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Abstract—We propose a forward error correction scheme for
asynchronous sensor communication where the dominant errors
consist of pulse deletions and insertions, and where encoding is
required to take place in an instantaneous fashion. The presented
scheme consists of a combination of a systematic convolutional
code, an embedded marker code, and power-efficient frequency-
shift keying (FSK) modulation at the sensor node. Decoding is
first obtained via a maximum a-posteriori (MAP) decoder for the
marker code which achieves synchronization for the insertion and
deletion channel, followed by MAP decoding for the convolutional
code. Besides investigating the rate trade-off between marker and
convolutional codes, we also show that residual redundancy in
the asynchronously sampled and quantized source signal can be
successfully exploited in combination with redundancy only from
a marker code. This provides a low complexity alternative for
deletion and insertion error correction compared to using explicit
redundancy.

I. INTRODUCTION

In recent years there has been growing demand of low-
power small-size sensors for short-range wireless sensing ap-
plications (see, e.g., [1–3]), such as environmental observation,
biomedical, and health care monitoring. Typically, such appli-
cations require extremely power efficient integrated sensors
capable of providing reliable wireless links under low circuit
complexity, long battery life, and a small sensor footprint.

One potential approach to address the challenge of a low-
complexity sensing operation is to replace classical Nyquist-
based synchronous signal processing by an asynchronous
sensing architecture combined with an asynchronous wireless
interface. In fact, it has been shown that the Nyquist “sampling
and quantization" approach is not the optimal solution for
recording highly correlated analog waveform data or sparse
signals [4], which are ubiquitous in most low-power sensing
applications. Note that the power saving advantage of asyn-
chronous sensing generally lies in the fact that if the input
signal is inactive or no changes are detected, no sampling and
transmission is made [5]. In contrast to the sensor node it is
often assumed that the base station is wall powered and thus
is able to run sufficiently complex algorithms.

While there has been significant activity related to un-
derstanding the theory and implementation of asynchronous
sampling, only little work has been reported addressing the
difficulty of communicating asynchronous samples in a reliable
fashion over noisy channels. The drawback of uncoded asyn-
chronous communication lies in the fact that the channel noise
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may lead to symbol insertions and deletions at the receiver,
thus destroying the data synchronization [6].

On the other hand, a large amount of work has been devoted
to insertion and/or deletion block error correcting codes for
synchronous communication systems (see, e.g., [7]). Recently,
concatenated codes have been considered, for example the
concatenation of an outer forward error correction code and an
inner nonlinear resynchronization code by inserting a specific
number of marker bits which are exploited at the decoder to
maintain synchronization of the bitstream (see, e.g., [8–11]).
Also, convolutional codes for the insertion/deletion channel
have been considered by either extending the state space of
the code [12] or by modifying the path metric of the Viterbi
decoder [13].

In this paper, we extend our previous results for the uncoded
case in [6] to coded asynchronous communication. To the best
of our knowledge, this is the first time that error correction
has been addressed in the context of a communication system
based on asynchronous sampling. Note that synchronous in-
sertion/deletion error correcting schemes from above cannot
directly be applied to the asynchronous setting. For example,
the fact that in asynchronous communication the information
about the underlying waveform signal is mostly contained
in the timing information of the transmitted signal pulses
only allows to embed code redundancy via extending the
modulation alphabet and not by adding extra pulses. For the
same reason, the code must be necessarily systematic.

These constraints are addressed in the following by a
deletion/insertion correction scheme based on a combination
of a systematic convolutional code, an embedded marker code,
and power-efficient frequency-shift keying (FSK) modulation
at the sensor node tailored to the asynchronous setting. Note
that employing a convolutional code allows for encoding in
a streaming fashion with low latency and only requires a
buffer length of a few bits at the complexity constrained
sensor node. We also show that residual redundancy in the
asynchronously sampled and quantized source signal can be
successfully exploited for synchronization in combination with
a marker code, thus providing an extremely low complexity
alternative to using explicit redundancy from a channel code.

II. ASYNCHRONOUS SAMPLING

We first describe the asynchronous sample acquisition pro-
cess carried out at the sensor node [6]. Fig. 1 shows a
waveform quantized by using asynchronous delta modulation,
where S(tk) denotes the amplitude of the waveform signal
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Fig. 1. Asynchronous sampling via asynchronous delta modulation [6].
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Fig. 2. System model

at time tk. At each time the waveform is compared with M
thresholds, with the quantization decision interval defined as
∆ , 2 maxt(|S(t)|)

M . Whenever the waveform exceeds a decision
threshold in the direction of increasing amplitude a "+1" sam-
ple is recorded at that specific time, otherwise a "-1" sample is
placed; "+1" and "-1" are mapped to bits 1 and 0, respectively.
In order to implement this scheme, no clock circuit is required
at the sensor node compared to a traditional Nyquist based
“sample and quantize” operation, which significantly reduces
the power consumption of the sensor node.

III. SYSTEM MODEL

The system model employed in this paper is shown in Fig. 2.
First, the analog waveform signal S(t) is asynchronously
sampled into the sample bits utk at time tk, k = 1, . . . , T , as
described in Section II, where T denotes a prescribed number
of transmitted bits. Then, along with generated parity bits
pt′k and marker bits mt′′k

to ensure synchronization, Q-FSK
pulses comprising orthogonal sinc waveforms are generated.
FSK modulation is employed due to its power efficiency and
its suitability for ultra wideband radio operation (see [6]).
We restrict ourselves to Q = 2 for the uncoded and to
Q = 4 for the coded case, respectively. Note that in order
to preserve the timing information generated in the sampling
process, redundancy can only be added by extending the
symbol alphabet, which also extends the bandwidth of the
transmission.

Fig. 3 addresses the coded case for Q = 4 and shows how
asynchronously sampled information bits utk , parity bits pt′k ,
and marker bits mt′′k

are arranged to form Q-ary modulation
symbols. Each of these symbols is transmitted at a specific
time tk determined by the timing information generated in
the asynchronous sampling stage. During the first block of K
symbols, only information bits are communicated, with the
parity bits set to zero. At time tK , a marker bit mtK is added,
whose value is fixed and assumed to be known at the receiver.
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Fig. 3. Combination of information and redundant bits for FSK pulse forming.
A 4-FSK symbol is obtained by combining the bits stacked on top of each
other.

The receiver uses this marker information to resynchronize the
received bit sequence from deletion and insertion errors. The
next block in Fig. 3 contains information bits from time tK+1

to t2K and another marker bit at time tK+1. The redundancy
in the rest of the block is constituted by parity bits generated
from the information bits in the previous length-K block. This
“chaining” approach for the parity bits is required due to the
causality of the encoding process and the fact that the timing
information tk for each waveform sample must be preserved.
The number of samples (or FSK pulses) between two blocks
of marker bits is defined as Nc. As one important practical
constraint, typically K is required to be quite small, since it
is directly related to chip area and energy consumption of the
sensor. For that reason we will employ parity bits pt′k obtained
from a systematic convolutional code with rate Rc = K/N .
Also, let Rm denote the coderate for the marker code. Then,
for Q = 4 we obtain the constraint RcRm = 1/2 for the
tradeoff between the two coderates.

After encoding, the modulated signal x(t) is transmitted
over an AWGN channel. The observation at the channel
output y(t) is applied to a matched filter (MF) receiver and
the channel decoder which ensures resynchronization (i.e.,
insertion and deletion error correction) and the correction of
substitution errors on the channel, followed by the waveform
reconstruction stage. In the MF receiver, the output of the Q
matched filters is compared with a threshold on a very fine grid
(by running a high frequency local clock at the base station),
and whenever the threshold is exceeded, the corresponding Q-
ary symbol is reconstructed. A deletion error occurs when the
energy waveform after the MF lies below a certain threshold
γ. In contrast, an insertion takes place when channel noise
during a silent phase triggers the threshold.

IV. ERROR CORRECTION

In [10] a forward backward algorithm (FBA) for correcting
insertion, deletion, and substitution errors for synchronous
transmission was introduced based on ideas from [8]. We
define xT1 = (x1, x2, ..., xT ) as the transmitted bit sequence
of length T when conveyed through the deletion/insertion
channel. Likewise, yR1 = (y1, y2, ..., yR) is the received
sequence of length R, where both R and T are assumed to be
known at the receiver. The sequence xT1 is composed of equal
length information segments interrupted by periodic marker
bits. Dk,n is defined as the event that when the transmitted
bit length is k, the received bits length is exactly n, where
k ∈ {1, 2, 3, ..., T}, n ∈ {1, 2, 3, ..., R}. Dk−1,n−1 → Dk,n

represents a transmitted bit potentially suffering a substitution
error, while Dk−1,n → Dk,n and Dk−1,n−2 → Dk,n denote
a bit being deleted and inserted during transmission, respec-
tively.



As in the classical BCJR algorithm [14] we define αk,n ,
P (Dk,n, y

n
1 ) and βk,n , P (yRn+1|Dk,n). Then, forward and

backward recursion are defined as [8]

αk,n =
Pi
4
αk−1,n−2 + Pdαk−1,n+

Ptαk−1,n−1

∑
xk

P (xk)(1− Ps)δxk,ynP
1−δxk,yn
s , (1)

with δx,y denoting the Kronecker delta. Further, Pi and Pd
denote insertion and deletion probabilities, resp., Ps is defined
as the substitution (symbol) error probability, and Pt , 1 −
Pi − Pd. The recursion for βk,n is defined similarly. Finally,
we obtain

P (yR1 |xk) =

min(2k,R)∑
n=2

Pi
4
αk−1,n−2βk,n+

min(2k,R)∑
n=0

Pdαk−1,nβk,n

+

min(2k,R)∑
n=1

Ptαk−1,n−1βk,n(1− Ps)δxk,ynP
1−δxk,yn
s . (2)

A. Inner decoding of synchronization errors

We now employ the above algorithm with some modifi-
cations as inner decoder for synchronization errors in the
asynchronous communication setup described in Section III.
For the sake of brevity we denote timing information tk as
k, whenever there is no ambiguity. Fig. 3 indicates that the
symbol alphabet is now defined over F4, which means that (1),
the corresponding equation for βk,n, and (2) must be modified
for the resulting symbol based FBA. Specifically, the a priori
probability Pi/4 must be replaced with Pi/16. Further, for
xk, yn ∈ F4 if xk contains a marker bit 0, i.e., xk ∈
{[00], [10]}, we have P (xk = [00]) = P (xk = [10]) = 0.5.
Likewise, if xk contains a marker bit 1, i.e., xk ∈ {[01], [11]}
we have P (xk = [01]) = P (xk = [11]) = 0.5, otherwise
we obtain P (xk) = 0.25. We can calculate the conditional
marginal log-lokelihood ratio (LLR) for the information bit
uk at time tk from the output of the symbol-based FBA as

L(uk|yR1 ) = log

(
P (xk = [00]|yR1 ) + P (xk = [01]|yR1 )

P (xk = [10]|yR1 ) + P (xk = [11]|yR1 )

)
.

(3)
These LLRs can be used to directly determine the transmit-

ted data via hard decision decoding or can be further utilized
in the outer decoder for the convolutional code. For this we
apply the standard BCLR algorithm [14], which is employed
to recover the substitution errors remaining at the output of
the inner decoder. Here, the information block length K in
Fig. 3 is the number of information bits associated with a
single state transition for the convolutional code. Even if we
are able to recover the position of a deleted pulse as outlined
below, its value is still unknown and thus can be seen as an
erased symbol with respect to the outer convolutional code.

B. Location of deleted and inserted symbols

The obtained results from inner synchronization decoding
are now employed to localize the position of deleted and
inserted FSK pulses by visualizing the evolution of transmitted

and received symbols on a two dimensional grid of dimension
T × R. Examples are shown in Fig. 4. A diagonal path
with n(k) = k means that no insertions or deletions have
occured during transmission. In contrast, for synchronization
errors the path deviates from the diagonal line, where deletion
errors cause the path to move upwards, and insertion errors
downwards, respectively. For example, in Fig. 4(a), there is a
deletion at transmitted position 50, and Fig. 4(b) shows both
a deletion and an insertion at transmitted positions 197 and
212, respectively.
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Fig. 4. Optimum path to locate deletions/insertions

By leveraging the results from the symbol-based FBA, this
path can be estimated by obtaining the most likely grid point
n̂(k) at position k belonging to this path as

n̂(k) = arg max
n

{
Pi
16
αk−1,n−2βk,n, Pdαk−1,nβk,n,

Ptαk−1,n−1βk.n(1− Ps)δxk,ynP
1−δxk,yn
s

}
. (4)

For insertions errors we can remove the extra pulses directly
where they are located. However, the exact position of a
deleted pulse after MF filtering between adjacent pulses at
times tk and tk+1 is still unknown and cannot be recovered at
the receiver. As a workaround we have empirically obtained
the distribution of the relative position of deleted pulses
between its neighbors for a typical waveform signal in medical
applications, a mouse heart beat signal of 10 ms duration,
asynchronously quantized with M = 63 threshold levels. The
resulting distribution for the normalized sample position is
shown in Fig. 5. As we can see, the distribution is highly
concentrated around the midpoint of the interval, such that
placing a deleted pulse at this midpoint will only incur a small
additional end-to-end distortion in the average.

C. Exploiting residual source redundancy
In the following we introduce a simple model for data bits

obtained by asynchronously quantizing the waveform source
signal. This allows us to exploit residual source redundancy
in the outer decoder instead of explicit redundancy from
a convolutional code. The proposed model makes use of
the simple observation that for an asynchronously sampled
waveform signal with moderate M the obtained data sequence
contains alternating contiguous runs of the form "00. . . " and
"11. . . ". We consider the most conservative case by addressing
only the two-bit “runs” "00" and "11", which leads to the
four-state Markov chain depicted in Fig. 6. Based on the
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Fig. 5. Distribution of the relative position of deleted pulses between its
neighbors for a typical waveform signal in medical applications (heart beat
signal of a mouse).
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transition probabilities α and β we can compute the steady
state probabilities µi for state Si, i ∈ I, I = {0, 1, 2, 3}, as
µ0 = ᾱβ̄

2ᾱβ̄+ᾱ+β̄
= µ2, µ1 = β̄

2ᾱβ̄+ᾱ+β̄
, and µ3 = ᾱ

2ᾱβ̄+ᾱ+β̄

with ᾱ , 1 − α and β̄ , 1 − β, respectively. For the above
mentioned mouse heartbeat signal and M = 63 we obtain
α = 0.9533 and β = 0.9537. The entropy rate of this source
can be computed as H(X ) = −∑i∈I µi

∑
j∈I pij log2 pij =

0.1798 bits with p01 = p23 = 1, p11 = α, p12 = ᾱ, p33 = β,
p34 = β̄, all other pij are zero.

We can now use a variant of the BCJR algorithm to compute
the a posteriori probabilities P (Ψk = p|yR1 ) for the state Ψk

at time tk, where p, q ∈ I, as

P (Ψk = p|yR1 ) =
∑
q∈Ip

P (Ψk = p,Ψk+1 = q|yR1 )

=
∑
q∈Ip

αk(p)γk(p, q)βk+1(q), (5)

where Ip represents the set of all states at time tk+1 which
are connected to state Ψk = p. We further have

αk+1(q) =
∑
p∈I

αk(p)γk(p, q), (6)

with a similar definition for the βk(p) term in (5). Finally, the
γk(p, q)-term is given as

γk(p, q) = P (Ψk+1 = q|Ψk = p)·
P (yR1 |Ψk = p)︸ ︷︷ ︸

P (yR1 |xk)

·P (yR1 |Ψk+1 = q)︸ ︷︷ ︸
P (yR1 |xk+1)

(7)

where P (Ψk+1 = q|Ψk = p) is the state transition probability
of the Markov chain in Fig. 6 for p, q ∈ I. Further, the
probabilities P (yR1 |Ψk = p) and P (yR1 |Ψk+1 = q) are
determined by the output of the inner symbol-based FBA and
constitute the a priori input for the source BCJR algorithm.

V. SIMULATION RESULTS

In order to evaluate the proposed error correction strat-
egy, we employ an 10 ms excerpt of the above mentioned
recorded mouse heart beat signal, asynchronously quantized
with M = 63 threshold levels. The marker bits are fixed
as (mt`K ,mt`K+1

) = (0, 1) with ` being an odd integer.
Table I shows the employed feedforward convolutional codes
for different values of Nc along with the corresponding
mother coderates R, punctured rates Rc, and marker rates
Rm. In order to preserve the timing information of the pulses
only parity bits are punctured. Also, the puncturing patterns
are selected such that the combined deletion, insertion, and
substitution error probabilities are minimized.

TABLE I
CODE RATES AND PUNCTURING SCHEMES FOR THE EMPLOYED

SYSTEMATIC CONVOLUTIONAL CODES

R Generators (octal) Puncturing matrix Rc Nc Rm

2
3

g(1) = 3, g(2) = 7 — 2
3

2 3
4

1
2

g(1) = 15

[
1 1 1
1 1 0

]
3
5

4 5
6

1
2

g(1) = 15

[
1 1 1 1 1
1 1 0 1 1

]
5
9

8 9
10

Fig. 7 displays the achieved end-to-end mean-squared-error
(MSE) distortion for the code from the first row of Table I
(Rc = 2/3) under different MF thresholds γ. For high values
of γ deletion errors dominate, whereas for low values of γ
insertion errors are the dominant ones. Note that we introduce
additional distortion by the potentially erroneous location of
inserted and deleted pulses and by approximating the timing
information of a deleted pulse by its expected value.

In Fig. 8 we compare the total symbol error probability,
i.e., insertion, deletion, and substitution errors for different
amounts of marker redundancy Nc and the codes displayed
in Table I for a threshold of γ = 0.6. Despite this figure
ignores errors due to incorrect localization of the position
of deleted and inserted pulses, it still provides a reasonable
assessment for the performance of these schemes. Fig. 8 also
shows the performance for a scheme in which all explicit
redundancy is constituted by a marker code (i.e., Rm = 1/2,
Rc = 1) and where source redundancy instead of explicit
redundancy is used to fix the value of the information bits after
deletion/insertion inner decoding. We observe from Fig. 8 that
increasing marker redundancy, i.e., smaller values of Nc, also
leads to a smaller total error probability if a convolutional code
is used to clean up the residual errors after insertion/deletion
decoding. However, the scheme based on source redundancy
suffers from a higher error probability even it uses Nc = 0.
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Fig. 7. MSE distortion for the code from the first row of Table I (with
Rc = 2/3) under different MF threshold values γ.
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Fig. 8. Total error probability for the codes displayed in Table I and a
MF threshold of γ = 0.6. The scheme with Rc = 1 uses residual source
redundancy and explicit redundancy solely from a marker code.

This is due to the fact that despite the entropy rate induced
by the source redundancy is low, this does not provide any
advantage in minimum distance compared to the uncoded
case (i.e., we have dmin = 1). This is also supported by the
observation that for Rc < 1 additionally exploiting source
redundancy after channel decoding does not provide a sig-
nificant further gain in performance. We can also see from
Fig. 8 that solely employing source redundancy provides a
significant gain compared to just using the inner marker code
and a hard decision after the output of the inner FBA decoder.

The resulting end-to-end MSE distortion is shown in Fig. 9
which also includes errors due to inaccurate localization of
deleted and inserted transmit pulses. We observe that all three
schemes using explicit redundancy have similar performance,
whereas the scheme using implicit source redundancy suffers
from a performance penalty of around 0.5 dB in SNR for small
to moderate channel SNRs. Also, solely employing a marker
code without any additional explicit or implicit redundancy
incurs an additional penalty of 0.5 dB for moderate SNRs.

VI. CONCLUSION

We have presented a concatenated error correction scheme
for asynchronous communication comprising a combination of
a systematic convolutional code, an embedded marker code,
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Fig. 9. MSE distortion for γ = 0.6 and the codes from Fig. 8.

and efficient FSK modulation at the sensor node. Simula-
tion results have shown that if explicit redundancy from a
convolutional code is employed, a higher ratio of marker
bits provides a lower end-to-end distortion. This observation
makes residual source redundancy schemes an attractive low
complexity alternative with only a small loss in performance
compared to using explicit redundancy from a convolutional
code as it allows to use the maximal rate for the marker bits.
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