
Low-Complexity Channel Resolvability Codes
for the Symmetric Multiple-Access Channel
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Abstract—We investigate channel resolvability for the l-user
multiple-access channel (MAC) with two different families of
encoders. The first family consists of invertible extractors, while
the second one consists of injective group homomorphisms, and
was introduced by Hayashi for the point-to-point channel resolv-
ability. The main benefit of these two families is to provide explicit
low-complexity channel resolvability codes in the case of symmet-
ric MACs. Specifically, we provide two examples of families of
invertible extractors suitable for MAC resolvability with uniform
input distributions, one based on finite-field multiplication, which
can be implemented in O(n logn) for a limited range of values
of the encoding blocklength n, and a second based on modified
Toeplitz matrices, which can be implemented in O(n logn) for
a wider range of values of n. We also provide an example of
family of injective group homomorphisms based on finite-field
multiplication suitable for MAC resolvability with uniform input
distributions, which can be implemented in O(n logn) for some
values of n.

I. INTRODUCTION

While most information-theoretic studies focus on the anal-
ysis of coding mechanisms ensuring reliability, recent inves-
tigations of information-theoretic problems involving strong
secrecy [1], [2], [3] and coordination [4] have highlighted the
usefulness of coding mechanisms ensuring channel resolvabil-
ity [5]. The design of explicit codes for channel resolvability is,
however, still largely unexplored; to the best of our knowledge,
the only known low-complexity codes achieving the funda-
mental limits of channel resolvability are polar codes in the
case of symmetric channels [6]. This property of polar codes
turns out to be a key ingredient to perform strong coordination
for a class of symmetric sources [6] and to achieve strong
secrecy over symmetric wiretap channels [7], which motivates
the investigation of alternative coding schemes for channel
resolvability with a different complexity-performance tradeoff.
In particular, polar codes may be unsuitable in situations
with stringent delay constraints, since they require relatively
large block lengths to be effective. Furthermore, the study
of resolvability for the MAC is of interest as it enables the
design of codes for coded cooperative jamming with strong
secrecy [8], which will be the subject of future investigations.

In this paper, we provide two different constructions for
MAC resolvability [9]. In Section III, we present a first
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construction based on invertible extractors, which highlights
the connection between [10] and [11], since channel resolv-
ability coupled with channel coding leads to strong secrecy
over the wiretap channel. In Section IV, we present our
second construction, which is an extension of resolvability
for the point-to-point channel performed with injective group
homomorphisms [12]. In Section V, we then show how MAC
symmetry allows one to further simplify the analysis. We
conclude the paper in Section VI by presenting two explicit
low-complexity MAC resolvability codes. In Section VI-A,
we propose codes based on families of extractors initially
used in [11] and [10] for wiretap codes. In Section VI-B,
we finally develop codes based on a family of injective group
homomorphisms.

II. PROBLEM STATEMENT

Let l ∈ N∗ and L , J1, lK. Define a MAC (XL,WZ|XL ,Z)

with Z , Xi, i ∈ L, finite alphabets, and XL ,
(X1,X2, . . . ,Xl). The MAC is such that the inputs are in-
dependent. We note qZXL , WZ|XL

∏
i∈L qXi for uniform

distribution qXi , i ∈ L. We denote by qXL the uniform
distribution on XL, and we denote by qZn the correspond-
ing independent identically distributed (i.i.d.) channel output
distribution, i.e.

∀z ∈ Zn, qZn(z) =

n∏
i=1

∑
xL∈XL

WZ|XL(zi|(xL)i)qXL((xL)i),

where Zn = (Z1, · · · , Zn) is a vector of n random variables,
z = (z1, · · · , zn) is a vector of n sample values. We also note
XL , (X1, · · · , Xl), while a particular realization i ∈ J1, nK
is denoted by (xL)i, and xL , ((xL)1, · · · , (xL)n).

The problem of channel resolvability consists in asking
whether one can approximate the distribution qZn by using
codewords chosen uniformly at random in a ({2nRi}i∈L, n)
code. If CL denotes the corresponding codebook, the distribu-
tion induced by the code is then

∀z ∈ Zn, pZn(z) =
∑

xL∈CL

WZn|XnL(z|xL)
1

|CL|
.

Rates {Ri}i∈L are achievable if there exists a sequence of
({2nRi}i∈L, n) codes such that limn→∞V (qZn , pZn) = 0.
For any J ⊆ L, we note RJ ,

∑
j∈J Rj .
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III. MAC RESOLVABILITY WITH INVERTIBLE
EXTRACTORS

In this section we consider MAC resolvability codes built
from invertible extractors. This method is inspired from [11]
and [10], which consider invertible extractors to construct
wiretap codes, but do not consider resolvability directly. The
proof technique is different from the one in [10], and neither
requires [10, Lemma 5.1] nor [10, Lemma 5.4].

A. Construction and result
Let i ∈ L be the index of the input of the MAC. We assume

Xi , F2. For a seed si ∈ Fn2 \ {0}, we consider a universal2
extractor

Exti : Fn2 × Fn2 → Fn−ki2 : (si,xi) 7→ bi,

which means P[Exti(Si,xi) = Exti(Si,x′i)] ≤ 2−(n−ki), for
all xi 6= x′i and uniformly distributed Si. For si ∈ Fn2 \ {0},
bi ∈ Fn−ki2 we define the pre-image of bi as Psi,bi , {xi ∈
Fn2 : Exti(si,xi) = bi}. Moreover, we impose that Exti is
regular, that is, {Psi,bi}bi∈Fn−k2

is a partition of Fn2 into bins
indexed by bi and of equal size 2ki . The inverter Invi of Exti
is defined as

Invi : Fn2 × Fn−ki2 × Fki2 → Fn2 : (si,bi, ri) 7→ xi,

such that for fixed si and bi, ri 7→ Invi(si,bi, ri) defines an
encoder with rate Ri , ki/n for the codebook Psi,bi , which
outputs a codeword uniform in Psi,bi when ri is chosen uni-
formly at random in Fki2 . We assume SL , (S1,S2, · · · ,Sl)
and BL , (B1,B2, · · · ,Bl) uniformly distributed.

Theorem 1. Let n ∈ N, si ∈ Fn2 \ {0}, bi ∈ Fn−ki2 , i ∈ L .
Assume the following encoders

{f (i)n : Fki2 → Fn2 : ri 7→ Invi (si,bi, ri)}i∈L,

with rates Ri , ki/n, for i ∈ L. Then, for the rate region
{{Ri}i∈L : RJ ≥ I(Z;XJ ),J ⊆ L\{∅}}, we have

lim
n→∞

ESL,BL [D(pZn , qZn)] = 0.

Note that Theorem 1 only shows existence of codes and does
not provide an explicit scheme, since we average over SL
and BL.

B. Proof of Theorem 1
We note PsL,bL ,

∏
i∈L Psi,bi , where

∏
denotes the

cartesian product. Averaging over all the codebooks, we have

ESL,BL [D(pZn , qZn)]

(a)
=
∑

sL,bL

qSL(sL)qBL(bL)∑
z

∑
xL∈PsL,bL

W (z|xL)

|PsL,bL |
log

∑x′L∈PsL,bL

W (z|x′L)
|PsL,bL |

qZn(z)


(b)
=

∑
sL,bL,z,xL

qSL(sL)
1{ExtL(sL,xL) = bL}

2l·n
W (z|xL)

× log

[∑
x′L

1{ExtL(sL,x
′
L) = bL}W (z|x′L)

2kLqZn(z)

]

=
∑

sL,bL,z,xL

qSL(sL)
1{ExtL(sL,xL) = bL}

2l·n
W (z|xL)

× log

[∑
x′L

1{ExtL(sL,x
′
L) = ExtL(sL,xL)}W (z|x′L)

2kLqZn(z)

]
(c)
=

∑
sL,z,xL

qSL(sL)
W (z|xL)

2l·n

× log

[∑
x′L

1{ExtL(sL,x
′
L) = ExtL(sL,xL)}W (z|x′L)

2kLqZn(z)

]
(d)

≤
∑
z,xL

W (z|xL)

2l·n
log

 ∑
sL,x′L

qSL(sL)W (z|x′L)

×1{ExtL(sL,x
′
L) = ExtL(sL,xL)}

2kLqZn(z)

]
, (1)

where (a) holds because Invi uniformly draws an element in
Psi,bi , i ∈ L, (b) holds because 1{ExtL(sL,xL) = bL} ,∏
i∈L 1{Exti(si,xi) = bi}, |PsL,bL | = 2kL , qBL(bL) =

2l·n−kL , with kJ ,
∑
j∈J kj for J ⊆ L , and by definition of

PsL,bL , (c) holds because
∑

bL
1{ExtL(sL,xL) = bL} = 1,

(d) holds by Jensen’s inequality.
Assume that xL 6= x′L, we separate the sum

∑
x′L 6=xL

, by
introducing J ⊆ L such that ∀j ∈ J ,xj 6= x′j . By convention
J = ∅ corresponds to xL = x′L. Hence,∑
sL,x′L

qSL(sL)W (z|x′L)
1{ExtL(sL,x

′
L) = ExtL(sL,xL)}

2kLqZn(z)

=
∑
J⊆L

∑
sL,x′J

qSL(sL)W (z|x′JxJ c)

×
1{ExtJ (sJ ,x

′
J ) = ExtJ (sJ ,xJ )}

2kLqZn(z)

=
∑
J⊆L

∑
sJc ,x

′
J

qSJc (sJ c)W (z|x′JxJ c)

×
P[ExtJ (SJ ,x

′
J ) = ExtJ (SJ ,xJ )]

2kLqZn(z)
(a)

≤
∑
J⊆L

∑
sJc ,x

′
J

qSJc (sJ c)W (z|x′JxJ c)
2−(n·|J |−kJ )

2kLqZn(z)

=
∑
J⊆L

∑
x′J

W (z|x′JxJ c)
2−n·|J |

2kJc qZn(z)

=
∑
J⊆L

1

2kJc
W (z|xJ c)
qZn(z)

= 1 +
∑

J⊆L\{∅}

1

2kJ
W (z|xJ )

qZn(z)

(b)

≤ 1+


∑

J⊆L\{∅}

2−nH(Z|XJ )(1−ε)

2nRJ 2−nH(Z)(1+ε)
, if (xL, z) ∈ T nε (XZ)

2lµ−nZ , if (xL, z) /∈ T nε (XZ)

(2)

where (a) holds because Exti, i ∈ L, is universal2, and (b)
holds for any ε > 0 with µZ , minz∈supp(qZ) qZ(z) by
standard arguments of typicality.
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Hence, by (1), (2) we have ESL,BL [D(pZn , qZn)] ≤ A + B,
where

A ,
∑

(xL,z)/∈T nε (XZ)

q(xL, z) log
[
1 + 2lµ−nZ

]
≤ n2l/n

µZ
P[(Xn

L, Z
n) /∈ T nε (XZ)]

≤ n2l/n

µZ
2|XL||Z|2−2nε

2µXLZ
n→∞−→ 0,

and

B ,
∑

(xL,z)∈T nε (XZ)

q(xL, z) log

1 +
∑

J⊆L\{∅}

2−nH(Z|XJ )(1−ε)

2nRJ 2−nH(Z)(1+ε)


≤

∑
J⊆L\{∅}

exp2 [−n(RJ − I(Z;XJ )− 2εH(Z))] ,

which concludes the proof.

IV. MAC RESOLVABILITY WITH INJECTIVE GROUP
HOMOMORPHISMS

In this section, we consider MAC resolvability codes based
on a class of injective group homomorphisms, introduced
in [12] for point-to-point channel resolvability.

A. Construction and result

Let n ∈ N and i ∈ L. Let Mi be an Abelian group with
|Mi| , 2nRi . We note Mi , |Mi|, ML ,

∏l
i=1Mi. Assume

that Xni is also an Abelian group. For xi ∈ Xni , mi ∈Mi, we
note mL , (m1,m2, . . .ml). Consider a family of encoders
that take as input mi and output Fi(mi) +Gni , where

• Fi is drawn in a family Fi of injective group homomor-
phism and verifies Fi :Mi → Xni , such that for xi 6= 0,
mi 6= 0,

P[Fi(mi) = xi] ≤
1

|Xni |
, (3)

• Gni is drawn in Xni uniformly.

We define the direct productsML ,M1×M2×. . .×Ml and
XnL , Xn1 ×Xn2 × . . .×Xnl . We note FL :ML → XnL ,mL 7→
(F1(m1), F2(m2), . . . , Fl(ml)) and GnL , (Gn1 , G

n
2 , . . . , G

n
l ).

Theorem 2. Let n ∈ N. Assume the following encoders

{f (i)n :Mi → Xni : mi 7→ Fi(mi) +Gni }i∈L,

with rates {Ri}i∈L. Then, for the rate region {{Ri}i∈L :
RJ ≥ I(Z;XJ ),J ⊆ L\{∅}}, we have

lim
n→∞

EFL,GnL [D(pZn , qZn)] = 0.

Note that as in Theorem 1, Theorem 2 does not provide an
explicit scheme, since we average over FL and GnL.

B. Proof sketch of Theorem 2

Observe that the direct products ML and XnL are Abelian
groups. Hence, FL is an injective group homomorphism.
Averaging over all the family of encoders, we can show

EFL,GnL [D(pZn , qZn)]

(a)

≤
∑

z,mL,xL

q(z,xL)

ML

× log

 1

ML

∑
m′L,fL

pFL(fL)
W (z|fL(m′L −mL) + xL)

qZn(z)


(b)

≤ log

1 +
∑

J⊆L\{∅}

1

MJ

W (z|xJ )

qZn(z)

 .
where (a) is obtained after some computations using the
fact that fL is a group homomorphism, and by Jensen’s
inequality, (b) can be seen as the counterpart of Equation (2)
and can be proved using Condition (3) instead of the universal2
property. We then conclude with a proof similar to the one in
Section III-B. We omit the details due to space constraints.

V. RESOLVABILITY FOR THE SYMMETRIC MAC

We have shown in Sections III and IV that there exists
some families of invertible extractors and injective group
homomorphisms suitable for MAC resolvability. However,
we have not provided explicit codes, since (i) we have not
provided explicit families of encoders, and (ii) we perform an
averaging over all the members of the family of encoders in
Theorems 1 and 2. When the MAC is symmetric, we show
in this section how to deal with (i). We will deal with (ii) in
Section VI.

We consider symmetric MACs WZ|XL in the sense that, for
any aL ∈ XL there exists a permutation πa such that for any
xL ∈ XL, for any z ∈ Z , we have

W (z|aL + xL) = W (πa ◦ z|xL).

Symmetry allows us to remove one averaging in Theorems 1
and 2 as follows.

Lemma 1. Let n ∈ N. We consider the encoders of Theorem 1
and assume a symmetric MAC. Let bi,b′i ∈ Fn−ki2 , i ∈ L, then
we have

ESL,BL=bL
[D(pZn , qZn)] = ESL,BL=b′L

[D(pZn , qZn)].

The proof of Lemma 1 is similar to the proof of Lemma 2
and is thus omitted.

Lemma 2. Let n ∈ N. We consider the encoders of Theorem 2
and assume a symmetric MAC. For any gL,g

′
L ∈ XnL , we have

EFL,GnL=gL
[D(pZn , qZn)] = EFL,GnL=g′L

[D(pZn , qZn)].

Proof. Let gL,g′L ∈ XnL . Let dL , g′L−gL and πd such that
for any xL, W (z|xL + dL) = W (πd ◦ z|xL).
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EFL,GnL=gL [D(pZn , qZn)]

=
∑
fL

pFL(fL)
∑
z

∑
mL

W (z|fL(mL) + gL)

ML

× log

[
1

ML

∑
mL

W (z|fL(mL) + gL)∑
xL
W (z|xL)qXnL(xL)

]

=
∑
fL

pFL(fL)
∑
z

∑
mL

W (πd ◦ z|fL(mL) + gL)

ML

× log

[
1

ML

∑
mL

W (πd ◦ z|fL(mL) + gL)∑
xL
W (πd ◦ z|xL)qXnL(xL)

]
(a)
=
∑
fL

pFL(fL)
∑
z

∑
mL

W (z|fL(mL) + g′L)

ML

× log

[
1

ML

∑
mL

W (z|fL(mL) + g′L)∑
x′L
W (z|x′L)qXnL(x′L)

]
= EFL,GnL=g′L

[D(pZn , qZn)],

where (a) holds because qXnL is uniform.

The remaining averaging in Theorems 1 and 2 consists in
choosing at random an encoder in some set, which requires a
uniform random number. We next show how the rate of this
uniform random number can be made negligible, by reusing
the same encoder over several transmission blocks.

Lemma 3. Let t ∈ N. Define N , n · t.
Consider the encoder en(·) , InvL(sL,bL, ·), with
InvL(sL,bL, ·) , (Inv1(s1,b1, ·), · · · , Invl(sl,bl, ·)), where
si ∈ Fn2 , bi ∈ Fn−ki2 , and Invi is defined as in Section III,
i ∈ L. We note pZN |SL=sL,BL=bL the induced distribution by
the concatenated outputs of encoder en, on t blocks of size n,
where for each block the same encoder en is used. We note
pZn|SL=sL,BL=bL the induced distribution by the output of
encoder en, on 1 block of size n. Then, we have

ESL [V(pZN |SL=sL,BL=bL , qZN )]

≤ t · ESL [V(pZn|SL=sL,BL=bL , qZn)].

Since ESL [V(pZn|SL=sL,BL=bL , qZn)] decreases exponen-
tially fast with n in the proof of Theorem 1 by Pinsker’s
inequality, t can be chosen O(eαn) with a suitably small α;
in other words, the effective rate of the seed sL is O( logn

n ).
The proof of Lemma 3 is similar to the proof of Lemma 4 and
is thus omitted. The technique used is referred to as “hybrid
argument” in the computer science literature. Note that the
proof requires the triangle inequality and consequently does
not apply to relative entropy.

Lemma 4. Let t ∈ N. Define N , n · t. Consider the encoder
en(·) , fL(·) + gL, with fL and gL defined as in Section IV.
We note pZN |FL=fL,GnL=gL the induced distribution by the
concatenated outputs of encoder en, on t blocks of size n,
and where for each block the same encoder en is used. We

note pZn|FL=fL,GnL=gL the induced distribution by the output
of encoder en, on 1 block of size n. Then, we have

EFL [V(pZN |FL=fL,GnL=gL , qZN )]

≤ t · EFL [V(pZn|FL=fL,GnL=gL , qZn)].

Proof. Let gL ∈ XnL . Let U be a uniform random variable
overMt

L, written as U = (UnRL1 ||UnRL2 || . . . ||UnRLt ), where
(·||·) denotes concatenation. Let also Ū be a uniform random
variable over XNL , written as Ū = (Ū l·n1 ||Ū l·n2 || . . . ||Ū l·nt ). For
i ∈ J0, tK, we note p(i)

ZN |FL=fL,GnL=gL
the induced distribution

by the concatenation of the i outputs of fL(·)+gL with input
UnRLj for j ∈ J1, iK, and the t − i outputs of WZn|XnL with
input Ū l·nj for j ∈ Ji + 1, tK. Hence, p(t)

ZN |FL=fL,GnL=gL
=

pZN |FL=fL,GnL=gL and p
(0)

ZN |FL=fL,GnL=gL
= qZN . We thus

have by the triangle inequality,

EFL [V(pZN |FL=fL,GnL=gL , qZN )]

≤
t∑
i=1

EFL
[
V
(
p
(i−1)
ZN |FL=fL,GnL=gL

, p
(i)

ZN |FL=fL,GnL=gL

)]
≤

t∑
i=1

EFL
[
V
(
pZn|FL=fL,GnL=gL , qZn

)]
= t · EFL

[
V
(
pZn|FL=fL,GnL=gL , qZn

)]
,

where the second inequality follows from the data processing
inequality for the variational distance, and the last equality
follows from Lemma 2.

VI. LOW-COMPLEXITY CODES FOR THE SYMMETRIC
MAC

Thanks to Sections III, IV, V, we are ready to provide low-
complexity codes to perform resolvability for a symmetric
MAC. We provide two examples of families of invertible
extractors and one example of families of injective group
homomorphisms.

A. Encoders for MAC resolvability with invertible extractors

1) Invertible extractor with finite-field multiplication: Let
i ∈ L. Define, for any seed si ∈ Fn2 \ {0}, the extractor

Exti :Fn2×Fn2 → Fn−ki2 : (si,xi) 7→ bi , (s−1i � xi)|J1,n−kiK,

where � is the multiplication in F2n and (·) |J1,n−kiK is
the truncation of the last ki bits. Exti is a universal2 hash
function [10], and the inverter of Exti is

Invi : Fn2 × Fn−ki2 × Fki2 → Fn2 : (si,bi, ri) 7→ si � (bi‖ri),

where (·‖·) denotes the concatenation of two vectors.

The encoding complexity can be performed in O(n log n),
for some, but limited, values of n. Indeed, the finite-field
multiplication can be reduced to a ring multiplication, which
is a convolution and can be efficiently perform by the num-
ber theoretic transform (see for instance [13, Section 7.3]).
However, the main issue is to find an irreducible polynomial
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in Z2[X] of degree n. Although it can be done when n is a
Mersenne exponent, that is 2n − 1 is prime, it is a difficult
problem for arbitrary n.

2) Invertible extractor with Toeplitz matrices: The choice
of this family is inspired by [11]. Let i ∈ L. Define Ti(S) a
random Toeplitz matrix in Fki×(n−ki)2 defined by Ti(1, j) =
Ski+j−1 for j ∈ J1, n − kiK and Ti(l, 1) = Ski−l+1 for l ∈
J1, kiK where Si , (S1, S2, . . . Sn−1) ∈ Fn−12 is a uniform
random vector. Define

Gi(S) , [Iki |Ti(S)] ∈ Fki×n2 ,

Hi(S) , [TTi (S)|In−ki ]T ∈ Fn×(n−ki)2 .

It is shown in [11] that {Hi(s)}s∈Fn−1
2

is a universal2 family
of extractors. We define

Exti : Fn−12 × Fn2 → Fn−ki2 : (si,xi) 7→ bi , xiHi(si),

Invi : Fn−12 × Fn−ki2 × Fki2 → Fn2 : (si,0, ri, ) 7→ riGi(si).

For any si ∈ Fn−12 , observe that Invi draws uniformly an
element of Psi,bi=0 when ri is chosen uniformly at random
in Fki2 , since rank(Gi(si)) = ki, and by definition of Gi(si)
and Hi(si) we have

Exti(si, riGi(si)) = riGi(si)Hi(si) = 0.

Encoding can be performed in O(n log n), for a wide range
of values of n as shown in [14].

3) Explicit MAC resolvability codes: Combing Theorem 1,
Lemma 1, and Lemma 3, we obtain the following result for
the two families given above.

Theorem 3. Assume a symmetric MAC. Let n ∈ N, si ∈
Fn2 \ {0}, i ∈ L, and consider the following encoders

{f (i)n : Fki2 → Fn2 : ri 7→ Invi (si,0, ri)}i∈L,

with rates Ri , ki/n, for i ∈ L. Then, for the rate region
{{Ri}i∈L : RJ ≥ I(Z;XJ ),J ⊆ L\{∅}}, we have

lim
n→∞

ESL,BL=0[V(pZn , qZn)] = 0.

Moreover, by Lemma 3, the seeds sL can be reused multiple
times, such that their rate is on the order of O( logn

n ).

B. Encoders for MAC resolvability with injective group ho-
momorphisms

1) Finite-field multiplication: Let i ∈ L. Assume Xi = F2.
We define

Fi :Mi → Xni ,mi 7→ Si � (mi||0),

where Si is a uniform random variable drawn in Fn2 \{0}. We
have for m 6= 0 and x 6= 0

P[Fi(m) = x] =
∑
si

PSi(si)1{si � (m||0) = x}

=
∑
si

1

2n
1{si = x� (m||0)−1} =

1

2n
=

1

|Xni |
.

As in Section VI-A, encoding can be performed in O(n log n)
thanks to the number theoretic transform, but again for a
limited range of values of n.

2) Explicit MAC resolvability codes: Combining Theo-
rem 2, Lemma 2, and Lemma 4, we obtain the following result
for the family given above.

Theorem 4. Assume a symmetric MAC. Let n ∈ N, si ∈
Fn2 \ {0}, i ∈ L, and consider the following encoders

{f (i)n :Mi → Xni : mi 7→ Fi(mi)}i∈L,

with rates Ri, for i ∈ L. Then, for the rate region {{Ri}i∈L :
RJ ≥ I(Z;XJ ),J ⊆ L\{∅}}, we have

lim
n→∞

EFL,GnL=0[V(pZn , qZn)] = 0.

Moreover, by Lemma 4, the seeds sL can be reused multiple
times, such that their rates is on the order of O( logn

n ).

Note that the family of encoders in Section VI-B1 is similar
to the one used in Section VI-A1. Consequently, one can
wonder whether the family of encoders based on Toeplitz
matrix used for MAC resolvability with invertible extractors
in SectionVI-A2 can also be used for MAC resolvability with
injective group homomorphisms. The answer is no because
Equation (3) is not satisfied. Specifically, if we let i0 ∈ L, m ∈
Fki02 \{0}, and define Fi0 :Mi0 → Xni0 ,mi0 7→mi0Gi0(Si0),
x , (m||z) ∈ Fn2\{0}, where z ∈ Fn−ki02 , we can show

P[Fi0(m) = x] = 2ki0/|Xni |.
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