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Abstract—We study the problem of strong coordination in
a three-terminal line network, in which agents use common
randomness and communicate over a line network to ensure
that their actions follow a prescribed behavior, modeled by a
target joint distribution of actions. We provide inner and outer
bounds to the coordination capacity region, and show that these
bounds are partially optimal. We leverage this characterization
to develop insight into the interplay between communication and
coordination. Specifically, we show that common randomness
helps achieve optimal communication rates between agents, and
that matching the network topology to the behavior structure
may reduce inter-agent communication rates.

I. INTRODUCTION

One fundamental problem in decentralized networked sys-
tems is to coordinate activities of different agents so that
they reach a state of agreement. In this paper, we measure
coordination by the ability to achieve a prescribed joint
probability distribution of actions at all agents in the network.
The information-theoretic limits of such a coordination have
been partly characterized [1] using the notions of empirical
coordination, which only requires the normalized histogram of
induced joint actions to approach a desired target distribution,
and strong coordination, where the sequence of induced joint
actions must be statistically indistinguishable from the target
distribution. If the actions to coordinate are dependent, it has
been shown that the communication rate among agents can be
significantly reduced compared to a basic approach of commu-
nicating explicit messages describing the actions. Further study
of the fundamental limits of networked coordination could
help develop insight into the interplay between communication
and coordination, which could in turn guide the design of many
applications, for example in distributed control or multi-agent
based exploration and surveillance.

The information-theoretic limits of empirical coordination
for small and large networks have been the subject of several
investigations. For instance, [2] studies the rate required to
reconstruct the empirical distribution of a source at the output
of a communication channel rather than reconstructing the
source itself. Further, [3], [4] analyze the rate of noise-free
communication required to mimic a noisy memoryless com-
munication channel. The work in [5] considers a distributed
multi-agent control problem, in which each agent generates
actions based on its own observations of a source of random-
ness. Recently, [6], [7] have proposed coordination schemes
based on polar codes achieving empirical coordination and
strong coordination for specific distributions of actions. The

Fig. 1. Coordination of three agents in a perimeter defense scenario.

generation of dependent random variables in networks under
a strong coordination constraint is considered in [8], [9], [10],
by considering bidirectional transmissions in several rounds;
however, these works only address the coordination of two
nodes.

In this paper, we attempt to develop further insight into
the relation between network communication topology and
coordination by extending the work in [1] about point-to-
point strong coordination to a three-terminal line network. We
provide inner and outer bounds to the coordination capacity
region and characterize the optimal communication rates be-
tween agents. We also analyze the impact of the underlying
network topology on the minimization of the communication
requirements for coordination.

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Motivating scenario
As a motivation, consider the perimeter defense scenario

illustrated in Fig. 1, in which three agents patrol a border
to avoid intrusions. Each agent is able to take sequences
of binary actions (“move left”, “move right”) described by
the random variables Xi ∼ Bern(pi), and the objective is
to communicate to achieve a desired behavior, captured by
a prescribed joint distribution qX1X2X3

of the actions. The
agents also have access to common randomness, which is
pictorially illustrated by an overhead satellite. In this sce-
nario, it is possible to deploy several communication network
topologies to coordinate the actions of the agents, and we are
interested in determining the optimal topology that minimizes
the inter-agent communication rate. As a first step towards
this goal, we study the problem of coordination along a line
network with unidirectional communication, in which Agent 1
can only communicate with Agent 2, and Agent 2 can only
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Fig. 2. Coordination over a line network.

communicate with Agent 3, possibly assisted by common
randomness.

B. Problem setting and main result

Formally, we consider the setting illustrated in Fig. 2,
in which three agents wish to coordinate their actions. The
actions taken by Agent i ∈ {1, 2, 3} is described by a sequence
of discrete actions xni ∈ Xni , and the behavior is captured by
the joint probability distribution of the actions. The network
has a line structure in the sense that there are only two
communication links:
• a noiseless link between Agent 1 and Agent 2, over which

Agent 1 transmit messages in the set M12 , J1, 2nR12K;
• a noiseless link between Agent 2 and Agent 3, over which

Agent 2 transmit messages in the set M23 , J1, 2nR23K.
In addition, we assume that all agents have access to a com-
mon source of randomness, which produces uniform random
numbers in the set M0 , J1, 2nR0K, and that Agent 1 inde-
pendently determines his own sequence of actions according
to the prescribed distribution qXn1 ; the objective is then to
control the actions of Agent 2 and Agent 3 by means of a line
coordination code defined as follows.

Definition 1: A (2nR0 , 2nR12 , 2nR23 , n) line coordination
code consists of:
• an encoder f12 : M0 × Xn1 → M12 to send messages

from Agent 1 to Agent 2;
• an actuator g2 :M0×M12 → Xn2 to generate the actions

of Agent 2;
• an encoder f23 :M0 ×M12 →M23 to send messages

from Agent 2 to Agent 3;
• an actuator g3 :M0×M23 → Xn3 to generate the actions

of Agent 3.
The communication and processing at each agent induces
joint actions characterized by the joint distribution of ac-
tions p(xn1 , x

n
2 , x

n
3 ). The goal is to design a code so that

p(xn1 , x
n
2 , x

n
3 ) is arbitrarily close to the target joint distribution

q(xn1 , x
n
2 , x

x
3) ,

∏n
i=1 qX1X2X3

(x1,i, x2,i, x3,i). Formally, a
rate triplet (R0, R12, R23) is achievable if there exists a
sequence of (2nR0 , 2nR12 , 2nR23 , n) line coordination codes
with increasing length n such that

lim
n→∞

V
(
pXn1 Xn2 Xn3 , qXn1 ,Xn2 ,Xn3

)
= 0,

where V denotes the, L1-distance between two distributions.
The set of all achievable rate triplets is called the coordination
capacity region C(qX1X2X3

), and the central result of this
paper is a partial characterization of C(qX1X2X3

).

As a baseline, let us start by considering a simple line coor-
dination code, in which Agent 1 takes a sequence of actions xn1
drawn according to qXn1 and sends an explicit description of xn1
to Agent 2; this requires a rate of R12 > H(X1) bits/action.
Agent 2 then takes a sequence of actions xn2 drawn according
to qXn2 |Xn1 =xn1

and sends an explicit description of both xn1
and xn2 to Agent 3; this requires a rate of R23 > H(X1X2)
bits/action. Agent 3 finally takes a sequence of actions xn3
generated according to qXn3 |Xn2 =xn2 ,X

n
1 =xn1

. Note that this code
does not exploit common randomness. Consequently, the rates
achievable by this code are(R0, R12, R23) :

R0 > 0
R12 > H(X1)
R23 > H(X1X2)

 . (1)

We show next that a much improved rate region can be
achieved by exploiting common randomness.

Our result is expressed in terms of the following short-hand
notation. Let U ∈ U , V ∈ V , and V ∈ W be auxiliary random
variables. We define the sets Sin and Sout of joint distributions
on U × V ×W ×X1 ×X2 ×X3 as

Sout ,

pUVWX1X2X3 :
pX1X2X3

= qX1X2X3

X1 → UW → V X2X3

X1X2U → VW → X3

 , (2)

Sin ,

{
pUVWX1X2X3

:
pUVWX1X2X3

∈ Sout
U →W → V

}
. (3)

For a fixed distribution pUVWX1X2X3
, we also define the rate

region

R(pUVWX1X2X3
) ,

(R0, R12, R23) :
R0 +R12 +R23 > I(UVW ;X1X2X3)
R0 +R12 > I(UW ;X1X2X3)
R0 +R23 > I(VW ;X1X2X3)
R0 > I(W ;X2X2X3)
R12 +R23 > I(UVW ;X1)
R12 > I(UW ;X1)
R23 > I(VW ;X1)


. (4)

Theorem 1: The coordination capacity region C(qX1X2X3
)

of the line network satisfies⋃
p∈Sin

R(p) ⊆ C(qX1X2X3
) ⊆

⋃
p∈Sout

R(p).

Proof: For clarity, the proofs are relegated to Section III
and Section IV, and we do not provide the cardinality bounds
on the auxiliary random variables.
Note that the inner and outer bounds for C(qX1X2X3) may
not match because Sin is a strict subset of Sout, in general.
The constraint U → W → V prevents us from choosing W
independently of X1X2X3, so that R0 > I(W ;X2X2X3) >
0 in general, as X1X2X3 depend on UV (see Section III).
Consequently, the proposed coding scheme does not specialize
to the baseline scheme whose rates are given in Eq. (1).
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C. Applications
The multiple auxiliary random variables involved in The-

orem 1 make it rather difficult to parse the bounds obtained
for C(qX1X2X3

). To obtain additional insight, we specialize
Theorem 1 and characterize the region C∗(qX1X2X3

), defined
as the projection of C(qX1X2X3

) onto the plane R0 = 0. In
other words, the region C∗(qX1X2X3

) characterizes the optimal
communication rates between the agents for coordination,
assuming the rate of common randomness can be chosen
arbitrarily.

Corollary 1: The coordination capacity region C∗(qX1X2X3
)

is characterized by

C∗(qX1X2X3
) =

{
(R12, R23) :

R12 > I(X2X3;X1)
R23 > I(X3;X1)

}
.

Proof: We first simplify the outer bound of Theorem 1
by noting the following. Because of the Markov chains
X1−UW−V X2X3 and X1X2U−VW−X3, the constraint on
the sum rate R12+R23 in Eq. (4) is ineffective and subsumed
by the constraint on R12. In addition, the data processing
inequality ensures that

I(UW ;X1) > I(X2X3;X1) and I(VW ;X1) > I(X3;X1).

To show that the region is achievable, note that the choice
U , X2, W , X3, V , X3 satisfies the constraints of the set
Sin, so that it may be substituted into the inner bound. This
choice directly yields the desired result.

We now develop several insights regarding the interplay
between coordination and communication topology by lever-
aging the simple expression of Corollary 1, which does not
involve any auxiliary random variables.

Insight 1: Common randomness helps. Comparing the
result of Corollary 1 with the baseline performance in Eq. (1),
we observe that I(X2X3;X1) 6 H(X1) and I(X3;X1) 6
H(X1X2), so that the baseline scheme is suboptimal, in
general.

Insight 2: The communication topology should match
the coordination structure. Assume now that the desired
behavior qX1X2X3

is such that X1−X2−X3 forms a Markov
chain. In other words, the actions of Agent 3 should be
conditionally independent of the actions of Agent 1 given the
actions of Agent 2. Note that the communication topology (a
line network here) matches this coordination structure, since
Agent 3 only communicates with Agent 1 through Agent 2.
Specializing Corollary 1, we obtain

C∗(qX1X2X3) =

{
(R12, R23) :

R12 > I(X2;X1)
R23 > I(X3;X1)

}
. (5)

Let us consider a modified communication topology as shown
in Fig. 3, such that the roles of Agent 3 and Agent 2 are
swapped. There is now a mismatch between the commu-
nication topology and the desired behavior, since Agent 3
becomes the communication bottleneck. This effect is captured
by specializing again Corollary 1, which yields the region

C∗(qX1X2X3) =

{
(R13, R32) :

R13 > I(X2;X1)
R32 > I(X2;X1)

}
. (6)

M13
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Xn
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3
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2

M32
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Fig. 3. Modified line network topology.

Since I(X2;X1) > I(X3;X1) by the data-processing inequal-
ity, we see that the mismatch translates into a penalty in terms
of the communication rates between agents.

III. ACHIEVABILITY PROOF

Because of space constraints, we do not detail some of the
more technical steps of the proof. Let U, V,W,X1, X2, X3 be
discrete random variables with joint distribution

p(u, v, w, x1, x2, x3) ,W (x1|u,w)W (x2|u, v, w)
W (x3|v, w)p(u|w)p(v|w)p(w)

such that the marginal pX1X2X3
satisfies p(x1, x2, x3) =

q(x1, x2, x3). Note that at least one such distribution exists
(with U , X2, W , X3, V , X3) and that it belongs to the
set Sin.

Following the idea in [4], we solve the coordination problem
by constructing a code for an intermediate problem, which
is illustrated in Fig. 4. Three uniformly distributed messages
M0 ∈ J1, 2nR0K, M12 ∈ J1, 2nR12K and M23 ∈ J1, 2nR23K are
encoded into codewords Un ∈ Un, V n ∈ Vn and Wn ∈ Wn

using the following encoding functions:
• fU : J1, 2nR0K× J1, 2nR12K→ Un;
• fW : J1, 2nR0K→Wn;
• fV : J1, 2nR0K× J1, 2nR23K→ Vn.

The codewords Un, Wn, V n, are then transmitted into
channels with transition probabilities WX1|UW , WX2|UVW ,
WX3|VW , respectively. The encoders induce a joint distribu-
tion between messages, and channel outputs, which we denote
by p̂Xn1 Xn2 Xn3 M0M12M23

. The problem is to identify triplets
(R0, R12, R23) that are achievable, in the sense that there

fV

M0

M12

M23

Xn
1

Xn
2

Xn
3

fU

fW

WX3|VW

WX2|UWV

WX1|UW
Un

W n

V n

Fig. 4. Intermediate problem used in achievability proof.
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exists a sequence of encoders with increasing length n such
that

lim
n→∞

V
(
p̂Xn1 ,Xn2 ,Xn3 , qXn1 Xn2 Xn3

)
= 0 (7)

and lim
n→∞

V
(
p̂Xn1 ,M0

, p̂Xn1 p̂M0

)
= 0 (8)

The constraint in Eq. (7) is a channel resolvability con-
straint, which requires the encoders to simulate the distribu-
tion qXn1 Xn2 Xn3 , while the constraint in Eq. (8) is a secrecy
constraint, which requires the message M0 to be independent
of the output Xn

1 . This ensures the compatibility of a code for
the intermediate problem in Fig. 4 with a code for the original
problem in Fig. 2.

Since all channels considered here have multiple inputs, the
key conceptual tool we rely on is a variation of multiple-access
channel resolvability [11], [12], [13].

To simplify notation in the sequel, we denote Zn ,
Xn

1X
n
2X

n
3 , which we use when the analysis does not require

us to treat Xn
1 , Xn

2 , and Xn
3 separately.

We start by generating three codebooks randomly.
• We generate 2nR0 sequences, labeled wni =

(wi,1, · · · , wi,n), independently according to∏n
`=1 pW (wi,`);

• For each wni , we generate 2R12 sequences, labeled unij ,
independently according to

∏n
`=1 pU |W (uij,`|wi,`);

• For each wni , we generate 2R23 sequences, labeled vnjk,
independently according to

∏n
i=1 pV |W (vjk,`|wi,`).

The indices of sequences in the codewords define the encoding
functions fU , fW , fV of the code.

Next, we analyze E
(
V
(
P̂Zn , qZn

))
, where the expectation

is over the randomly generated code and P̂ denotes the
probability p̂ for a random code. We denote by Tnδ (Z) the
δ-typical set for the distribution pZ and by Tnδ (UVWZ|zn)
the δ-conditional typical set for the distribution pUVWZ and
zn ∈ Tnδ (Z). Upon defining

p̂
(1)
Zn(z

n) ,
∑
i,j,k

W (zn|unij , vnik, wni )2−n(R0+R12+R23)

1
{
(unij , v

n
ik, w

n
i ) ∈ Tnδ (UVWZ|zn)

}
and

p̂
(2)
Zn(z

n) ,
∑
i,j,k

W (zn|unij , vnik, wni )2−n(R0+R12+R23)

1
{
(unij , v

n
ik, w

n
i ) /∈ Tnδ (UVWZ|zn)

}
,

so that p̂Zn(zn) = p̂
(1)
Zn(z

n)+ p̂
(2)
Zn(z

n), and using the triangle
inequality repeatedly, one obtains the following upper bound

V
(
P̂Zn , qZn

)
6

∑
zn∈Tnδ (Z)

∣∣∣P̂ (1)
Zn (z

n)− E
(
P̂

(1)
Zn (z

n)
)∣∣∣

+
∑

zn∈Tnδ (Z)

∣∣∣P̂ (2)
Zn (z

n)− E
(
P̂

(2)
Zn (z

n)
)∣∣∣

+
∑

zn /∈Tnδ (Z)

∣∣∣P̂Zn(zn)− qZn(zn)∣∣∣ .

One can then show that

lim
n→∞

E

 ∑
zn /∈Tnδ (Z)

∣∣∣P̂Zn(zn)− qZn(zn)∣∣∣
 = 0,

lim
n→∞

E

 ∑
zn∈Tnδ (Z)

∣∣∣P̂ (2)
Zn (z

n)− E
(
P̂

(2)
Zn (z

n)
)∣∣∣
 = 0.

The last sum is upper bounded using Jensen’s inequality as

E

 ∑
zn∈Tnδ (Z)

∣∣∣P̂ (1)
Zn (z

n)− E
(
P̂

(1)
Zn (z

n)
)∣∣∣


6
∑

zn∈Tnδ (Z)

√
E
(
(P̂

(1)
Zn (z

n))2
)
− E

(
P̂

(1)
Zn (z

n)
)2
. (9)

Note that E
(
(P̂

(1)
Zn (z

n))2
)

is written explicitly as

E
(
(P̂

(1)
Zn (z

n))2
)
=
∑
ijk

∑
i′j′k′

Aijki′j′k′ with

Aijki′j′k′ , E
(
W (zn|Unij , V nik,Wn

i )W (zn|Uni′j′ , V ni′k′ ,Wn
i′ )

1
{
(Unij , V

n
ik,W

n
i ) ∈ Tnδ (UVWZ|zn)

}
1
{
(Uni′j′ , V

n
i′k′ ,W

n
i′ ) ∈ Tnδ (UVWZ|zn)

})
(10)

Because of the properties of the random code generation
procedure, the analysis of the sum can be split into 5 parts.

If i 6= i′, and for any j, k, j′, k′, we obtain∑
i,j,k,i′ 6=i,j′,k′

Aijki′j′k′ 6 E
(
p̂
(1)
Zn(z

n)
)2

(11)

If i = i′, j = j′, k = k′, we obtain∑
i,j,k

Aijkijk 6 2−n(R0+R12+R23+H(Z|UVW )+H(Z)−O(δ)) (12)

If i = i′, j = j′, k 6= k′, we obtain∑
i,j,k,k′ 6=k

Aijkijk′ 6 2−n(R0+R12+H(Z|UW )+H(Z)−O(δ)) (13)

If i = i′, j 6= j′, k = k′, we obtain∑
i,j,k,j′ 6=j

Aijkij′k 6 2−n(R0+R23+H(Z|VW )+H(Z)−O(δ)) (14)

If i = i′, j 6= j′, k 6= k′, we obtain∑
i,j,k,j′ 6=j,k′ 6=k

Aijkij′k′ 6 2−n(R0+H(Z|W )+H(Z)−O(δ)) (15)

Substituting Eq. (11)-(15) into Eq. (9) and using the bound
|Tnδ (Z)| 6 2n(H(Z)+O(δ)), one can finally show that if

R0 +R12 +R23 > I(UVW ;Z),

R0 +R12 > I(UW ;Z),

R0 +R23 > I(VW ;Z),

R0 > I(W ;Z),

(16)
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then

lim
n→∞

E

 ∑
zn∈Tnδ (Z)

∣∣∣p̂(1)Zn(zn)− E
(
p̂
(1)
Zn(z

n)
)∣∣∣
 = 0.

The analysis of E
(
V
(
p̂Xn1 ,M0

, p̂Xn1 p̂M0

))
follows similar steps

once using the triangle inequality repeatedly to show

V
(
p̂Xn1 ,M0 , p̂Xn1 p̂M0

)
6 2EM0

(
V
(
p̂Xn1 |M0

, qXn1
))
.

The secrecy constraint then reduces to another multiple-access
channel resolvability constraint, and we can show that if

R12 +R23 > I(UVW ;X1),

R12 > I(UW ;X1),

R23 > I(VW ;X1),

(17)

then limn→∞ E
(
V
(
p̂Xn1 ,M0 , p̂Xn1 p̂M0

))
= 0. Using Markov’s

inequality, one then shows the existence of a sequence of codes
achieving the rates (R0, R12, R23) satisfying the constraints in
Eq. (16) and Eq. (17).

All that remains to show now is how the code for the
intermediate problem can be used as a code for the original
coordination problem. We choose the encoding and decoding
for the coordination problem to operate as follows.
• Agent 1 generates message m12 from his actions
xn1 and the common randomness m0 according to
p̂(m12|xn1 ,m0); Agent 1 then sends m12 to Agent 2;

• Agent 2 generates a message m23 uniformly at ran-
dom and receives m12,m0; Agent 2 then simulates
the transmission of the codewords unm0,m12

, vnm0,m23
,

wnm0
through the channel with transition probabilities

WX2|UVW to obtain his actions xn2 ; Agent 2 then sends
m23 to Agent 3;

• Agent 3 receives m23,m0 and simulates the transmission
of the codewords vnm0,m23

and wnm0
through the channel

with transition probabilities WX3|VW to obtain his ac-
tions xn3 .

We denote the joint distribution induced by this scheme by
p̃Xn1 Xn2 Xn3 M0M12M23

. Using the triangle inequality,

V
(
p̃Xn1 Xn2 Xn3 , qXn1 Xn2 Xn3

)
6 V

(
p̃Xn1 Xn2 Xn3 , p̂Xn1 Xn2 Xn3

)
+ V

(
p̂Xn1 Xn2 Xn3 , qXn1 Xn2 Xn3

)
.

The first term on the right-hand side vanishes since the code
satisfies Eq. (8) after some intermediate steps, while the second
term vanishes since the code satisfies Eq. (7). Hence, the
achievable coordination rates are exactly the achievable rates
for the intermediate problem. Combining all rate constraints
and recalling the construction of UVW , one obtains that⋃
p∈Sin

R(p) ⊂ C.
IV. CONVERSE PROOF

Let (R0, R12, R23) be achievable coordination rates, so that
for all ε > 0, there exists a (2nR0 , 2nR12 , 2nR23 , n) line
coordination code for which V

(
pXn1 Xn2 Xn3 , qXn1 ,Xn2 ,Xn3

)
6 ε.

For brevity, we only sketch the calculation of some converse
constraints. Following the steps as in [4], we obtain

R0 +R12 +R23 > I(X1,QX2,QX3,Q;M0M12M23Q)− δ(ε),

where the random variable Q is uniformly distributed in J1, nK
and independent of all others, and δ(ε) denotes a function
such that limε→0 δ(ε) = 0. Upon introducing Xi , Xi,Q for
i ∈ {1, 2, 3}, U ,M12, V ,M23 and W ,M0, we obtain

R0 +R12 +R23 > I(X1X2X3;UVW )− δ(ε).
Similar bounds are obtained for R0 +R12, R0 +R23 and R0.
Next, using the independence of M0 and Xn

1 , we can also
show

R12 +R23 > I(X1;UVW ).

Similar bounds are obtained for R12 and R23. Finally, using a
functional dependence graph, one can check that the following
Markov chains hold:

X1 − UW − V X2X3 and X1X2U − VW −X3.

Note that the constraint U −W − V from the achievability
proof does not hold here, which puts an additional restriction
on the coding scheme used in the achievability proof and
shows that this scheme is sub-optimal in general. Combining
all constraints and taking the limit as ε goes to zero yields
the desired converse (see [14, Lemma VI] for a careful
justification).
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