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Error Performance Analysis of Signal Superposition
Coded Cooperative Diversity
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Abstract—This paper analyzes the error performance of a
coded cooperative diversity system employing the Euclidean
superposition of two BPSK-modulated signals. For an example
using a convolutional code on block fading channels, the results
show excellent agreement with computer simulations. The anal-
ysis makes it possible to optimize the power allocation between
the local and relay signals numerically, circumventing the need
for time consuming Monte Carlo simulations. Similarly, the
analysis demonstrates how the power allocation can be “tuned”
to compensate for unbalanced uplink channels and/or to provide
unequal error protection to the data from the two cooperating
nodes.

Index Terms—Diversity methods, relay channels, fading chan-
nels, cooperative communications, signal superposition.

I. INTRODUCTION

S IGNAL diversity - i.e., the transmission and/or reception
of multiple versions of an information-bearing signal - is

an effective countermeasure against the instantaneous signal-
to-noise ratio (SNR) fluctuations caused by multipath fading
in a wireless environment. A spatial diversity system employs
two or more antennas separated in space, and it exploits the
different channel gains that are realized between different
transmit/receive antenna pairs. Cooperative diversity strategies
employ relaying to share antennas among users, making spatial
diversity possible even with single antenna transceivers.

A typical cooperative diversity system is illustrated in
Figure 1. During each time slot, Node A and Node B transmit
in turn to deliver their packets to a common destination D.
To exploit spatial diversity and thereby enhance reliability
on fading channels, each source node transmits both its own
“local” packet as well as a “relay” packet that originated
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Fig. 1. The system model for cooperative diversity.

at its partner [1]–[10]. Methods to combine the local and
relay packets in each node’s transmission result in different
cooperative diversity designs: separating the local and relay
signals in orthogonal time slots leads to time multiplexing
schemes [2]–[4]; adding the modulated local and relay signals
in Euclidean space creates signal superposition schemes [1],
[6], [7]; and adding the local and relay codewords over a finite
field gives rise to algebraic superposition schemes [10].

In the particular signal superposition scheme under con-
sideration, each source node encodes and modulates its local
packet and the relay packet separately and then transmits
the Euclidean superposition of the two [6]. A key design
parameter in such a system is the fraction of power dedicated
to transmitting the relay signal, referred to as the superposition
factor. While too little relay power would result in diminished
diversity gain, allocating too much power to relaying reduces
the cooperation success rate; to illustrate, the power that
Node A dedicates to relaying Node B’s information is wasted
with regard to the task of successfully conveying Node A’s
information to Node B. In [6], the power allocation was
optimized empirically via simulation, and the resulting signal
superposition scheme outperformed designs based on time
multiplexing for all error rates of interest.

The relayed message in a decode-and-forward system may
be repetition based or it may provide coded cooperation. In the
former case, the relayed message is the regenerated original
codeword, and diversity is achieved by combining the repeated
codewords. In coded cooperative diversity [11], the relayed
message is a set of parity bits different from those used in the
original transmission, and diversity is achieved by decoding

0090-6778/09$25.00 c© 2009 IEEE
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Fig. 2. The operations in the signal superposition cooperative diversity scheme. The emboldened boxes depict the transmitted signals.

with both sets of parities. Coded cooperative diversity avoids
the inefficiency of repetition by using the structure of an error
control code to gain diversity.

The performance of time multiplexed coded cooperative
diversity was analyzed in [8] with respect to error probability
and in [11] with respect to outage probability. For signal
superposition schemes such as the one in [6], the two signals
are added in Euclidean space and so are not orthogonal;
consequently, the analysis in [8], [11] is not applicable.
While an outage probability analysis for signal superposition
cooperative diversity was presented in [12], there is no error
probability analysis in the literature.

This paper derives a union bound on the error performance
of a signal superposition cooperative diversity scheme; in par-
ticular, it considers a system in which both local and relayed
information is channel-encoded (using potentially different
codes to achieve a cooperative coding gain) and then mod-
ulated using binary phase-shift keying (BPSK). The analytical
results facilitate numerical optimization of the superposition
factor without resorting to computationally intensive simula-
tions.

The paper is organized as follows. We present the system
model and establish the notation in Section II. The end-to-
end packet error rate performance is bounded in Section III.
Numerical results and optimization of the superposition factor
are given in Section IV, and Section V concludes the paper.

II. SYSTEM MODEL AND NOTATION

Denote the information packets generated at Node A and
B during time slot t as itA and itB , respectively. In coded
cooperation, each packet is encoded (at most) twice – once
locally at the originating node and (typically) again as a
relayed packet at the partner node. Denote the two resulting
codewords for itA as ct

A,L (encoded locally at Node A) and
ct

A,R (encoded as relayed information at Node B). Define ct
B,L

and ct
B,R similarly for itB.

One of the source nodes initiates the session by broadcasting
its encoded packet to both the destination and its partner. We
assume the system is in continuous operation and neglect the
effect of the initial state. The signal superposition cooperative

diversity scheme in [6] proceeds as follows, focusing on the
operations at Node A. (Node B operations are analogous.)

We assume coherent detection with perfect channel state
information at the receiver side. Node A first attempts to
decode Node B’s packet it−1

B . If successful, Node A mod-
ulates the relayed codeword ct−1

B,R and the local codeword
ct

A,L separately to generate the relayed and local signals and
transmits the Euclidean superposition of the two. The relayed
signal and the local signal are allocated different powers prior
to superposition. Assume Nodes A and B have superposition
factors βA and βB , respectively – i.e., Node A uses a fraction
βA of its power for relaying while Node B uses a fraction βB

for relaying. The superposition factors βA and βB are known
to all three nodes. Assuming both the local and relay signals
are BPSK modulated, Node A thus transmits the signal [6]

yt
A =

√
1 − βA(−1)c

t
A,L +

√
βA(−1)c

t−1
B,R , (1)

where the signal constellation is normalized and the transmit
power is included in the channel gain. (See Figure 2, time slot
t, Node A.) The weighted sum of two BPSK signals in (1)
forms a 4-PAM constellation that is non-uniform due to the
different signal powers for local and relayed signals.

Assume the signal transmitted by Node A is received at both
Node B and Node D through two independent block fading
channels. Denote the instantaneous and average SNR from
Node X to Node Y as γXY and ΓXY , respectively, where X
can be A or B and Y can be A, B, or D. The probability density
function (PDF) of γXY is denoted as pXY (γXY ). During time
slot t, Node B subtracts the relayed signal

√
βA(−1)c

t−1
B,R ,

which it knows, from the received signal and decodes itA
from the noisy, faded version of

√
1 − βA(−1)c

t
A,L . Node

D observes a non-uniform 4-PAM signal and employs a soft
demodulator to calculate the log-likelihood ratios (LLRs) of
ct

A,L and ct−1
B,R. It estimates it−1

B using the LLRs for ct−1
B,R

and the previously received ct−1
B,L using a decoder for the low

rate codeword [ct−1
B,L ct−1

B,R], whereas the LLRs for ct
A,L are

buffered.
Figure 2 depicts the operations at Nodes A, B, and D during

time slots t− 1 and t for the system under consideration. For
simplicity, we assume that the receivers know the channel and
that coherent demodulation is available. If a source node fails
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to decode its partner’s packet – or if it is initiating the session
and thus has nothing to relay – it modulates only its own
packet and transmits the result using full power.

This model follows [6] closely with two exceptions. First,
we consider coded cooperative diversity instead of the repeti-
tion based cooperation adopted in [6]. Second, in this model
the two source nodes may have different superposition factors
βA and βB , whereas only one global superposition factor was
assumed in [6].

III. PERFORMANCE ANALYSIS

Invoking the symmetry between Nodes A and B, we focus,
without loss of generality, on the error probability of the
packets originating at Node A. Following the analysis in [8],
there are four possible combinations of local and relay signals
for which the destination node must make a decision:

I Node A transmits the superposition of local and relayed
signals; Node B is able to decode and relay A’s packet.

II Node A fails to decode B’s packet and therefore trans-
mits only a local signal. Node B is able to decode and
relay A’s packet.

III Node A transmits the superposition of local and relayed
signals; Node B fails to decode A and offers no help.

IV Node A fails to decode B’s packet and therefore trans-
mits only a local signal. Node B fails to decode A and
offers no help.

This section analyzes the probability of occurrence PZ and
the conditional packet error probability PP (e|Z) for each of
these four cases - i.e., for Z ∈ {I, II, III, IV }. The end-to-
end packet error probability PP (e) can then be expressed as
[8]

PP (e) =
∑

Z∈{I,II,III,IV }
PZPP (e|Z), (2)

where e denotes the error event. We calculate PZ for Z ∈
{I, II, III, IV } in Section III-A and derive bounds for
PP (e|Z) in Section III-C.

A. Cooperation Success Rate

Node A transmits either a superimposed signal (cooperative
mode) or a signal modulated with only local bits (noncoop-
erative mode). Since Node B can subtract the relayed portion
from the received signal prior to decoding in the former case,
it can decode A’s message with fractional power (1−βA) when
signal superposition is used or with full power when A is not
relaying. Let ηA and ηB be the stationary probabilities that
Nodes A and B, respectively, transmit superimposed signals.
Because superposition is used at Node A if and only if Node
B’s packet was successfully decoded at Node A (and vice
versa), these relations hold:

1 − ηA = ηB · PS
B→A + (1 − ηB) · PN

B→A (3a)

1 − ηB = ηA · PS
A→B + (1 − ηA) · PN

A→B , (3b)

where PS
B→A and PN

B→A are the packet (block) error prob-
abilities of Node B’s packets at Node A with superposition
(fractional power (1 − βB)) and without superposition (full
power), respectively. Similarly PS

A→B and PN
A→B are the

packet error probabilities of Node A’s packets at Node B with

fractional power (1−βA) and full power, respectively. Solving
these equations for ηA and ηB , we obtain

ηA =(
1 − PN

B→A

)− (1 − PN
A→B

)(
PS

B→A − PN
B→A

)
1 − (PS

B→A − PN
B→A

)(
PS

A→B − PN
A→B

) (4a)

ηB =(
1 − PN

A→B

)− (1 − PN
B→A

)(
PS

A→B − PN
A→B

)
1 − (PS

B→A − PN
B→A

)(
PS

A→B − PN
A→B

) .(4b)

As a special case, when the channels A → B and B → A
have the same statistics and the superposition factors at A and
B are identical, then PN

A→B = PN
B→A, PS

A→B = PS
B→A, and

(4) can be simplified as

ηA = ηB =
1 − PN

A→B

1 + PS
A→B − PN

A→B

. (5)

The probability of the four cases described above can now be
expressed as

PI = ηA · (1 − PS
A→B

)
(6a)

PII = (1 − ηA) · (1 − PN
A→B

)
(6b)

PIII = ηA · PS
A→B (6c)

PIV = (1 − ηA) · PN
A→B . (6d)

If the inter-user channels are independent, then techniques
such as those in [13] may be used to evaluate the block error
probabilities PS

B→A, PN
B→A, PS

A→B , and PN
A→B . Conversely,

if the instantaneous channel gain from Node A to Node B is
identical to that from Node B to Node A – i.e., γAB = γBA, a
scenario we refer to by saying that the two inter-user channels
form reciprocal channels – then the decoding failures at Nodes
A and B are correlated. However, conditioned on the value of
the instantaneous SNR γAB , the errors are independent. In this
case, the probabilities PS

B→A, PN
B→A, PS

A→B , and PN
A→B are

evaluated assuming AWGN channel transmission with SNRs
γAB(1−βB), γAB , γAB(1−βA), and γAB , respectively, and
the expressions in (6) are averaged over the distribution of
γAB to take the effect of fading into account.

More generally, a pair of correlated complex Gaussian
channel gains can be decomposed into two independent parts
and one common part [14, Eqn. (1)-(3)]. Hence general cor-
related Rayleigh/Ricean inter-user channels can be analyzed
by first conditioning on the common part and calculating the
probabilities in (6) as if the channels were independent and
then averaging the results over the distribution of the common
part.

B. The Soft Demodulator

When the two source nodes cooperate, the destination
node must calculate the LLR of each bit from a received
superimposed signal of the form

r = a(−1)s + b(−1)i + n, (7)

where s is the desired bit (either relayed or local), i is the
superimposed interfering bit, n is zero mean Gaussian noise
with variance N0/2, and a and b are the amplitudes of the
desired signal and the interfering signal, respectively, whose
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m1(0|0) = −m1(1|1) = E
[
�̃(r)|s = 0, i = 0

]
=

2b√
πN0

(
e
− b2

N0 − e
− (2a+b)2

N0

)
+

4
N0

⎡
⎣a2 − b2Q

⎛
⎝
√

2b2

N0

⎞
⎠+ b(2a + b)Q

(√
2

N0
(2a + b)

)⎤⎦ (10a)
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[
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]
=

2b√
πN0

(
e−

b2
N0 − e−

(2a−b)2

N0

)
+

4
N0

⎡
⎣a2 + b(b − 2a)Q

(√
2

N0
(b − 2a)

)
− b2Q

⎛
⎝
√

2b2

N0

⎞
⎠
⎤
⎦ (10b)

m2(0|0) = m2(1|1) = E
[
�̃2(r)|s = 0, i = 0

]
=

8b√
πN3

0

[
(b2 − 2a2 − 2ab)e−

(2a+b)2

N0 + (2a2 − b2)e−
b2
N0

]
− 8b

N2
0

(4a2b + 2aN0 − 2b3 − bN0)Q

⎛
⎝
√

2b2

N0

⎞
⎠

+
8b

N2
0

(8a3 + 12a2b − 2b3 + 2aN0 − bN0)Q
(√

2
N0

(2a + b)
)

+
8a2

N2
0

(
2a2 + N0

)
(10c)

m2(0|1) = m2(1|0) = E[�̃2(r)|s = 0, i = 1]

=
8b√
πN3

0

[
(2a2 − 4ab + b2)e−

b2
N0 − (2a2 − 2ab + b2)e−

(2a−b)2

N0

]
− 8b

N2
0

(4a2b + 2b3 − 8ab2 + bN0 − 2aN0)Q

⎛
⎝
√

2b2

N0

⎞
⎠

− 8b

N2
0

(8a3 − 12a2b + 8ab2 − 2b3 + 2aN0 − bN0)Q
(√

2
N0

(b − 2a)
)

+
8a2

N2
0

(2a2 + N0) (10d)

values are determined by the appropriate channel gains and
the superposition factors βA and βB .

To provide a meaningful analysis for such a system, a model
for the soft demodulator is required. Since both signals a + b
and a− b correspond to s = 0 while both signals −a + b and
−a−b correspond to s = 1, the ideal soft demodulator output
for bit s is [15]

�(r) = log
exp(− (r−a+b)2

N0
) + exp(− (r−a−b)2

N0
)

exp(− (r+a+b)2

N0
) + exp(− (r+a−b)2

N0
)
. (8)

A good approximation �̃(r) ≈ �(r) that also simplifies the
analysis can be obtained by taking only the dominant terms
in the numerator and denominator:

�̃(r) =
1

N0

{
min[(r + a + b)2, (r + a − b)2]

−min[(r − a + b)2, (r − a − b)2]
}

=

⎧⎪⎨
⎪⎩

4a
N0

(r + b) r < −a
4(a−b)

N0
r −a ≤ r ≤ a

4a
N0

(r − b) r > a.

(9)

The means m1(s|i) and second moments m2(s|i) of �̃(r) are
given by (10) at the top of this page, where the channel
observation r in (7) is a Gaussian random variable for any
particular combination of s and i.

In a Gaussian channel, the mean of the output is the signal
amplitude and the variance of the output is the noise variance.
The channel SNR is proportional to the ratio between the
square of the signal amplitude (signal energy) and the variance
of the output. Since the LLRs at the output of the demodulator
represent the soft inputs of the channel decoder, we now define

two equivalent SNRs (given as 2m2
1/(m2 − m2

1)) by1 [16]

γeq,1 =
2m2

1(0|0)
m2(0|0) − m2

1(0|0)
�
= ρ1

(
a2

N0
,

b2

N0

)
(11a)

γeq,2 =
2m2

1(0|1)
m2(0|1) − m2

1(0|1)
�
= ρ2

(
a2

N0
,

b2

N0

)
,(11b)

where the quantities a2

N0
and b2

N0
can be interpreted as the

SNRs of the desired bit and the superimposed interfering bit,
respectively. The functions ρ1(·, ·) and ρ2(·, ·) characterize
how the equivalent SNR depends on the SNRs of the desired
bit and the superimposed bit, given that the two bits have the
same or opposite values.

C. Conditional Error Probabilities

In the absence of cooperation, each source node transmits
its own BPSK-modulated symbols, and thus the LLRs at the
demodulator output have a Gaussian distribution. When su-
perposition is applied, however, both the exact and simplified
approximate LLRs in (8) and (9) are no longer Gaussian; under
this scenario, the exact pairwise error probabilities can be
computed via the moment generating function (MGF) [17, Ap-
pendix A]; however, the MGF method requires inverse Laplace
transforms, which can be computationally burdensome. As a
result, we instead adopt a Gaussian approximation for these
LLRs. This can be justified for two reasons: first, the LLRs
are piecewise linear functions of Gaussian random variables,
as seen in (9), and hence have Gaussian-like tails; second, an
error event in a coded system involves several LLRs, and so
a central limit theorem argument can be invoked.

1The factor of two comes from the fact that the SNR is defined as Es/N0

and the noise variance is N0/2.
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PI(d|γAD, γBD) =
d1∑

j=0

d2∑
k=0

2−(d1+d2)

(
d1

j

)(
d2

k

)
Q
(√

2Δ1 + 2Δ2

)
(13a)

Δ1
�
= jρ1

(
γAD(1 − βA), γADβA

)
+ (d1 − j)ρ2

(
γAD(1 − βA), γADβA

)
(13b)

Δ2
�
= kρ1

(
γBDβB, γBD(1 − βB)

)
+ (d2 − k)ρ2

(
γBDβB, γBD(1 − βB)

)
(13c)

PII(d|γAD, γBD)

=
d2∑

k=0

2−d2

(
d2

k

)
Q

(√
2d1γAD + 2kρ1

(
γBDβB, γBD(1 − βB)

)
+ 2(d2 − k)ρ2

(
γBDβB, γBD(1 − βB)

))
(13d)

PIII(d1|γAD) =
d1∑

j=0

2−d1

(
d1

j

)
Q

(√
2jρ1

(
γAD(1 − βA), γADβA

)
+ 2(d1 − j)ρ2

(
γAD(1 − βA), γADβA

))
(13e)

PIV (d1|γAD) = Q
(√

2d1γAD

)
(13f)

PP (e|Z) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 −
∫ ∞

0

∫ ∞

0

(
1 − min

⎡
⎣1,

∞∑
d=df

a(d)PZ(d|γAD, γBD)

⎤
⎦)K

pAD(γAD)pBD(γBD)dγADdγBD, Z = I, II

1 −
∫ ∞

0

(
1 − min

⎡
⎣1,

∞∑
d1=d′

f

a′(d1)PZ(d1|γAD)

⎤
⎦)K

pAD(γAD)dγAD, Z = III, IV

(14)

Assuming that linear codes are used, we only need to
consider the pairwise error probability between the all-zero
codeword and an erroneous codeword with Hamming weight
d to employ the union bound [18]. In a Gaussian channel, the
pairwise error probability can be written as [19, eqn. (12.13)]

Q

⎛
⎝
√√√√2

d∑
i=1

γi

⎞
⎠ , (12)

where γi is the channel SNR of the i-th nonzero bit in the
erroneous codeword. Note that, for the LLR of a superimposed
bit, the Gaussian approximation is conditioned on the value of
the interfering bit; thus, the equivalent SNR in (11) depends on
whether the two bits are equal or not. Hence, for an erroneous
codeword with Hamming weight d′, there are 2d′

possible
combinations of the two equivalent SNRs ρ1(·, ·) and ρ2(·, ·),
and the multiplicity of combinations where k out of d′ bits
have value one is given by

(
d′

k

)
. The pairwise error in each

combination can be calculated using (12), and it follows that
we can formulate the pairwise error probabilities for each
superposition case as the weighted sum of the pairwise error
probabilities in each combination, shown in (13), where d1 is
the Hamming weight contributed to the erroneous codeword
by the local codeword ct

A,L generated at Node A, d2 is the
Hamming weight contributed to the same erroneous codeword
by the relay codeword ct

A,R regenerated at Node B, and
d1+d2 = d is the Hamming weight of the erroneous codeword
in the overall low rate code that combines ct

A,L and ct
A,R.

For each case except case IV, the pairwise probabil-
ity is obtained as a weighted sum of Q-functions over
all possible combinations of the equivalent SNRs, where
the weights correspond to the total probability of each
combination. The arguments of the Q-functions depend

on the sum of the SNRs associated with those bits that
contribute Hamming weight to the erroneous codeword.
For the LLRs corresponding to signal superposition, the
equivalent SNR for the transmission of local information
from Node A can be either ρ1 (γAD(1 − βA), γADβA) or
ρ2 (γAD(1 − βA), γADβA). Similarly, the equivalent SNR for
the transmission of relay information from Node B is either
ρ1 (γBDβB, γBD(1 − βB)) or ρ2 (γBDβB, γBD(1 − βB)).
The “limit before averaging” technique [13] can provide tight
and numerically useful upper bounds in fading channels by
limiting the union bound to be less than one before averaging
over the fading distribution. Thus, we adopt this technique to
evaluate the conditional packet error probability as shown in
(14) at the top of this page, where df is the free distance of
the overall low rate convolutional code combining ct

A,L and
ct

A,R and d′f is the free distance of the high rate local convo-
lutional code. Additionally, a(d) represents the multiplicity of
combined codewords with Hamming weight d = d1 +d2, and
a′(d1) is the multiplicity of local codewords with Hamming
weight d1. Finally, K is the number of information bits in
one packet. (The conditional bit error probabilities can also be
bounded using the pairwise error probabilities given in (13)
in a straightforward manner [8], [13].)

IV. NUMERICAL RESULTS AND OPTIMIZATION

We use the cooperative convolutional code design derived
from a block fading channel perspective in [4] for our nu-
merical examples. The local codewords ct

A,L and ct
B,L are

generated by the rate 1/2 code (in octal notation) [15, 17]8
and the relay codewords ct

A,R and ct
B,R are generated by the

rate 1/2 code [13, 15]8. The destination node uses the decoder
corresponding to the rate 1/4 code [15, 17, 13, 15]8 to exploit
diversity when a relayed signal is available. In evaluating
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Fig. 3. Packet error probability for Rayleigh fading channels with β =
βA = βB , ΓAD = ΓBD = ΓAB .

the union bound, terms corresponding to distance greater
than df + 15 are dropped. The Hamming distances and their
corresponding multiplicities can be efficiently calculated using
a slightly modified BEAST algorithm [20]. All channels are
subject to independent block Rayleigh fading. The information
packets contain 500 bits each, and 12 additional CRC bits are
appended prior to convolutional encoding to detect decoding
failures at the partner nodes. (Since the CRC is neglected in
our analysis, we do not distinguish between information bits
and CRC bits and use 500 + 12 = 512 bit packets for the
numerical calculation.)

First consider the case in which the fading observed on
all the channels has the same distribution and the power
allocations at Nodes A and B are identical – i.e. βA = βB = β.
In Figure 3, the calculated packet error probability union
bound approximations are compared with Monte Carlo sim-
ulations, with superposition factors β = 10% and β = 35%,
for two different scenarios - one in which the inter-user
channels have independent fading and another in which the
fading observed in both directions in a given time slot is
the same (i.e., the “reciprocal channel” assumption). In all
four cases, the analytical results track the simulation results
closely. For example, at a packet error rate of 10−2, the
bound is only about 0.3 dB from the simulation curve, and
this level of agreement is consistent over the entire range of
interest. (This consistency is due to the averaging effect of
the fading distribution.) Comparing the independent inter-user
channels case with the reciprocal inter-user channels case, the
latter results in a slightly lower error probability. This is best
explained by the fact that γAB = γBA reduces the probability
of case III – the worst possible scenario, in which one node
is helping the other node but is not being helped itself. The
more pronounced disparity with increased β is due to the error
performance in case III being made worse by large β’s.

Clearly the superposition factor β plays an important role
in error performance. The effect of β on the packet error
probability is shown in Figure 4 for independent inter-user
channels and average SNR’s of 20 dB and 30 dB. Once
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Fig. 4. Packet error probability as a function of the superposition factor
β = βA = βB at an average Eb/N0 of 20 dB and 30 dB, assuming ΓAD =
ΓBD = ΓAB and independent inter-user channels.
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Fig. 5. Values of β = βA = βB that minimize the analytical bound
at different SNRs ΓAD = ΓBD = ΓAB , for both independent inter-user
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again, the approximation provides good agreement with the
simulation results for different values of β = βA = βB . It is
worth noting that the simulation results tend to be closer to
the bound for larger values of β. We conjecture the reason
is the error in the Gaussian approximation, which potentially
offsets some looseness in the union bound.

Figure 5 shows the optimal value of β = βA = βB as a
function of the average SNR, for both the reciprocal inter-
user channels and the independent inter-user channels. Here,
the “optimal” value of β is the one that minimizes the union
bound, obtained by searching over the interval (0, 0.5). The
optimum β is shown to be zero in the low SNR region;
setting β = 0 degenerates the signal superposition system
into a noncooperative system, which performs better than
signal superposition cooperation at low SNRs. The optimum
β for SNRs above 10 dB falls into the 10-15% range found
empirically in [6] for a repetition based configuration; more
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Fig. 6. The error probabilities of the packets originating at Node A as a
function of the superposition factors βA and βB . The average Eb/N0 is
20 dB and 30 dB, respectively.

specifically, Figure 5 indicates that the optimum β approaches
a constant at high SNRs – β = 0.127 for independent
inter-user channels and β = 0.144 for reciprocal inter-user
channels. (At all SNR values, the optimum value of β for
reciprocal channels is higher than for independent channels.)
More generally, the optimal value of β depends on the
particular channel model and the convolutional code being
used.

Now we consider the more general case where βA �= βB .
Figure 6 depicts the union bound on the error probability of the
packets originating at Node A as a function of βA and βB . The
interuser channels are independent and all channels have the
same average SNR of 20 or 30 dB (the error probability of the
packets originating at Node B can be obtained by exchanging
βA and βB). Figure 6 shows that the packet error rate for
Node A is more sensitive to changes in its own superposition
factor (βA) than to changes in its partner’s (βB). Comparing
the 20 dB case to the 30 dB case, it is apparent that the
superposition factors have a more significant impact at higher
SNRs.

Figure 6 also indicates that it is possible to provide unequal
error protection for the traffic from the two different nodes,
even with similar uplink channels (ΓAD = ΓBD). As an
example, Figure 7 shows the packet error probabilities for a
cooperative diversity system with βA = 0.35 and βB = 0.1.
By allocating more of Node A’s power to cooperation, Node
B’s performance can be improved at the cost of deteriorated
performance for Node A’s packets. This property could be
of value when Node A and Node B have different error rate
requirements; the analysis provides a useful tool to design and
tune these unequal error requirements.

The effect of “unbalanced” uplinks to the destination - i.e.,
ΓAD �= ΓBD - is considered in Figures 8 and 9. In both
figures, ΓAD = ΓAB = ΓBA is the value on the X-axis and
ΓBD is varied to be 9 dB, 6 dB, 3 dB, and 0 dB higher
than ΓAD. It is evident that Node B enjoys an improved error
performance when ΓBD increases, and Node A also benefits
from Node B’s better channel to the destination thanks to the
effect of diversity. Comparing Figures 8 and 9, it is observed -
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Fig. 7. Setting βA �= βB can create error performance disparities, even
with equivalent uplink channels. Independent inter-user channels and identical
average channel SNRs are assumed.
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Fig. 8. The error probabilities of the packets originating at Node A, when
its partner, Node B, enjoys a better channel, i.e. a larger ΓBD . Independent
inter-user channels and βA = βB = 0.1 are assumed.

not surprisingly - that Node A has slightly worse performance
than Node B when Node B’s uplink channel is better than
Node A’s. This is because, while both nodes benefit from
the improved ΓBD, Node B exploits it more effectively in
two ways: first, because βB = 0.1, only 10% of the better
channel is used to relay Node A’s data while 90% of the better
channel is used to transmit Node B’s data; and second, Node
B always gets to transmit over the better channel, while Node
A’s packets are conveyed over the better channel only when
Node B successfully decodes Node A’s transmission.

Figure 10 displays the effects of both unequal superposition
factors (βA �= βB) and unbalanced uplinks. Specifically,
this figure assumes ΓAB = ΓBA = ΓAD = 30 dB and
ΓBD = 33 dB. As in the identical uplink channel case,
tuning βA and βB improves the performance of one source
at the cost of the other. Moreover, it is interesting to observe
that, despite the unbalanced uplink channels, the two error
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Fig. 9. The error probabilities of the packets originating at Node B, when
it enjoys a better channel than its partner, Node A. Independent inter-user
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when ΓAD = ΓAB = 30 dB and ΓBD = 33 dB.

probability mesh intersects. Thus, with proper tuning of βA

and βB , it is possible to provide equal error protection even
when the uplink channel conditions are unequal.

V. CONCLUSIONS

We have developed an analytical performance bound for
a coded cooperative diversity signal superposition system.
Numerical calculations based on the bound match computer
simulation results very closely. Minimizing the bound shows
the dependence of the optimum superposition factor on the
operating SNR. By allowing different superposition factors at
the two partner nodes, we can either provide unequal error
protection for the traffic from the two nodes, or, conversely,
equalize the error probabilities even when one node has a
better channel to the destination. QPSK modulated signal
superposition systems can also be addressed using our analysis

in a straightforward manner since a QPSK signaling can be
viewed as a BPSK signaling in both the I and the Q channel.
The analysis provides a useful tool for performance prediction
and design parameter optimization for signal superposition
based cooperative diversity systems.
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