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Abstract— The performance of a coded cooperative diversity
system employing the Euclidean superposition of two BPSK-
modulated signals is analyzed. For an example using a convolu-
tional code on block fading channels, the results show excellent
agreement with computer simulations. The analysis makes it
possible to optimize the power allocation between the local
and relay signals numerically, circumventing the need for time
consuming Monte Carlo simulations.

I. INTRODUCTION

The concept of cooperative diversity is illustrated in Fig-
ure 1. During each time slot, Node A and Node B transmit
in turn to deliver their packets to a common destination D.
To exploit spatial diversity and thereby enhance reliability
on fading channels, each source node transmits both its own
“local” packet as well as a “relay” packet that originated
at its partner [1]–[10]. In the particular configuration under
consideration, depicted in Figure 2, each source node encodes
and modulates its local packet and the relay packet separately
and then transmits the Euclidean superposition of the two [6],
[7]. A key design parameter in such a system is the portion of
the power dedicated to transmitting the relay signal, referred to
as the superposition factor. While too little relay power would
result in diminished diversity gain, allocating too much of the
power to relaying would reduce the cooperation success rate,
and in turn cause poor error performance. In [6], the power
allocation was determined empirically via simulation, and the
resulting signal superposition diversity scheme was shown to
outperform designs based on time multiplexing for all error
rate regions of interest.

A thorough performance analysis of coded cooperative
diversity systems was presented in [8] for time multiplexed
based designs, where the local and relay signals are orthogonal
to each other. In the signal superposition cooperative diversity
scheme proposed in [6], however, the two signals are added in
Euclidean space and no longer exhibit such orthogonality. In
this paper, we derive a bound on the performance of the signal
superposition cooperative diversity scheme; in particular, we
focus on a system in which both local and relay information is
channel-encoded (using potentially different codes) and then
modulated using binary phase-shift keying (BPSK); when the
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Fig. 1. The system model for cooperative diversity.

two BPSK-modulated signals are superimposed, the result is
a pulse amplitude modulated (PAM) signal with four levels.
The analytical results facilitate numerical optimization of
the superposition factor without resorting to computationally
intensive simulations.

The paper is organized as follows. We present the system
model and establish the notation in Section II. The end-to-
end packet error rate performance is bounded in Section III.
Numerical results and optimization of the superposition factor
are given in Section IV, and we present some conclusions in
Section V.

II. SYSTEM MODEL AND NOTATION

Denote the information packets generated at Node A and
B during time slot t as i

t
A and i

t
B , respectively. In coded

cooperation, each packet is encoded (at most) twice – once
locally at the originating node and again as a relay packet at
the partner node. We denote the two resulting codewords for
i
t
A as c

t
A,L and c

t
A,R. Similarly, we define c

t
B,L and c

t
B,R for

i
t
B.

The signal superposition cooperative diversity scheme pro-
ceeds [6] as follows, focusing on the operations at Node A.
(Node B operations are analogous.) Node A first attempts
to decode Node B’s packet i

t−1
B . If successful, Node A

modulates the relay codeword c
t−1
B,R and the local codeword

c
t
A,L separately to generate the relay and the local signals and

transmits the Euclidean superposition of the two. The relay
signal and the local signal are allocated different powers prior
to superposition. Assume Nodes A and B have superposition
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Fig. 2. The operations in the signal superposition cooperative diversity scheme. The boxes depict the transmitted signals.
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Fig. 3. The superposition modulation employed at Node A. Node B adopts
a similar modulation with a possibly different superposition factor βB . The
left bit in the label is the local bit, while the right bit is the relay bit.

factors βA and βB , respectively, i.e., Node A uses a fraction
βA of its power for relaying while Node B uses a fraction βB

for relaying. Assuming both the local and relay signals are
BPSK modulated, Node A thus transmits the signal [6]

yt
A =

√

1 − βA(−1)c
t
A,L +

√

βA(−1)c
t−1
B,R , (1)

where the signal constellation is normalized and the transmit
power is included in the channel gain (see Figure 2, time slot
t, Node A). The weighted sum of two BPSK signals in (1)
forms an asymmetric 4-PAM constellation due to the different
signal powers for local and relayed symbols, as illustrated in
Figure 3.

We assume the signal transmitted by Node A is received
at both Node B and Node D through two independent block
fading channels. Denote the instantaneous signal-to-noise ratio
(SNR) and average SNR from Node X to Node Y as γXY

and ΓXY , respectively, where X and Y can be A, B, or D.
The pdf of γXY is denoted as pXY (γXY ). In time slot t,
Node B subtracts the relay signal

√
βA(−1)c

t−1
B,R , which it

knows, from the received signal and decodes i
t
A from the

noisy, faded version of
√

1 − βA(−1)c
t
A,L . Node D observes

an asymmetric 4-PAM signal and employs a soft demodulator
to calculate the log-likelihood ratios (LLRs) of c

t
A,L and c

t−1
B,R.

Its decision on i
t−1
B can be made using the LLRs for c

t−1
B,R

and the previously received c
t−1
B,L using a decoder for the low

rate codeword [ct−1
B,L c

t−1
B,R], whereas the LLRs for c

t
A,L are

buffered. Figure 2 describes the operations at Nodes A, B,
and D in time slots t − 1 and t for the signal superposition
cooperative system. For simplicity, we assume the receivers

know the channel and coherent demodulation is available. If
a source node fails to decode its partner’s packet or initiates
the cooperation, it BPSK-modulates only its own packet and
transmits the result using full power. The paper considers
convolutionally encoded packets; moreover, the code from [4],
which was based on convolutional code design techniques for
block fading channels, is used in the numerical example.

III. PERFORMANCE ANALYSIS

Noting the symmetry between Node A and Node B, we
focus on the error probability of packets originating at Node
A, without loss of generality. Following the analysis in [8],
we distinguish four possible combinations of local and relay
signals for which the destination node must make a decision:

I Node A transmits a superposition of local and relay
signals; Node B is able to decode and relay A’s packet.

II Node A fails to decode B’s packet and transmits only
a local signal. Node B is able to decode and relay A’s
packet.

III Node A transmits a superposition of local and relay
signals; Node B fails to decode A and offers no help.

IV Nodes A and B transmit only signals generated by local
packets.

In this section, we calculate the probability of occurrence PZ

and the conditional packet error probabilities PP (e|Z) for each
of the above-mentioned four cases. The end-to-end packet
error probability PP (e) can then be bounded as a weighted
sum of the conditional error probabilities [8], i.e.,

PP (e) ≤
∑

Z∈{I,II,III,IV }

PZPP (e|Z). (2)

We calculate PZ for Z ∈ {I, II, III, IV } in Section III-A
and derive the expressions for PP (e|Z) in Section III-C.

A. Cooperation Success Rate

Node A will transmit either a superimposed signal (co-
operative mode) or a signal modulated with only local bits
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(noncooperative mode). Since Node B can subtract the relay
portion from the received signal prior to decoding in the
former case, it can decode A’s message with partial power
(1−βA) when signal superposition is used and with full power
when A is not relaying. Let ηA and ηB be the probabilities
that Nodes A and B, respectively, are sending superimposed
signals. Because superposition is used at Node A if and only
if Node B’s packet was successfully decoded at Node A (and
vice versa), we have the relations

1 − ηA = ηB · P S
B→A + (1 − ηB) · P N

B→A (3a)
1 − ηB = ηA · P S

A→B + (1 − ηA) · P N
A→B , (3b)

where P S
B→A and P N

B→A are the packet (block) error probabil-
ities of Node B’s packets at Node A with superposition (partial
power (1 − βB)) and without superposition (full power),
respectively. Similarly P S

A→B and P N
A→B are the packet error

probabilities of Node A’s packets at Node B with SNRs
γAB(1 − βA) and γAB , respectively. Solving these equations
for ηA and ηB , we obtain

ηA =
(

1 − P N
B→A

)

−
(

1 − P N
A→B

)(

P S
B→A − P N

B→A

)

1 −
(

P S
B→A − P N

B→A

)(

P S
A→B − P N

A→B

) (4a)

ηB =
(

1 − P N
A→B

)

−
(

1 − P N
B→A

)(

P S
A→B − P N

A→B

)

1 −
(

P S
B→A − P N

B→A

)(

P S
A→B − P N

A→B

) . (4b)

As a special case, when the channels A → B and B → A
have the same statistics, and the superposition factors at A and
B are also identical, then P N

A→B = P N
B→A, P S

A→B = P S
B→A,

and (4) can be simplified as

ηA = ηB =
1 − P N

A→B

1 + P S
A→B − P N

A→B

. (5)

The probability of the four cases described above can now be
expressed as

PI = ηA ·
(

1 − P S
A→B

)

(6a)

PII = (1 − ηA) ·
(

1 − P N
A→B

)

(6b)

PIII = ηA · P S
A→B (6c)

PIV = (1 − ηA) · P N
A→B . (6d)

For independent inter-user channels, the error probabilities
P S

B→A, P N
B→A, P S

A→B , and P N
A→B can be evaluated for block

fading channels as in [11]. For inter-user channels where
the channel gains from Node A to Node B and from Node
B to Node A are always the same, i.e., γAB = γBA, the
error probabilities at Nodes A and B are correlated. However,
conditioned on the instantaneous SNR γAB , the probabilities
become independent. In this case, the probabilities P S

B→A,
P N

B→A, P S
A→B , and P N

A→B should be evaluated for AWGN
channels with SNRs γAB(1 − βB), γAB , γAB(1 − βA), and
γAB , respectively, and then the expressions in (6) should be
averaged over the distribution for γAB to take the fading
into account. The four case probabilities for Node B can be
calculated in a similar manner.

B. The Soft Demodulator

When the two source nodes cooperate, the destination
node must calculate the LLR of each bit from a received
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superimposed signal of the form

r = a(−1)s + b(−1)i + n, (7)

where s is the desired bit (either relayed or local), i is
the superimposed interfering bit, n is zero mean Gaussian
noise with variance N0/2, and a and b are the amplitudes
of the desired signal and the interfering signal, respectively,
whose values are determined by the channel gain and the
superposition factor βA or βB .

To provide a meaningful analysis for such a system, a
model for the soft demodulator is required. The ideal soft
demodulator output for bit s is

`(r) = log
exp(− (r−a+b)2

N0
) + exp(− (r−a−b)2

N0
)

exp(− (r+a+b)2

N0
) + exp(− (r+a−b)2

N0
)
. (8)

A good approximation that also simplifies the analysis can be
obtained by taking only the dominant terms in the numerator
and denominator – i.e., the Jacobian logarithm:

˜̀(r) =
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The mean m1(s|i) and second moment m2(s|i) of ˜̀(r) can be
calculated as shown in (10), where the channel observation r
in (7) is a Gaussian random variable for a given combination
of s and i. Since the LLRs at the output of the demodulator
represent the soft-inputs of the channel decoder, we now define
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where the quantities a2

N0
and b2

N0
can be viewed as the SNRs

of the desired bit and the superimposed interfering bit, respec-
tively. The functions ρ1(·, ·) and ρ2(·, ·) characterize how the
equivalent SNR depends on the SNRs of the desired bit and
the superimposed bit, given that the two bits have the same or
opposite values.

C. Conditional Error Probabilities

In the absence of cooperation, each source node transmits
its own BPSK-modulated symbols, and thus the LLRs at the
demodulator output have a Gaussian distribution. When su-
perposition is applied, however, both the exact and simplified
approximate LLRs in (8) and (9) are no longer Gaussian-
distributed. We adopt a Gaussian approximation for these
LLRs for two reasons. First, the LLRs are piecewise linear
functions of Gaussian random variables, as seen in (9), and
hence have Gaussian-like tails. Also, an error event in a coded
system involves several LLRs, and thus a central limit theorem
argument can be invoked.

Assuming that linear codes are used, we only need to
consider the pairwise error probability between the all zero
codeword and an erroneous codeword with Hamming weight
d to obtain a union bound. Note that, for the LLR of a

1The factor of two comes from the fact that SNR is defined as Es/N0 and
the noise variance is N0

2
.



superimposed bit, the Gaussian approximation is conditioned
on the value of the interfering bit; thus, the equivalent SNR
in (11) depends on whether the two bits are equal or not.
Hence, for an erroneous codeword with Hamming weight d′,
there are 2d′

possible combinations of the two equivalent SNRs
ρ1(·, ·) and ρ2(·, ·), and the multiplicity of combinations where
k out of d′ bits have value one is given by

(

d′

k

)

. It follows
that we can formulate the pairwise error probabilities for each
superposition case as shown in (12), where d1 is the Hamming
weight contributed to the erroneous codeword by the local
codeword c

t
A,L generated at Node A, d2 is the Hamming

weight contributed to the same erroneous codeword by the
relay codeword c

t
A,R regenerated at Node B, and d1+d2 = d is

the Hamming weight of the erroneous codeword in the overall
low rate code that combines c

t
A,L and c

t
A,R.

For each case except case IV, the pairwise probability is
obtained as a weighted sum of Q-functions over all possible
combinations of the equivalent SNRs, where the weights cor-
respond to the total probability of each combination. The argu-
ments of the Q-functions depend on the sum of the SNRs as-
sociated with those bits that contribute Hamming weight to the
erroneous path. For the LLRs corresponding to signal superpo-
sition, the equivalent SNR for the transmission of local infor-
mation from Node A can be either ρ1 (γAD(1 − βA), γADβA)
or ρ2 (γAD(1 − βA), γADβA). Similarly, the equivalent SNR
for the transmission of relay information from Node B is either
ρ1 (γBDβB , γBD(1 − βB)) or ρ2 (γBDβB , γBD(1 − βB)).
Then the conditional packet error probability can be evaluated,
using the limit before averaging technique described in [11],
as shown in (13), where df and d′f are (respectively) the
free distances of the overall low rate convolutional code that
combines c

t
A,L and c

t
A,R and the high rate local convolutional

code. Additionally, a(d) represents the multiplicity of com-
bined codewords with Hamming weight d = d1 + d2, and
a′(d1) is the multiplicity of local codewords with Hamming
weight d1. Finally, K is the number of information bits in
one packet. (The conditional bit error probabilities can also be
bounded using the pairwise error probabilities given in (12) in
a straightforward manner [8], [11].)

IV. NUMERICAL RESULTS AND OPTIMIZATION

As an example, we use the cooperative convolutional code
design derived from a block fading channel perspective in
[4]. The local codewords c

t
A,L and c

t
B,L are generated by

[15, 17]8 and the relay codewords c
t
A,R and c

t
B,R are generated

by [13, 15]8, both rate 1/2 codes. The destination node
uses the decoder corresponding to the rate 1/4 generator
[15, 17, 13, 15]8 to exploit diversity when a relayed signal is
available. In evaluating the union bound, terms corresponding
to distance greater than df + 15 are dropped. The Hamming
distances and their corresponding multiplicities can be effi-
ciently calculated using a slightly modified BEAST algorithm
[12], and they are listed in Table I (df = 13 for this example).
All channels, including the two channels between Nodes A and
B, are assumed to be independent and identically distributed
with block Rayleigh fading, and the average channel SNRs are
assumed to be the same, i.e., ΓAB = ΓBA = ΓAD = ΓBD.

The packets contain 500 bits each, and an extra 12 CRC
bits are appended prior to convolutional encoding to detect
decoding failures at the partner nodes. (Since the CRC is
neglected in our analysis, we do not distinguish between
information bits and CRC bits and use 500 + 12 = 512 bit
packets in the numerical calculation.)

The numerical results, plotted in Figure 4 using superposi-
tion factors β = βA = βB = 10% and β = βA = βB = 35%,
show very good agreement between the derived bound and
the simulation results, despite employing a union bound and
a Gaussian approximation on the LLRs. For example, at a
packet error probability of 10−2, the numerical prediction is
only about 0.3 dB away from the simulation curve, and the
same level of agreement is consistent over the entire FER
range of interest. (This consistency is due to the averaging
effect of the fading distribution.)

It is evident from Figure 4 that the superposition factor β
plays an important role in the error performance, and hence
β should be chosen to minimize the packet error probability
bound. The effect of β = βA = βB on the packet error
probability is shown in Figure 5 for average SNR’s of 20 dB
and 30 dB.

In Figure 6, we plot the optimal β = βA = βB as a
function of the average SNR. The optimality is in the sense of
minimizing the packet error probability bound and the optimal
superposition factors are found by searching over the interval
(0, 0.5). The optimum β is found to be zero in the low SNR
region. This degenerates the signal superposition system into a
noncooperative system, which performs better than the signal
superposition cooperative system in the low SNR region. In
the medium SNR regime, protecting the vulnerable inter-user
communication is a priority to achieve diversity, and thus a
low β is preferred. In the high SNR regime, on the other
hand, the system is cooperative most of the time and it is
beneficial to use a larger β. The optimum β for SNR’s above
10 dB falls into the 10% to 15% range found empirically in [6]
for a repetition based configuration. It is also observed from
Figure 6 that the optimum β approaches a constant for high
SNR (β = 0.127 for SNR larger than 30 dB in our example),
where the optimum β depends on the given channel model and
convolutional code. Results might differ for different channel
models and different code generators.

V. CONCLUSION

We have developed an analytical performance bound for a
coded cooperative deversity signal superposition system under
rather general assumptions. Numerical calculations based on
the bound track computer simulation results very closely.
Minimizing the bound shows the dependency of the opti-
mum superposition factor on the operating SNR. The analysis
provides a useful tool for performance prediction and design
parameter optimization for signal superposition based coop-
erative diversity systems. It also applies to two dimensional
signals with asymmetric 4-PAM on in-phase and quadrature
components.



TABLE I
DISTANCE SPECTRUM OF CONVOLUTIONAL CODE [15, 17, 13, 15]8

d1 d2 d = d1 + d2 a(d)
7 6 13 2
6 8 14 1
8 8 16 3
7 10 17 1

10 8 18 4
9 10 19 8
8 12 20 2

12 8 20 2
11 10 21 15
10 12 22 16
9 14 23 3

13 10 23 15
12 12 24 45
11 14 25 32
15 10 25 8
10 16 26 5
14 12 26 68
13 14 27 117
17 10 27 2
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Fig. 4. Packet error probability for Rayleigh fading channels with indepen-
dent inter-user channels and β = βA = βB .
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Fig. 5. Packet error probabilities as functions of the superposition factor β
at an average Eb/N0 of 20 dB and 30 dB.
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Fig. 6. Values of β = βA = βB that minimize the analytical bound at
different SNR’s.


