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Abstract—This paper studies secure unicast communication
over a network with uniform wiretap sets and shows that,
when network nodes can independently generate randomness,
determining the secrecy capacity is at least as difficult as the
k-unicast network coding problem. In particular, we show that
a general k-unicast problem can be reduced to the problem of
finding the secrecy capacity of a corresponding single unicast
network with uniform link capacities and any one wiretap
link. We propose a low-complexity linear optimization-based
achievable strategy involving global random keys that can be
generated anywhere in the network, and an efficient greedy
algorithm that further improves achieveable rate by exploiting
local random keys.

I. INTRODUCTION

The secure network coding problem, introduced by Cai
and Yeung [1], concerns information theoretically secure
communication over a network where an unknown subset of
network links may be wiretapped. A secure code prevents
the wiretapper from obtaining information about the message
being communicated. The secrecy capacity of a network, with
respect to a given collection of possible wiretap sets, is the
maximum rate of communication such that for any one of
the wiretap sets the secrecy constraints are satisfied. Types
of secrecy constraints studied in the literature include perfect
secrecy, strong secrecy and weak secrecy. In the uniform
setting, i.e. equal capacity links of which any z may be
wiretapped, [1] showed that when only the source can generate
randomness, the secrecy capacity is given by the cut-set
bounds and linear codes suffice to achieve capacity.

This paper considers the problem of finding the secrecy
capacity of a network when we allow network nodes in
addition to the source to generate independent randomness
(i.e. randomness generated at different nodes is statistically
independent). We show that a general k-unicast problem can
be reduced to a corresponding single unicast secrecy capacity
problem with uniform link capacities where any single link
can be wiretapped. This implies that determining the secrecy
capacity, even in the simple case of a single unicast and
uniform wiretap sets of size 1, is at least as difficult as the
long-standing open problem of determining the capacity region
of multiple-unicast network coding, which is not presently
known to be in P, NP or undecidable [2].

The secure network coding problem in the non-uniform
setting, i.e. restricted wiretap sets and/or non-uniform link
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capacities, has been considered by Cui et al. [3], and by Chan
and Grant [4], who showed that determining multicast secrecy
capacity with restricted wiretap sets is at least as difficult as
determining capacity for multiple-unicast network coding. Our
reduction is similar to the core ideas appearing in [4] with
the following differences which significantly strengthen the
result. First, by introducing the idea of key cancellation and
replacement at intermediate nodes, our construction does not
need to impose restrictions on which links can be wiretapped.
Secondly, unlike the reduction in [4] which involves multiple
terminals, ours only needs a single destination. Thirdly, while
[4] studies perfect secrecy, our results apply to perfect, strong
and weak secrecy constraints.

While finding the secure unicast capacity in the uniform
setting is difficult, for this case we show a low-complexity
linear optimization-based achievable strategy in which any
network node may generate global random keys, i.e. random
keys that are decoded by both the source and the sink. This
approach generalizes the strategy in [1], [5] where only the
source generates global keys, and has lower complexity than
the linear optimization-based strategies in [3] designed for the
non-uniform case. Performance can be further improved by
exploiting non-global keys. We propose an efficient algorithm
that greedily searches for places where non-global keys can
be introduced in place of global keys, thereby increasing the
secure communication rate.

II. MODEL

A network is represented by a directed graph G = (V, E),
where V is the set of vertices representing network nodes,
and E the set of edges representing network links. Links have
unit capacity (unless otherwise specified) and there may be
multiple links between a pair of nodes. Each node i ∈ V
can generate a random variable Ki which is independent of
random variables generated at other nodes (the rate of Ki can
be upper bounded by the sum of outgoing link capacities of i).
Transmissions on the outgoing links of node i can be functions
of Ki as well as transmissions received on incoming links of i.

There is a source node S ∈ V and a destination node D ∈
V . S wants to communicate a message M , uniformly drawn
from a finite alphabet set Sn, to D using a code with length
n. Then the rate of the code is n−1 log |Sn|. We say that a
communication rate R is feasible if there exists a sequence of
length-n codes such that |Sn| = 2nR and the probability of
decoding error tends to 0 as n→∞.



For the secure network coding problem, we specify ad-
ditionally a collection A of wiretap link sets, i.e., A is a
collection of subsets of E such that an eavesdropper can
wiretap any one set in A. We consider three kinds of se-
crecy constraints: the requirement, for all A ∈ A, that
I(M ;Xn(A)) = 0 corresponds to perfect secrecy; that
I(M ;Xn(A))→ 0 as n→∞ corresponds to strong secrecy;
and that I(M ;Xn(A))

n → 0 as n → ∞ corresponds to weak
secrecy, where X(A) = {X(a, b) : (a, b) ∈ A}, and X(a, b) is
the signal transmitted on the link (a, b). We say a secrecy rate
R is feasible if the communication rate R is feasible and the
prescribed secrecy condition is satisfied. The secrecy capacity
of the network is defined as the supremum of all feasible
secrecy rates. In the rest of the paper we study the case that
A is uniform, i.e., A = {A ⊂ E : |A| ≤ z}, where z is a
specified maximum number of links that can be wiretapped.

III. MULTIPLE UNICAST REDUCTION

A. Reduction of multiple unicast to secure communication

Fig. 1: A secure communication problem with source S and
destination D. N is an arbitrary subnetwork. Links are labeled
by the signals transmitted on them. Note there are K branches
in total but only the first and the K-th branches are drawn.

The following theorem reduces the multiple unicast network
coding problem to the secure network coding problem with
only a single unicast and uniform wiretap sets of size 1.

Theorem 1. Given any unit rate K-unicast problem with
source-destination pairs {(Si, Ti), i = 1, ...,K} on a net-
work N , the corresponding secure communication problem
in Figure 1 with unit capacity links, any one of which can
be wiretapped, has secrecy capacity K (under perfect, strong
or weak secrecy requirements) if and only if the K-unicast
problem is feasible.

Proof. The secrecy capacity is upper bounded by the capacity
K of the min cut from S to D.

“⇒” We show that feasibility of a weak secrecy rate of
K implies feasibility of the K-unicast problem. Note that this
extends immediately to the cases of strong and perfect secrecy
because they imply weak secrecy.

Suppose a secrecy rate of K is achieved by a code with
length n. Let M be the source input message, then H(M) =
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where the last inequality holds because of (11) and
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where the last inequality holds because of (7), the secrecy
condition H(M |cn1 ) ≥ Kn− nδn, and H(bn1 |M, cn1 ) ≥ 0. So
by (13) and because H(M |bn1 ) = Kn, we have
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The above argument extends to all other paths naturally (by
renumbering the notations accordingly), so
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Therefore ∀i = 1, ...,K, by the channel coding theorem, if
we employ an outer code of length n by encoding bni as a

supersymbol, then there exists an inner code that achieves a
rate of n−8nεn−8nδn from Bi to Ti, and so the overall rate
is

Ri ≥
n− 8nεn − 5nδn

n
→ 1 as n →∞.

Because Bi can be viewed as a virtual source of Si, so ∀i =
1, ...,K, the unicast from node Si to Ti of rate 1 is feasible.

“⇐” We show that feasibility of the K-unicast problem
implies achievability of secure communication rate K under
perfect secrecy, which implies strong and weak secrecy. This
rate corresponds to the cut set upper bound on secure com-
munication rate.

Secrecy rate K is achieved by the scheme described in
Figure 2, where uniform random local keys are injected by
the source and certain intermediate nodes. Denoting by ε(i)n the
probability of error for the unicast from Si to Ti on network
N , then the probability of error from S to D is upper bounded
by Kε∗n → 0 as n → ∞, where ε∗n = maxi ε

(i)
n . Note that

the scheme achieves perfect secrecy, since links in N are not
downstream of S, and all other links carry uniform random
keys of unit rate, or a linear combination involving such a
key.

Fig. 2: A scheme to achieve secrecy rate K. Vx is the local key
injected by node x, with H(Vx) = 1, ∀x. Mi, i = 1, ...,K
are source input messages, with H(Mi) = 1, i = 1, ...,K.

The above result can be easily extended to the case of zero
error communication with perfect secrecy. In this case, we say
a rate R is feasible if there exists a code with finite length
n such that |Sn| = 2nR and the probability of decoding
error is strictly zero. Then for the secrecy communication
problem in Figure 1, its zero error perfect secrecy capacity
is K if and only if the K-unicast for source-destination pairs
{(Si, Ti), i = 1, ...,K} of unit rate is feasible with zero error.
The proof of this claim follows the same outline as the proof
of Theorem 1, with the difference that all εn and δn become
strictly 0. Then (15) implies that bn1 is a function of dn

1 , and
hence that it can be perfectly decoded from dn

1 .

B. Reduction of secure communication to multiple unicast

Conversely to the reduction above, for any weakly or
strongly secure communication problem, we can construct a
communication problem without security constraints (which
can in turn be reduced to an equivalent multiple unicast



problem [6]) that is feasible if and only if the secure com-
munication problem is feasible. The constructed communica-
tion network, called the A-enhanced network and described
in [7], [8], adds additional sinks with communication demands.
The result for strongly secure communication follows from
the equivalence of the capacity region for weak and strong
security, shown in [9].

IV. ACHIEVABLE STRATEGIES

While finding the secure unicast capacity is difficult, below
we show a low-complexity linear optimization-based achiev-
able strategy that generalizes the global key strategies in [1],
[5] by allowing all network nodes to generate randomness. We
further propose an efficient algorithm that greedily searches
for places where local keys (keys that not known to both the
source and the sink) can be introduced in place of global keys,
thereby increasing the secure communication rate.

A. Global Key Schemes

We consider a class of achievable secure coding schemes
in which all random keys are global, i.e. decodable with zero
error by both the source and the sink, and perfect secrecy is
ensured by having global keys of total rate equal to z, the
number of wiretapped links. An example is given in Fig 3.

Fig. 3: A network with source S, sink D, unit link capacities
and z = 3 wiretap links. Global keys K1 and K2 are injected
by node A. Global key K3 and message M are injected by S.
Illustrated scheme achieves unit rate with perfect secrecy.

Let ki denote the rate of the random key generated by a
node i ∈ V . A global key scheme corresponds to a multi-
source multicast with receiver nodes S and D, and with the
following source nodes: node S which has rate RS + kS , and
nodes i ∈ V, i 6= S which have rate ki. Since the capacity
region of a multi-source multicast problem is given by cut
set bounds [10, Theorem 2.3], the following linear program
characterizes the optimal secure message rate achievable using
a coding scheme within this class. Here, Λt(U) denotes the
collection of all cuts between U ⊂ V and t ∈ V in G, and IC
denotes the capacity of a cut C.

max RS (LP1)

s.t. IC ≥
∑
i∈U

ri, ∀C ∈ ΛS(U), ∀U ∈ 2V\{S} (17)

IC ≥
∑
i∈U

ri, ∀C ∈ ΛD(U), ∀U ∈ 2V\{D} (18)

ri = ki, ∀i ∈ V, i 6= S (19)
rS = kS + RS (20)∑
i∈V

ki ≥ z (21)

The number of constraints in LP1 is exponential in the
size of V . Since [10, Theorem 2.3] implies that a multi-
source multicast is feasible if it is feasible for each sink
separately, which is equivalent to a multi-commodity flow, we
can formulate the following equivalent linear program with
number of constraints linear in |E|. In our network model each
edge (u, v) ∈ E has capacity c(u, v) = 1.
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∑

i∈V\{S,D}

ki ≥ z (29)

Here fD and {fDi } represent a multi-commodity flow to
D; fS and {fSi } represent a multi-commodity flow to S.
Equations (22), (23), (24) and (25) are flow conservation
constraints; (26) and (27) are link capacity constraints; (28)
and (29) ensure secrecy.

Theorem 2. Let R∗S be the optimal value of LP2. Then there
exists a global key scheme that achieves message rate R∗S with
perfect secrecy.

Proof. We consider an augmented network G′ obtained from
G as follows. 1) Connect each subset A ∈ A to a virtual
sink node DA observing all information on that set of links.
Specifically, ∀(i, j) ∈ E , create node vi,j and replace (i, j) by
two edges (i, vi,j) and (vi,j , j), then ∀(i, j) ∈ A, create edge
(vi,j , D

A), all of unit capacity. 2) Create a virtual message
source vM which is connected to S by edge (vM , S) of
capacity R∗S . 3) Create a virtual key source vK which is
connected to each node i ∈ V by an edge (vK , i) of capacity
ki corresponding to the solution of LP2. 4) For every A ∈ A,
let Rv→A be the max flow (min cut) capacity from {vM , vK}
to DA. Note that this equals the max flow capacity from vK to
each virtual sink DA, because vM has only one outgoing link
(vM , S), the max flow capacity from vK to S is Rw (since LP2
ensures that S decodes all keys), and Rv→A ≤ z ≤ Rw. 5)
Connect the key source vK to each virtual sink DA with edge



(vK , D
A) of capacity Rw −Rv→A, where Rw =

∑
i∈V ki is

the total key rate. Connect the message source vM to each
virtual sink DA by edge (vM , D

A) of capacity R∗S .
Then consider the two-source multicast problem on G′

where S, D and the virtual sinks {DA} each demand rate R∗S
from message source vM and rate Rw from the key source
vK . The constraints in LP2 guarantee that the required flows
exist for S and D, and by construction the additional edges
from vM and vK guarantee this for each virtual sink DA.
Therefore, the multicast network coding problem is feasible
[10]. Furthermore, the total rate observed by each virtual sink
DA is exactly equal to the sum R∗S + Rw of the message
and key rates. This implies that in a capacity-achieving code
for this multicast problem, the information received by each
virtual sink DA from set A must be independent of informa-
tion received on the additional edges from vM and vK , which
includes the entire source message. Therefore, this corresponds
to a code achieving rate R∗S for the original secrecy problem
with perfect secrecy.

B. Greedy Local Key Enhancement

We describe an algorithm for acyclic graphs that greedily
adds local keys to improve a given global key solution.

Let RS , {ki}, fD, fS , {fDi },{fSi } be the corresponding
values from LP2. Consider the residual graph with respect to
flows fD and {fDi }. Any path in this graph from S to a node
i with ki > 0 implies that the corresponding keys injected
at i can be instead injected at S, by applying the classic
augmenting flow algorithm [11] along this path, switching the
source of the flow to S. Search for all such paths and switch
the key sources to S. If there exists no such path, let Y be
the set of all vertices that can be reached from S by a path
in the residual graph, Y c the set of remaining nodes. For any
x ∈ Y , y ∈ Y c, if (x, y) ∈ E , then this edge must be saturated
by fD and {fDi }; if (y, x) ∈ E , then it is not used by fD and
{fDi } (otherwise contradict the fact that y ∈ Y c). Therefore
the total flow from the sources in Y to the sinks in Y c equals
the capacity of the cut (Y, Y c). But S ∈ Y is the only source
and D ∈ Y c is the only sink, therefore the flow from S to
D equals the min cut between them. Hence without loss of
generality we assume RS + kS is the max flow from S to D.

If kS = 0, the global key scheme is already optimal. Oth-
erwise, decompose fD into RS + kS edge-disjoint paths from
the S to D, denoted by P1, · · · , PRS+kS

. Let GL = (V, EL),
where EL is the set of edges that is not used by any flows in
LP2. We apply Algorithm 1 sequentially to each of these paths.
Algorithm 1 has a similar structure as the labeling algorithm
[11] used to search an augmenting path, but with the difference
that it searches for a series of local key gadgets that covers
every edge of a path Pk. A local key gadget with respect to Pk

is either 1) a path from i to j, where i, j are nodes on Pk, in
which case local keys can be injected at i and transmitted to j,
or 2) a path from a node v to i and a path from v to j, where v
is not on Pk while i, j are on Pk. In this case local keys can be
injected at v and transmitted to both i, j. Hence each gadget
is associated with two nodes in Pk and is able to protect the

sub-path of Pk between these two nodes. Furthermore, Ek is
introduced to allow the sub-paths to overlap. The virtual local
key sources and additional links are introduced for reusing
local keys on multiple paths. Intuitively, if Algorithm 1 returns
a local key chain Lk on Pk then path Pk is protected by a
series of local keys. If Algorithm 1 returns local key chains on
RS +1 paths among {P1, · · · , PRS+kS

}, then we can transmit
one less global key and one unit more message. Without loss
of generality we assume the algorithm returns L1, · · · , LRS+1

on the first RS + 1 paths P1, · · · , PRS+1.
Below we introduce a secure code that achieves rate RS+1.

We first construct a code C′ that transmits RS + 1 units of
message and z − 1 global keys as described in Section IV-A.
Hence C′ achieves perfect secrecy if up to z − 1 links are
wiretapped. Note that because the graph is acyclic, any edges
on Pi are used for the unicast to D and are not upstream
of S, hence it suffices for C′ to perform routing on Pi. For
example, in the path-based approach in [12], coding is not
required at a link that is upstream of only one sink. Next
we construct a code C that is identical to C′ except on P =
{P1, · · · , PRS+1}. For Pk ∈ P , consider the gadgets in Lk,
each of them generates an independent local key and delivers
the key to two nodes i, j ∈ Pk. The upstream node i adds
this local key to the incoming signal and sends the sum as the
outgoing signal along Pk. This signal travels downstream and
the key is canceled when it reaches j. Such cancellation is
possible because C′ performs routing on P . Therefore D can
successfully decode.

Next we show C achieves perfect secrecy. Denote by EP
the set of edges of the paths {P1, · · · , PRS+kS

}, EcP as the
set of edges used by any flows in LP2 except EP . Recall the
augmented graph G′ used to construct C′, and consider the
subgraph G′S of G′ by deleting all edges in EP and all unused
edges (edges that carry no flows). Because RS + kS is the
max flow from S to D, in G′S there are no out-going edges
from S (otherwise contradicts the fact that RS + kS is the
max flow). So the min cut from the set of sources {vi : i ∈
V} ∪ {vM} to any tA in G′S is at most z − kS , and therefore
by the construction of C′, any wiretap set A that does not
include at least kS edges in EP is not effective, i.e., not leaking
source message information. Hence without loss of generality
we assume an effective wiretap set A includes at least kS
edges in EP . By the construction of C′, EP consists of RS+kS
disjoint paths. Clearly A should eavesdrop distinct paths, and
therefore by the pigeonhole principle, at least one path in P
is wiretapped. Denote the wiretapped signal on this path as
X1 +V1, where X1 is the original signal sent in C′, and V1 is
one local key or a combination of them. Denote the remaining
wiretapped signals as X2 +V2, · · · , Xz +Vz , where Vi, i ≥ 2
is either zero or a function of local keys. Note V1 is a random
variable uniformly drawn from a finite field and is independent
of {M,X2, · · · , Xz}. Therefore X1+V1 also follows uniform
distribution and is independent of {M,X2, · · · , Xz}. So

I(M ;X1 + V1, · · · , Xz + Vz) ≤ I(M ;X1 + V1, X2, · · · , Xz)

= I(M ;X2, · · · , Xz) = 0,



Algorithm 1 Local Key Chain Search for Pk

. Initialization
set Ek := {reversal of the edges of Pk}
unlabel all nodes
set predin(j) := 0, predout(j) := 0, ∀j ∈ V\Pk

set pred(j) := (0, 0), ∀j ∈ Pk

set LISTin := ∅, LISTout := ∅
label S and set LISTP := {S}
. Label nodes that can be reached by gadgets
while D is unlabeled and LISTP , LISTin and LISTout are
not all empty do

remove a node i from either LISTP , LISTin or LISTout
if i is removed from LISTP or LISTout then

for all (i, j) ∈ EL, j /∈ Pk do
if j is not labeled IN then label j IN, set
predin(j) := i and add j to LISTin

end for
for all (j, i) ∈ EL, j /∈ Pk do

if j is not labeled OUT then label j OUT, set
predout(j) := i add j to LISTout

end for
for all (i, j) or (j, i) ∈ EL, j ∈ Pk do

if j is not labeled P then label j P
if (i, j) ∈ EL then set pred(j) := (i, IN)
else set pred(j) := (i, OUT )
end if
add j to LISTP

end if
end for
if i ∈ Pk then

for all (i, j) ∈ Ek do
if j is not labeled P then label j P, set
pred(j) := (i, IN) and add j to LISTP

end for
end if

end if
if i is removed from LISTin then

for all (i, j) ∈ EL, j /∈ Pk do
if j is not labeled IN then label j IN, set
predin(j) := i and add j to LISTin

end for
for all (i, j) ∈ EL, j ∈ Pk do

if j is not labeled P then label j P, set pred(j) :=
(i, IN) and add j to LISTP

end for
end if
if D is labeled then

use predecessor pointers to trace back from D to S
and obtain a set of edges Lk consisting of local key gadgets

. Update GL
set Lk := Lk\Ek

set EL := EL\Lk

partition Lk into a collection of local key gadgets
Lk, ∀ gadget l ∈ Lk , create in GL virtual local key source
vl. ∀ node i visited by l, create link (vl, i) of unity capacity.

return local key chain Lk

end if
end while

and perfect secrecy is achieved.
Figure 4 shows an example in which global key schemes

achieve at most unit rate. With local key enhancement rate 2 is
achieved. For path (S,A,D) the two non-overlapping gadgets
are {(S,A)} and {(B,A), (B,D)}; for path (S,C,E,D) the
two overlapping gadgets are {(E,S)} and {(B,C), (B,D)}.
Local key V2 and edge (B,D) are reused for both paths.

(a) global keys only (b) local keys enhancement

Fig. 4: Network with source S, sink D, unit link capacities
and z = 2 wiretap links. Mi’s are messages, Ki’s global keys
and Vi’s local keys. Both schemes achieve perfect secrecy.

Finally, message rate can be further increased by iteratively
applying the above procedure to the resulting solution. At the
a-th iteration, a < kS , if Algorithm 1 finds RS +a local keys
chains protecting RS + a paths, then rate RS + a is feasible.
Due to space limit we defer details to [7].
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