + 1)2

n

�
k�

�=1
ν�−I (Y ;D1...,Dk)−2δ log2 K

�

.

Proof: Due to the random construction of the codebooks,

E

�
|NC(Ŷ n)|

 
=

�

l̊k

E

�
1{l̊k ∈ NC(Ŷ n)}��Lk = (1, . . . , 1)

 
.

To evaluate the conditional expectation, we partition the space
�1, 2nν1� × · · · × �1, 2nνk � as follows.

Si =
/

lk : l j = 1, j < i
l j+1 �= 1, j = i

0

, i = 0, . . . , k. (139)

Note that
k1

j=1
Si = �1, 2nν1� × · · · × �1, 2nνk �. By the random

nature of codebook construction, we have

P

�
(l1, . . . , lk) ∈ NC(Ŷ n)

�
�Lk = (1, . . . , 1)

 

= P

�
(l �1, . . . , l �k) ∈ NC(Ŷ n)

�
�Lk = (1, . . . , 1)

 
. (140)

for any pair of tuples (l1, . . . , lk), (l �1, . . . , l �k) ∈ S j ,
j = 0, . . . , k. Let for j = 0, 1, . . . , k, �k( j) be chosen such
that �k( j) ∈ S j , and thus, due to (140), we have

E[|NC(Ŷ n)|] =
k�

j=0

|S j | P
�
�k( j) ∈ NC(Ŷ n)

�
�Lk = (1, . . . , 1)

 

≤
k�

j=0

	�

ι> j

2nνι




η j , (141)

where we let η j � P

�
�k( j) ∈ NC(Ŷ n)

�
�Lk = (1, . . . , 1)

 
,

j = 0, . . . , k. Clearly, ηk ≤ 1, and η0 is exactly the probability
that realizations (Dn

1 , Dn
2 , . . . , Dn

k ) ∼ Q⊗n
D1...Dk

and Y n ∼ Q⊗n
Y

selected independent of one another are jointly δ-letter typical.
Thus, by [27, Th. 1.1], it follows that

η0 =
�

(dn
1 ,...,d

n
k ,y

n)∈T n
δ [Q D1···Dk Y ]

QD1···Dk (d
n
1 , . . . , dn

k )QY (y
n)

≤ 2−nI (Y ;D1,...,Dk)+nδ(H(D1,...,Dk ,Y )+H(D1,...,Dk)+H(Y ))

≤ 2−n(I (Y ;D1,...,Dk)−2δ log2 K ). (142)

Now, when 0 < j < k, we observe that η j is the probability
that (Dn

1 , Dn
2 , . . . , Dn

k ) ∼ Q⊗n
D1...Dk

and Y n (i.e., the output
when (Dn

1 , . . . , Dn
j ) is sent through the channel QY |D1,...,D j

are jointly δ-letter typical. Therefore, by use of [27, Ths. 1.1
and 1.2], we see that

η j ≤ 2−n(I (D1,...,Dk;Y |D1,...,D j )−2δ log2 K ). (143)

Finally, combining (141), (142), and (143), we obtain

E

�
|NC(Ŷ n)|

 
≤ 1 +

k−1�

j=0

2
n

�
k�

�= j+1
ν�

�

2n (I (Y ;D1...,Dk |D1...,D j )−2δ log2 K)
.
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The claim then follows since (127) implies that

max
0≤ j<k

	 k�

�= j+1

ν� − I (Y ; D1 . . . , Dk |D1 . . . , D j )




=
k�

�=1

ν� − I (Y ; D1, . . . , Dk).

Lemma 5: Let Q be a pmf on a finite set A such that there
exists B ⊆ A with |B| = M and

�
b∈B Q(b) ≥ 1 − ε for

0 < ε < 1. Now, suppose that L ∼ unif(�1, ��). Then, there
exists f : �1, �� → A such that Q f (L), the pmf of f (L),
satisfies � Q f (L) − Q �1≤ ε + M

� .
Proof: Let b1 � b2 � · · · � bM be an ordering of B.

Let p0 = 0, and for 1 ≤ i ≤ M , let pi �
�i

j=1 Q(b j )

denote the cumulative mass function. Now, let Ni � �pi��,
i = 0, . . . ,M , and let f : �1, NM � → B be defined by the
pre-images via f −1(bi ) = {Ni−1 + 1, . . . , Ni }, i = 1, . . . ,M .
Now, by construction, we have

0 ≤ pi − P [ f (L) ∈ {b1, . . . , bi }] ≤ �−1, i = 1, . . . ,M.

Consequently, we also have for any i = 1, . . . ,M ,

−�−1 ≤ pi − pi−1 − Q f (L)(bi) (144)

= Q(bi )− Q f (L)(bi ) ≤ �−1. (145)

Hence, we see that

�

a∈A
|Q(a)− Q f (L)(a)| =

� M�

i=1

|Q(bi )− Q f (L)(bi )|

+ P[A /∈ B]
�

(145)≤ M

�
+ ε. (146)

E. Message Selection at Nodes 2, . . . ,h − 1

Let pmf pD1,D2,Y and n ∈ N be given. Suppose that
Dn

1 ∼ Q⊗n
D1

. Now, generate a codebook for D2 such that
codewords {Dn

2 (i2) : i2 ∈ �1, 2nν2�} are selected independently
with each codeword selected using

�n
k=1 QD2|D1,k . Suppose

that ν2 > I (Y ; D2|D1). Then, it can be shown that

lim
n→∞ E

�
� Q̂Ŷ n |Dn

1
− Q⊗n

Y |D1
(· | Dn

1 ) �1

 
= 0, (147)

where

Q̂Ŷ n |Dn
1

�
2nν2�

l2=1

Q⊗n
Y |D1,D2

(·|Dn
1 , Dn

2 (l2))

2nν2
. (148)

Now suppose that as in Appendix D, one would like to
characterize the amount of randomness required to generate
randomly L̂2 using a function �C (that depends on the
codebooks C) that takes as inputs a uniform random seed S,
the output of the channel Ŷ n , and the actual L �

2 that was used
to generate the channel output. We want L̂2 to mimic L2 and

Fig. 13. A nested codebook structure for channel resolvability and the
codeword selection problem.

that the joint correlation of the RV L̂2 and the realized Ŷ n is
arbitrarily close to QL2,Ŷ n , i.e.,

lim
n→∞ E

�
� QL̂2,Ŷ n − QL2,Ŷ n �1

 
= 0. (149)

The following result characterizes the rate of randomness
required to realize this random index selection.

Theorem 7: Consider the above codebook setup with ν2 >
I (Y ; D2|D1). Let Ŷ n denote the channel output in the setup
of Fig. 13. Let

RS > ν2 − I (Y ; D2|D1).

Then, there exists a function �C : Yn × �1, 2nRS � ×
Dn

1 → �1, 2nν2� (that depends on the instance of the realized
codebooks) such that L̂2 � �C(Ŷ n, S, Dn

1 ) satisfies (149).
Proof: The proof mirrors exactly those of Theorem 6 and

associated lemmas, and is omitted.
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