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Abstract

In this paper, we present a novel approach for the design of near-perfect-reconstruction mixed allpass-/FIR-based

two-band quadrature-mirror filter banks. The proposed design method is carried out in the polyphase domain, where

FIR filters are employed for compensating the non-linear phase introduced by the allpass filters. In contrast to previous

approaches in literature the FIR phase-compensation filters can be designed very efficiently using analytical

expressions. Furthermore, starting from a generalized two-band structure, we introduce three special cases with

different properties which are based on the same design principle. In all systems the remaining amplitude and phase

distortions are controllable and can be made arbitrarily small at the expense of additional system delay. Simultaneously,

aliasing can be minimized or completely canceled if further delay can be tolerated.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Critically subsampled two-band quadrature-
mirror filter banks (QMF banks) are utilized in a
e front matter r 2005 Elsevier B.V. All rights reserve

pro.2005.05.012

ng author. Tel.: +49431 8806126;

06128.

ss: jkl@tf.uni-kiel.de (J. Kliewer).
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variety of applications, for example in audio and
image compression, where most design techniques
are dealing with FIR analysis and synthesis filters.
On the other hand, employing IIR filters leads to
very efficient filter bank realizations, which can be
designed such that they have stable and causal
subband filters and are free from both aliasing and
amplitude distortion. However, phase distortion
usually remains in the reconstructed signal.
One solution for canceling the phase distortion

and obtaining a perfect reconstruction (PR)
system can be achieved by using anticausal
d.
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Fig. 1. Two-band critically subsampled filter bank structure.
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filtering [1] and employing a double buffering
scheme as in [2,3] for the processing of infinite-
length signals. However, this method leads to a
computationally costly synthesis filter bank, which
requires segmentation and time-reversal of the
subband signals. Other approaches for designing
PR filter banks with causal and stable IIR filters
are based on lifting-like factorizations [4,5], which
have the drawback that selective subband fre-
quency responses are difficult to obtain due to the
PR constraints being structurally imposed on the
design process. In order to design low-complexity
two-band near-PR systems, recent publications
propose the use of very efficient allpass-based
analysis filter banks [6–8] in combination with a
stable FIR- or mixed IIR-/FIR-based synthesis
[9–12]. The proposed work also falls into this
category.

In this paper, we present novel near-PR design
techniques for a class of mixed allpass-/FIR-based
two-band QMF filter banks. For example, this
also includes the design of a near-PR analysis–
synthesis system with a low-complexity analysis or
synthesis bank solely based on allpass polyphase
components. All design approaches are based on
FIR approximations for inverse first-order all-
passes, where the remaining error only depends on
the allpass parameters and the order of the FIR
approximation. In contrast to similar approaches
in literature, where the synthesis filters are
obtained by solving an approximation problem
for the ideal overall system response using linear
programming [9], an FIR all-pole filter approx-
imation based on a deconvolution approach
[10,11], or a weighted least-square design method
[12], here the FIR approximation filters are
designed via simple analytical expressions. Em-
ploying this phase compensation technique FIR
synthesis filters are obtained in such a way that the
non-linear phase introduced by the allpass filters is
compensated and furthermore, aliasing and linear
distortions are strongly reduced or even canceled
in the case of aliasing distortions. Furthermore,
the presented design methods have the interesting
property that an increase of the reconstruction
error at the output of the synthesis filter bank can
be traded for a reduction of the overall system
delay and vice versa.
The outline of the paper is as follows. In
Section 2 we briefly review the basic relations for
the allpass-based two-band critically subsampled
filter bank. The phase-compensation approach
utilized in the sequel of the paper is discussed in
Section 3. Section 4 then proposes a general two-
band mixed IIR/FIR analysis–synthesis system
and discusses three special cases emerging from
this general structure. Finally, design examples are
given in Section 5.
2. Classical allpass-based two-band QMF banks

The classical two-band critically subsampled
filter bank structure [13,8] is depicted in Fig. 1,
where the HkðzÞ denote the analysis subband filters
and the GkðzÞ the synthesis subband filters for
k ¼ 0; 1, respectively.
The input–output relation for this system can be

given as

X̂ ðzÞ ¼ X ðzÞT linðzÞ þ X ð�zÞTaliasðzÞ (1)

with the linear distortion transfer function

T linðzÞ ¼
1
2
½H0ðzÞG0ðzÞ þH1ðzÞG1ðzÞ�. (2)

If T linðzÞ ¼
!

c � z�D with c 2 R and D denoting the
overall system delay, the filter bank has no
amplitude and phase distortion. The transfer
function TaliasðzÞ in (1) corresponds to the aliasing
distortion and can be written as

TaliasðzÞ ¼
1
2
½H0ð�zÞG0ðzÞ þH1ð�zÞG1ðzÞ�. (3)

By choosing the synthesis filters according to

G0ðzÞ ¼ H1ð�zÞ and G1ðzÞ ¼ �H0ð�zÞ, (4)

aliasing can be completely canceled. Furthermore,
when the analysis filters are related as H0ðzÞ ¼

H1ð�zÞ, they are referred to as quadrature-mirror
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2The synthesis bank may be implemented by applying time-

reversed subband sequences to the non-causal synthesis filters

[1], where this solution is only suitable for short input

sequences. Additionally, for achieving PR state information

for the analysis filters has to be transmitted to the synthesis side

besides the subband data, which increases the overall data rate.
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filters. A very efficient way of representing the
filter bank can be obtained by using polyphase
components.

In the following, we consider QMF banks where
(4) is satisfied and where the polyphase compo-
nents consist of stable and causal allpass transfer
functions AiðzÞ, i ¼ 0; 1, of first order according to

AiðzÞ ¼
z�1 þ ai

1þ aiz�1
; 0ojaijo1; ai 2 R. (5)

The analysis and synthesis filters then are IIR
filters, have the power-symmetric property and can
be given in a more compact matrix notation as
follows:

H0ðzÞ

H1ðzÞ

" #
¼

1

2

1 1

1 �1

� �
A0ðz

2Þ

z�1A1ðz
2Þ

" #
, (6)

G0ðzÞG1ðzÞ½ � ¼
1

2
z�1A1ðz

2ÞA0ðz
2Þ

� � 1 1

1 �1

� �
.

(7)

For the sake of simplicity we restrict ourselves to
classical power-symmetric elliptical subband ana-
lysis filters which can be realized with allpass-
based polyphase components (see, e.g., [6,7]). By
using the fact that these filters have their poles on
the imaginary axis of the z-plane, it can be shown
that this class of filters can be derived from first-
order real-valued allpass polyphase components
(5) having only positive parameters ai [8]. Higher-
order filters can then be obtained by simply
concatenating the first-order allpasses in (5).

By inserting the subband filters from (6) and (7)
into (2) we obtain the linear distortion transfer
function

T linðzÞ ¼
1
2

z�1A0ðz
2ÞA1ðz

2Þ, (8)

which is now an allpass transfer function. Thus,
amplitude distortion is eliminated and aliasing
distortion is canceled since (4) is satisfied, but
phase distortion persists and depends on the phase
responses of the allpass filters A0ðzÞ and A1ðzÞ. A
straightforward solution to eliminate the phase
distortions in (8) would be to use non-stable
inverse allpasses Aiðz

�2Þ instead of the Aiðz
2Þ for

the synthesis filters in (7). However, an implemen-
tation of the synthesis bank is problematic due to
the non-causal synthesis polyphase components.2

In the next section we propose as one possible
solution a new closed-form FIR approximation
FiðzÞ for a non-causal allpass Aiðz

�1Þ, where
stability problems do not arise.
3. Compensation of the phase distortion

We present a novel analytical expression for an
FIR filter with the transfer function FiðzÞ, i ¼ 0; 1,
which approximately compensates the phase dis-
tortion caused by a first-order allpass AiðzÞ up to a
certain error. Thus, F iðzÞ may also be interpreted
as a causal approximation for the non-stable
inverse allpass Aiðz

�1Þ. To this end, let us consider
the relation

AiðzÞF iðzÞ ¼ z�di � eðai; diÞ ¼ z�di � ð�1Þdi a
di
i ,

i ¼ 0; 1; di 2 R, ð9Þ

where the phase compensation error is expressed
by the term eðai; diÞ ¼ ð�1Þ

di a
di
i . When the poly-

nomial factorization relation

z�di � ð�1Þdi � a
di
i ¼ ðz

�1 þ aiÞ
Xdi�1

k¼0

ð�1Þk

� ak
i z�ðdi�1�kÞ ð10Þ

is inserted on the right-hand side of (9) and the
first-order allpass transfer function AiðzÞ in (5) on
the left-hand side, we obtain the desired closed-
form expression for the phase compensation filter
FiðzÞ as

FiðzÞ ¼ ð1þ aiz
�1Þ

Xdi�1

k¼0

ð�1Þkak
i z�ðdi�1�kÞ (11)

¼ ð�1Þdi�1 a
di�1
i þ

Xdi�1

k¼1

ð�1Þdi�1�ka
di�1�k
i

� ð1� a2
i Þ z
�k þ aiz

�di . ð12Þ
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Since 0ojaijo1, we can select the order di of the
filter F iðzÞ such that the term eðai; diÞ in (9) can be
made arbitrarily small at the expense of additional
delay. Then (9) can be approximated as
AiðzÞFiðzÞ � z�di .

Note that the equalization problem in (9) is
similar to the all-pole FIR approximation problem
stated in [10,11]. In the latter approach a FIR
phase compensation filter is designed via the
pseudo-inverse of a convolution matrix obtained
from the coefficients of the truncated allpass
impulse response, where depending on the choice
of the design parameters similar filters as from (12)
may be obtained. However, the design via the
approach proposed in [10,11] has a large design
complexity of order Oðd3

i Þ, which makes the design
of longer FIR filters (which are required when,
e.g., AiðzÞ has zeros close to the unit circle [11])
quite costly. In contrast, using the closed-form
relation in (12) the design complexity is linear in
the filter order di, which for example allows to
change the filter bank parameters adaptively in
different blocks of the input signal also for small
approximation errors eðai; diÞ with large di.

An example for the proposed phase compensa-
tion approach is given in Fig. 2, where the
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Fig. 2. Group delays for the first-order allpass A0ðzÞ with

a0 ¼ 0:65, the corresponding phase-compensation filter F0ðzÞ

with d0 ¼ 20, and the product filter A0ðzÞF0ðzÞ.

Fig. 3. Generalized two-band analysi
individual group delays for the first-order allpass
A0ðzÞ with a0 ¼ 0:65, the corresponding phase-
compensation filter F0ðzÞ of order d0 ¼ 20 from
(12), and the product filter A0ðzÞF0ðzÞ from (9) are
depicted.
4. Generalized two-band IIR/FIR filter bank

In this section, the FIR phase compensation
approach derived in the previous section is applied
to the generalized two-band allpass-based IIR/
FIR analysis–synthesis system depicted in Fig. 3,
where the Aa=s;iðzÞ, i ¼ 0; 1, denote first-order
allpass filters and the F a=s;iðzÞ FIR filters in the
analysis and synthesis bank, respectively. Note
that by choosing F a;iðzÞ ¼ 1 the allpass-based
analysis bank from Section 2 is contained as one
special case. A general expression for the linear
distortion function T linðzÞ can be given as

T linðzÞ ¼
1
4

z�1ðAa;0ðz
2ÞFa;0ðz

2ÞAs;0ðz
2ÞF s;0ðz

2Þ

þ Aa;1ðz
2ÞF a;1ðz

2ÞAs;1ðz
2ÞFs;1ðz

2ÞÞ, ð13Þ

and for the aliasing function TaliasðzÞ we have

TaliasðzÞ ¼
1
4

z�1ðAa;0ðz
2ÞF a;0ðz

2ÞAs;0ðz
2ÞFs;0ðz

2Þ

�Aa;1ðz
2ÞFa;1ðz

2ÞAs;1ðz
2ÞFs;1ðz

2ÞÞ: ð14Þ

In the following we discuss special cases with
different properties arising from Fig. 3.

4.1. Case (i): minimization of amplitude, phase,

and aliasing distortion

By choosing

Fa;0ðzÞ ¼ 1; Aa;0ðzÞ ¼ A0ðzÞ; Fa;1ðzÞ ¼ 1,

Aa;1ðzÞ ¼ A1ðzÞ, ð15Þ
s–synthesis IIR/FIR filter bank.
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we obtain the classical power-symmetric analysis
filter bank with allpass polyphase components
[6–8]. By canceling the phase distortion introduced
by the analysis allpasses with the proposed FIR
phase compensation filters the synthesis polyphase
components in Fig. 3 can be given as

Fs;0ðzÞ ¼ 2F0ðzÞ; As;0ðzÞ ¼ z�ðd1�d0Þ,

Fs;1ðzÞ ¼ 2F1ðzÞ; As;1ðzÞ ¼ 1. ð16Þ

The FiðzÞ, i ¼ 0; 1, have the order di and are
designed according to (12). The delay term As;0ðzÞ

is necessary for compensating the different lags in
the polyphase branches as we will see in the
following, where without loss of generality we
assume that d14d0.

The linear distortion transfer function of the
overall analysis–synthesis system can be obtained
by inserting (15) and (16) into (13) and applying
(9) as

T linðzÞ

¼ z�2 d1�1

¼: ElinðzÞ

þ
1
2
ðð�1Þd0þ1a

d0
0 z�2ðd1�d0Þ�1 þ ð�1Þd1þ1a

d1
1 z�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl};
ð17Þ

where ElinðzÞ denotes the transfer function of the
linear distortion error. If the parameter di with
d0od1 is selected such that eðai; diÞ � 0 in (9), we
also have ElinðzÞ � 0. Then, T linðzÞ has approxi-
mately linear phase and we have jT linðe

joÞj � 1 for
all o, leading to an overall system delay of D ¼

2 maxðd0; d1Þ þ 1 samples. Likewise, by combining
(15), (16), (14), and (9) the aliasing distortion
transfer function can be written according to

TaliasðzÞ ¼
1
2
ð�1Þd1a

d1
1 z�1

� 1
2
ð�1Þd0a

d0
0 z�2ðd1�d0Þ�1. ð18Þ

Again, if the parameters a0, a1, d0, and d1 are
chosen appropriately, the aliasing distortion trans-
fer function tends to zero at all frequencies.

We can remove the delay element As;0ðzÞ in the
synthesis bank at the expense of a slightly higher
computational complexity by choosing the same
order d 0 ¼ maxðd0; d1Þ for both phase compensa-
tion filters. The linear distortion error transfer
function ElinðzÞ in (17) now only consists of a
single delay term according to

ElinðzÞ ¼
1
2
ðð�1Þd

0þ1z�1ðad 0

0 þ ad 0

1 ÞÞ (19)

and the new aliasing transfer function can be
given as

TaliasðzÞ ¼
1
2 z�1 ð�1Þd

0

ðad 0

1 � ad 0

0 Þ. (20)

Note that the magnitude frequency response
jTaliasðe

joÞj is now a constant function in o, that
is, we have the same aliasing attenuation for all
frequencies.
4.2. Case (ii): minimization of amplitude and phase

distortion, cancelation of aliasing distortion

In addition to case (i), here aliasing is canceled
completely, where the analysis polyphase compo-
nents are again chosen as in the classical allpass-
based QMF case in (15). For the synthesis filter
bank we first define QiðzÞ ¼ AiðzÞF iðzÞ ¼

z�di � ð�1Þdi a
di
i as FIR filter of order di. The

synthesis polyphase components in Fig. 3 are then
specified as

Fs;0ðzÞ ¼ 2F 0ðzÞQ1ðzÞ; As;0ðzÞ ¼ 1,

Fs;1ðzÞ ¼ 2F 1ðzÞQ0ðzÞ; As;1ðzÞ ¼ 1. ð21Þ

It is easy to verify that aliasing is completely
canceled, i.e., TaliasðzÞ ¼ 0. The linear distortion
transfer function T linðzÞ of the analysis–synthesis
system can be derived from (9), (13), (15), and
(21) as

T linðzÞ ¼ z�ð2d1þ2d0þ1Þ þ ElinðzÞ with

ElinðzÞ ¼ ð�1Þ
d0þd1a

d0
0 a

d1
1 z�1 � ð�1Þd0a

d0
0 z�ð2d1þ1Þ

� ð�1Þd1a
d1
1 z�ð2d0þ1Þ. ð22Þ

Clearly, the remaining linear distortion error
elinðnÞ ¼ Z�1fElinðzÞg represents the only distor-
tion in the reconstructed signal. The aliasing
cancelation approach leads to an increased system
delay of D ¼ 2d1 þ 2d0 þ 1 samples compared to
case (i).
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4.3. Case (iii): almost linear-phase analysis and

synthesis filters

Two-band QMF filter banks with linear-phase
analysis and synthesis filters are desired in some
applications, for example in image processing and
compression. By modifying the structure from case
(ii) above, it is possible to reduce the group delay
deviations of the analysis and synthesis filters, and
to obtain approximately linear-phase subband
filters. In the analysis filter bank of Fig. 3 the
polyphase components are chosen according to

Aa;0ðzÞ ¼ 1; Fa;0ðzÞ ¼ Q0ðzÞ; Aa;1ðzÞ ¼ A1ðzÞ,

Fa;1ðzÞ ¼ F0ðzÞ. ð23Þ

Likewise we have

As;0ðzÞ ¼ 1; Fs;0ðzÞ ¼ 2Q1ðzÞ; As;1ðzÞ ¼ A0ðzÞ,

Fs;1ðzÞ ¼ 2F1ðzÞ, ð24Þ

in the synthesis filter bank. Now, the modified
analysis filters can be given as

H 00ðzÞ ¼
1
2
ðQ0ðz

2Þ þ z�1A1ðz
2ÞF0ðz

2ÞÞ

¼ H0ðzÞF0ðz
2Þ,

H 01ðzÞ ¼
1
2
ðQ0ðz

2Þ � z�1A1ðz
2ÞF0ðz

2ÞÞ

¼ H1ðzÞF0ðz
2Þ. ð25Þ

These filters have a smaller deviation from a
linear-phase response compared to the pure
allpass-based QMF analysis bank, which will be
shown in the following for the filter H 00ðzÞ.

Using relation (9) the filter F0ðz
2Þ in (25) can be

stated as

F0ðz
2Þ ¼ A0ðz

�2Þ ðz�2d0 � ð�1Þd0a
d0
0 Þ. (26)

Note that this definition still refers to a stable
system since the two poles of the inverse allpass
A0ðz

�2Þ are canceled by two zeros of
ðz�2d0 � ð�1Þd0a

d0
0 Þ. Now, by inserting (26) into

(25) we can write the lowpass analysis filter H 00ðzÞ

according to

H 00ðzÞ ¼ H0ðzÞA0ðz
�2Þ ðz�2d0 � ð�1Þd0a

d0
0 Þ. (27)
In the following, we only consider the remaining
group delay of the system

V ðzÞ ¼ H0ðzÞA0ðz
�2Þ ¼ 1

2
ð1þ z�1A1ðz

2ÞA0ðz
�2ÞÞ

(28)

in (27). This restriction is justified when we assume
that the term ð�1Þd0a

d0
0 is sufficiently small, which

then leads to an approximately linear-phase
response for the term ðz�2d0 � ð�1Þd0a

d0
0 Þ.

By inserting (5) into (28) it can be shown that
the numerator polynomial NV ðzÞ of the rational
transfer function V ðzÞ ¼ NV ðzÞ=DV ðzÞ has the
linear-phase property, such that it suffices
to consider only the group delay contribution
of the denominator polynomial DV ðzÞ ¼ a0þ

ða0a1 þ 1Þz�2 þ a1z
�4.

According to [14, Chapter 4.2.5] the group delay
of an all-pole system HðejoÞ ¼ jHðejoÞj e�jbðoÞ with
N poles z1n ¼ r1n

ejc1n , n ¼ 1; 2; :::;N, can be
expressed as

tHðoÞ ¼
d bðoÞ
do

¼
XN

n¼1

1� r1n
cosðo� c1n

Þ

1� r1n
cosðo� c1n

Þ þ r21n

. ð29Þ

Since the poles z11;2
¼ �j=

ffiffiffiffiffi
a0
p

and z13;4
¼ �j

ffiffiffiffiffi
a1
p

of V ðzÞ are all on the imaginary axis of the z-plane
the maximal deviation from a constant group
delay occurs at o ¼ �p=2. The corresponding
group delay tV ð�p=2Þ can be obtained from (29)
and the poles of V ðzÞ after some simplifications as

tV �
p
2

� �
¼

2

1� 1=a0
þ

2

1� a1
þ C, (30)

where the constant C ¼ �1:5 contains the group
delay contributions of both the linear-phase
numerator NV ðzÞ and the fourfold zero at z ¼ 0
of the system 1=DV ðzÞ. Likewise, we can obtain an
expression for the group delay of the original
analysis filter H0ðzÞ in (6) by inserting the
pole locations z11;2

¼ �j
ffiffiffiffiffi
a0
p

and z13;4
¼ �j

ffiffiffiffiffi
a1
p

into (29):

tH0
�
p
2

� �
¼

2

1� a0
þ

2

1� a1
þ C, (31)

where the constant C has the same value and
meaning as in (30). In order to achieve a smaller
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maximal deviation from the constant group delay
C for the modified analysis filter H 00ðzÞ (under the
constraint that a

d0
0 tends to zero) we thus require

2

1� 1=a0

				
				o! 2

1� a0

				
				 for all 0oa0o1. (32)

Since j1� 1=a0j4j1� a0j for all a0 2 �0; 1½ condi-
tion (32) is satisfied and we can conclude that the
maximal group delay deviation DtH 0

0
;max ¼

jtH 0
0
ð�p=2Þ � C � 2d0j is always smaller than the

one for the original analysis filter H0ðzÞ.
Similar considerations hold for both the analysis

highpass filter and the synthesis filters, which can
be derived from (7) and Fig. 3 as

G00ðzÞ ¼ 2G0ðzÞF 1ðz
2Þ and

G01ðzÞ ¼ 2G1ðzÞF 1ðz
2Þ. ð33Þ

Note that the magnitude frequency responses
jH 00ðe

joÞj and jH 01ðe
joÞj of the filters in (25) are

almost identical to jH0ðe
joÞj and jH1ðe

joÞj for the
pure allpass-based analysis filter bank in (6), since
the compensation filter F 0ðzÞ has approximate
Table 1

Properties of the special cases derived from the general structure in Fig

distortion, MPS/APS: Multiplications/additions per input sample)

Case (i) Ca

Analysis polyphase components

(cmp. Fig. 3)

Aa;0ðzÞ ¼ A0ðzÞ

Fa;0ðzÞ ¼ 1

Aa;1ðzÞ ¼ A1ðzÞ

Fa;1ðzÞ ¼ 1

A

F

A

F

Synthesis polyphase components

(cmp. Fig. 3)
As;0ðzÞ ¼ z�ðd1�d0Þ

Fs;0ðzÞ ¼ 2F0ðzÞ

As;1ðzÞ ¼ 1

Fs;1ðzÞ ¼ 2F1ðzÞ

A

F

A

F

Remaining distortions ALD minimized: (18), (20) AL

AMD minimized: (17), (19) AM

PHD minimized PH

Phase responses of HkðzÞ and

GkðzÞ, k ¼ 0; 1
Nonlinear N

Complexity, analysis bank (first-

order allpasses)

1 MPS, 3 APS [8] 1

Complexity, synthesis bank 0:5ðd0 þ d1 þ 2Þ MPS,

0:5ðd0 þ d1 þ 4Þ APS

0:5
0:5

System delay (samples) D ¼ 2maxðd0; d1Þ þ 1 D

The quantity QiðzÞ, i ¼ 0; 1, is defined as QiðzÞ ¼ AiðzÞFiðzÞ. The an

changing the behavior of the filter bank.
allpass behavior:

jH 0kðe
joÞj ¼ jF0ðe

j2oÞjjHkðe
joÞj

� jHkðe
joÞj; k ¼ 0; 1. ð34Þ

A similar relation can be obtained for the synthesis
filters G00ðzÞ and G01ðzÞ in (33). Furthermore, it is
straightforward to verify that the same system
delay and the same reconstruction errors as in case
(ii) hold here.

4.4. Summary and implementation complexity

Table 1 summarizes the properties of the
discussed filter bank systems and also states the
implementation complexity of these systems. We
can see that the smallest implementation complex-
ity is given by case (i). The additional cancelation
of the aliasing components in case (ii) only
requires a slightly higher complexity of the
synthesis bank, however, at the expense of a larger
system delay compared to case (i). By reducing the
deviation from a constant group delay in case
(iii) a higher complexity is needed, where in
. 3 (see Section 4) (ALD/AMD/PHD: Aliasing/amplitude/phase

se (ii) Case (iii)

a;0ðzÞ ¼ A0ðzÞ

a;0ðzÞ ¼ 1

a;1ðzÞ ¼ A1ðzÞ

a;1ðzÞ ¼ 1

Aa;0ðzÞ ¼ 1

Fa;0ðzÞ ¼ Q0ðzÞ

Aa;1ðzÞ ¼ A1ðzÞ

Fa;1ðzÞ ¼ F0ðzÞ

s;0ðzÞ ¼ 1

s;0ðzÞ ¼ 2F0ðzÞQ1ðzÞ

s;1ðzÞ ¼ 1

s;1ðzÞ ¼ 2F1ðzÞQ0ðzÞ

As;0ðzÞ ¼ 1

Fs;0ðzÞ ¼ 2Q1ðzÞ

As;1ðzÞ ¼ A0ðzÞ

Fs;1ðzÞ ¼ 2F1ðzÞ

D canceled ALD canceled

D minimized: (22) AMD minimized: (22)

D minimized PHD minimized

onlinear Approx. linear in pass- and

stopband

MPS, 3 APS [8] 0:5ðd0 þ 3ÞMPS, 0:5ðd0 þ 5Þ APS

ðd0 þ d1 þ 4Þ MPS,

ðd0 þ d1 þ 6Þ APS

0:5ðd1 þ 3Þ MPS, 0:5ðd1 þ 7Þ APS

¼ 2d1 þ 2d0 þ 1 D ¼ 2d1 þ 2d0 þ 1

alysis and synthesis subband filters may be exchanged without
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comparison to case (i) and (ii) both analysis and
synthesis bank approximately require the same
number of operations.

Note that the analysis and synthesis subband
filters may be exchanged without changing the
overall behavior of the analysis–synthesis system
such that case (i) and (ii) are also well suited for
applications where computing power is a critical
resource at the receiver.
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Fig. 5. Overall analysis–synthesis system, synthesis delay

parameters d0 ¼ 6, d1 ¼ 22 (dashed line: case (i), solid line:

case (ii)/(iii)): (a) Amplitude distortion error; (b) aliasing

distortion for case (i) (for case (ii)/(iii) TaliasðzÞ ¼ 0); (c) group

delay.
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5. Design examples and comparison

Analysis filter bank

In order to design the IIR analysis filters in (6)
we use a direct optimization approach, where the
coefficients a0 and a1 of the first-order allpass
filters are obtained via nonlinear optimization
under minimization of the stopband energy. The
resulting magnitude frequency responses for the
analysis filters with the values a0 ¼ 0:1806 and
a1 ¼ 0:6485 are depicted in Fig. 4, where the
stopband edge frequency for the lowpass filter was
chosen as os ¼ 0:64p. These design parameters
will be used for the corresponding allpasses A0ðzÞ

and A1ðzÞ in all following examples:
Case (i): Here we choose the synthesis polyphase

components according to (16), where the filters
FiðzÞ are designed via (12). By using the above
design for the analysis polyphase components in
(15) and the delay parameters d0 ¼ 6, d1 ¼ 22 in
the synthesis bank, we obtain the amplitude
distortion error depicted in Fig. 5(a) with the
dashed line for the overall analysis–synthesis
system. The magnitude aliasing distortion
jTaliasðe

joÞj for this set of delay parameters is
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Fig. 4. Magnitude frequency responses for the allpass-based

IIR QMF analysis bank.

Fig. 6. Average magnitude aliasing distortion vs. system delay

for case (i).
shown in Fig. 5(b), and the group delay is given
with the dashed line in Fig. 5(c). We can see that
the overall linear distortion function T linðzÞ has
approximately linear phase, leading to an average
system delay of D ¼ 45 samples.
Note that the choice of d0 and d1 is arbitrary

and reflects a compromise between low complexity
and low delay, and the minimization of aliasing
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and linear distortions, which can be also observed
from Eqs. (17) and (18). The relation between
average magnitude aliasing distortion and system
delay is visualized in Fig. 6.

Case (ii): In this case the synthesis polyphase
components are given in (21), which ensures that
the aliasing distortion is exactly zero at all
frequencies. As delay parameters we again choose
d0 ¼ 6 and d1 ¼ 22. This leads to the amplitude
distortion error shown in Fig. 5(a), and the almost
constant group delay depicted in Fig. 5(c), both
shown with solid lines.

Case (iii): Here, all distortions are the same as in
case (ii) (see Figs. 5(a) and (c)) for the delay
0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

M
ag

ni
tu

de
 (

dB
)

Normalized frequency (ω /π)

|G′
0
(ejω)| |G′

1
(ejω)|

0 0.2 0.4 0.6 0.8 1

12
16

30

41
45

Normalized frequency (ω /π)

G
ro

up
 d

el
ay

Analysis

Synthesis

(a)

(b)

Fig. 7. Case (iii): (a) Magnitude frequency responses of the

synthesis filters; (b) group delays for both low- and highpass

filters in the analysis and synthesis filter bank, resp.

Table 2

Comparison of the proposed mixed IIR/FIR systems with class

distortion, MPS/APS: Multiplications/additions per input sample)

System Stopband ampl. (ma

Case (i) (d0 ¼ 6, d1 ¼ 22) �46 dB

Paraunitary lattice [15] �47 dB

Case (ii) (d0 ¼ 6, d1 ¼ 22) �46 dB

Paraunitary lattice [15] �54 dB

Case (iii) (� lin. phase filter, d0 ¼ 6, d1 ¼ 22) �46 dB

QMF [8] (lin. phase filt.) �62 dB

IIR/FIR approach [9, case 1] �34 dB
parameters d0 ¼ 6 and d1 ¼ 22. Fig. 7(a) depicts
the magnitude frequency responses of the synthesis
filters G00ðzÞ and G01ðzÞ, which are similar to the
analysis filters from Fig. 4 for the pure allpass-
based case (except the amplification by factor
two). Due to relation (34) this similarity also holds
for the frequency responses of the analysis bank.
Finally, in Fig. 7(b) the group delays for the
analysis and synthesis subband filters are shown. It
can be observed that all subband filters have
approximately linear phase both in the passband
and the stopband.
Comparison

The above design examples are summarized in
Table 2, which also contains results for FIR-based
two-band systems with identical analysis and
synthesis complexities. Especially, we consider a
PR two-band paraunitary lattice structure [15] and
a classical near-PR QMF design [8] with linear-
phase filters. Both resulting filter banks have
overall system delays being identical (except small
deviations due to the non-ideal phase compensa-
tion) to the delays in the above examples for case
(i)–(iii). However, note that a comparison between
the mixed allpass-/FIR-based systems and the
classical FIR-based filter banks is quite proble-
matic since for the allpass-based approaches the
choice of the parameters d0 and d1 and thus also of
the amount of the remaining distortions is in
principle arbitrary. Nevertheless, the examples in
ical FIR-based approaches (ALD/AMD: Aliasing/amplitude

x) ALD AMD Group delay MPS/APS

Analy. Synth.

�85 dB �5 � 10�5 45� 2 � 10�3 1/3 15/16

cancelation � 0 45 24/23 24/24

cancelation �10�4 57� 2 � 10�3 1/3 16/17

cancelation � 0 57 30/29 30/30

cancelation �10�4 57� 2 � 10�3 4.5/5.5 12.5/14.5

cancelation �10�4 57 29/29 29/29

cancelation �0:044 56 1/3 18/19



ARTICLE IN PRESS

J. Kliewer, E. Brka / Signal Processing 86 (2006) 171–181180
Table 2 give a good overview of the performance
for the proposed mixed IIR/FIR systems.

We can see from Table 2 for case (i) and (ii) that
they generally show a much lower overall com-
plexity than the PR paraunitary lattice banks at
the expense of small distortions in the recon-
structed signal. However, in many applications,
where modifications of the subband signals are
carried out, small additional distortions as intro-
duced by the proposed near-PR systems may be
tolerated. When comparing the approaches having
linear-phase subband filters, we observe that the
strongly reduced complexity for case (iii) is
achieved at the expense of a higher stopband
amplification and thus, of less selective subband
filters compared to the near-PR QMF bank for the
same overall system delay.

Table 2 also contains results for the allpass-
based IIR/FIR system from [9], where the analysis
lowpass has a slightly smaller stopband edge
frequency of os ¼ 0:6p leading to a smaller
stopband attenuation. The system from [9]
achieves a constant group delay at the expense of
a larger amplitude distortion, while the compexity
is comparable to case (i) and (ii).
6. Conclusion

We have proposed a novel approach for the
near-PR design of critically subsampled two-band
mixed IIR/FIR QMF banks, where FIR filters are
employed for phase compensation in the poly-
phase domain. These phase-compensation filters
can be designed via analytical expressions for their
impulse responses. We have shown that all
distortions at the output of the synthesis filter
bank are controllable and can be made arbitrarily
small at the expense of additional system delay.
Especially, it is also possible to cancel the aliasing
components completely and to design subband
filters with approximately linear phase if further
delay can be tolerated. Despite we have only
explicitly addressed the case of first-order allpass
polyphase components in the analysis bank, the
proposed phase-compensation approach can be
extended to higher order (elliptic) subband filters
by concatenating first-order allpasses in combina-
tion with higher order FIR compensation filters.
Furthermore, it is straightforward to exchange

the analysis and synthesis filters in the generalized
structure of Fig. 3. This leads to a low-complexity
synthesis, where now a phase ‘‘precompensation’’
is carried out on the analysis side. This may be
advantageous for two-way coding and transmis-
sion applications with a mobile and a fixed part.
The mobile part would then contain the low-
complexity versions of the analysis and synthesis
banks for both transmitting directions, resp.,
whereas the fixed part would contain the corre-
sponding higher complexity analysis/synthesis
banks (see Table 1).
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