Joint Constellation and Code Design for the
Gaussian Multiple Access Channel

Yu-Chung Liang*, Stefano Rini,* and Jorg Kliewer
* National Chiao-Tung University (NCTU), Hsinchu, Taiwan
E-mail: ycliang.cm04g,stefano @nctu.edu.tw
t New Jersey Institute of Technology (NJIT), Newark, New Jersey, USA
Email: jkliewer@njit.edu

Abstract—The joint design of both transmit constellation and
low-density parity-check codes (LDPC) for the two-user, symbol-
synchronous, binary-input Gaussian multiple access channel is
considered. A transmission scheme is proposed to approach the
symmetric capacity without the use of time-sharing or rate-
splitting by joint decoding of the noisy sum of two LDPC
codewords. This scheme relies on an extension of the classic
belief propagation (BP) algorithm which allows for the simul-
taneous decoding of two LDPC codewords. We use a Gaussian
approximation (GA) of the message distribution to investigate
the convergence of the decoding process and derive a linear
programming technique for joint code design. We also implement
a superposition modulation scheme to achieve higher rate. This
code design is applied to different input constellation choices
which attain the symmetric capacity in different SNR regimes.
It is shown that, quite surprisingly, in the moderate SNR regime
the best performance is obtained by an asymmetric constellation.

I. INTRODUCTION

Joint decoding is a fundamental ingredient of multi-terminal
transmission schemes and generally provides substantial im-
provements over time-sharing and rate-splitting. Despite its
importance from both a practical and theoretical perspective,
the study of optimal codes for joint decoding has not been
represented well in the literature as only a few good code
designs are currently known.

The study of codes for the MAC has focused primarily
on two models: the real adder channel and the GMAC. The
real adder channel is a noiseless channel with binary inputs
in which the output is the real sum of the inputs. For this
model, correct decoding is possible only when any two input
codewords are always distinguishable from their sum. The
construction of block codes and decoding for the two-user
real adder channel is studied in [1] and is extended in [2]
to the real adder channel with any number of transmitters.
Convolutional codes for GMACs are investigated in [3] which
shows that non-uniquely decodable binary convolutional code
pairs exist with a sum rate larger than the time-sharing rate.
The design of LDPC codes for the GMAC is first considered
in [4], although only one construction is mentioned. The
authors of [5] introduce the concept of a “MAC node” for
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the Tanner graph when describing the decoding of LDPC
codes for the GMAC. This node is a third type of node,
together with variable and check nodes, which receives the
channel output and the bit-reliability for a symbol of one
transmitter and produces the bit-reliability of a symbol of the
other transmitter. In [6], the authors propose a soft demapping
method for multilevel modulation on the GMAC based on
LDPC codes and investigate the role of symbol mapping
in this setting. Spatially coupled codes for the binary adder
channel with erasures are studied in [7] where it is shown that
threshold saturation as in the point-to-point erasure channel
also occurs in this model. In [8}spatially-coupled codes for
the GMAC are studied and is shown that threshold saturation
occurs for the joint decoding of two codewords: this result
naturally leads to the design of codes which are universal with
respect to the channel parameters. Although very powerful,
the approach of [8] has not so far been complemented by
numerical evaluations.

In this paper, we consider the joint optimization of both
the transmitter constellation and LDPC codes for a GMAC:
this is, to our knowledge, the first time that these two design
problems have been jointly considered. We consider an ex-
tension of the BP algorithm for the decoding of the sum of
two LDPC codewords corrupted by additive white Gaussian
noise at the receiver. We derive convergence conditions for
this decoding algorithm and propose a numerical optimization
tool for code design based on linear programming. This code
construction is applied to three input constellations which
maximize the symmetric rate in three different signal-to-noise
ratio (SNR) regimes: (i) antipodal input—optimal at low SNR,
(ii) inputs that maximize the minimum distance in the received
constellation—optimal at high SNR, and (iii) an asymmetric
constellation—optimal at moderate SNR. We show that, quite
surprisingly, in the moderate SNR regime, an asymmetric
constellation outperforms symmetric input constellations. Sim-
ulations results are presented to show the effectiveness of the
proposed construction.

II. CHANNEL MODEL AND CODE DESCRIPTION

We study the two-user, symbol-synchronous GMAC in
which the channel output is obtained as

YN = xN 4 xN 4 zZN, (1)
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Fig. 1. Tanner graph of MAC considered in this work: check nodes are
indicated as squares, variable nodes as circles, and the MAC nodes are
indicated with boxes containing the symbol 4.

where Z% is an i.i.d. sequence drawn from N (0, 02) and all
additions are over the reals. The channel input Xy, k € {1,2}
is binary and uniformly distributed, i.e.

PI‘(Xk) _ { 1/2 for Xk = {L‘k(O),

1/2 for Xk :xk(l), (2)
where the support {x(0),zy
constraint z7(0) + z3(1) < 2.

The user k € {1,2} wishes to communicate the messages
Wi € {1,...,2NEx} to the receiver. The receiver produces
message estimates such that the probability of error vanishes
as the blocklength N goes to infinity.

In the following, we assume that X{¥ and X3’ are two
binary LDPC codewords in which the symbol 0/1 is mapped
to 2x(0)/xx(1). Under this assumption, we jointly optimize
the codes for two users and their respective input constellation
so as to approach the symmetric capacity. For the GMAC,
the symmetric capacity is obtained as an upper bound on the
symmetric rate Rgym as

(1)} is subject to the power

Ry < max 3

@k (0), 2k (1)

1
min {I(Y,X1|X2), I(Y, XQ‘X1)7 §I(Y,X1, X2)}

where the maximization is over the power constraint.

The joint decoding of LDPC codes for the GMAC can be
represented using a modified Tanner graph as shown in Fig. 1:
unlike a classical Tanner graph, the Tanner graph in Fig. 1 also
contains a MAC node. This node takes as inputs the channel
output and the bit-reliability of one user and produces the bit-
reliability of the other user. The degree of the variable nodes
from each user connected through the MAC node is described
by the joint variable node distribution. This degree distribution,
together with the check node degree distribution, describes a
2-user code ensemble for the GMAC. More specifically, we
define ,o,ﬁ’“) and FS’” as the check node degree distribution of
type r edges for user k from the edge and the node perspective,

respectively, as
=20 AP0 = 2 e @

for k € {1,2}. Similarly, we define )‘1(1 )12 as the fraction

F(k) (Xk)

of user 1 edges both connected to variable nodes with [y
outgoing user 1 edges and connected through the MAC node
to a variable node from user 2 with I outgoing edges. The

lynomial A{?)is defined i i f 2
polynomial ;" is defined in a symmetric manner for user 2.
Finally, A;, ;, is defined as the fraction of variable nodes with
l; outgoing edges of user 1 and I outgoing edges of user 2

as
Xla X2 Z Al1 l2X1 X2 5 (Sa)

l1,l2
AD (x1,x2) = DA N, (5b)

l1,l2
)\(2) (X17 XQ) — Z Al(f)llellxl; 1 (SC)

11,12

Further, the design rate for user 1 is obtained as
(k)
P 2l (1/1 ©)
S Mg

similarly for design rate of user 2, 7‘(2).

Note that the code specified in (4)—(6) generalizes the
constructions in [4], [S], [9] which only consider the case
where A is a diagonal matrix, i.e., where nodes of degree
I in the first code collide with nodes of degree [ it the second
code over the MAC node. As in these works, we assume in the
following that the codes have the same check node distribution
pM(x) = p@(x), however, no further assumptions are made
on the codes.

III. CONSTELLATION DESIGN

A closed-form expression of the symmetric capacity of the
binary input GMAC is currently not available but can be
obtained numerically, as for Bernoulli(0.5)-distributed channel
inputs the channel output distribution is given as

Z 1 e*ﬁ(yffl(i)*m(j))z

2 b
(i)efo1)2 V207

and, thus, the mutual information terms in (3) can be precisely
evaluated using numerical integration.

By performing the numerical optimization on the r.h.s. of
(3) with binary uniform inputs, we obtain that three different
constellations, up to reasonable numerical precision, maximize
the symmetric capacity for different SNR regimes, as indicated
in Fig. 2. The optimal choice for user 1 is [x1(0) z1(1)] =
[-1 + 1] for all SNRs while the optimal [z2(0) x2(1)] is
obtained as

Py(y) =

e Antipodal constellation—low SNR:
[22(0) 22(1)] = [-1 +1]. (7
e Maximum minimum distance constellation—high SNR:
[22(0) z2(1)] = [-1/2 +1/2], (®)
e Asymmetric constellation—moderate SNR:

[£2(0) 22(1)] = [0.1571 + 1.4055)]. 9)
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Fig. 2. The attainable symmetric rate for the input constellations (7), (8), and

(9) and for Gaussian inputs. .
PN & yed 4

We calléd (8) the/maximum minimum distance constellation
is because the minimum distance between the constellation
points is thesmaximum. Fig. 2 also plots the capacity under
a power constraint but not Constellation constraint, in which
case Gaussian inputs are optimal. Note that the constellation in
(8) does not meet the power constraint with equality. The fact
that the asymmetric constellation in (9) attains the capacity
in the moderate SNR regime shows there exists a choice of
input constellations which aids joint decoding. Indeed any
constellation of the form [z1(0) z1(1)] = [-1 + 1] and
[22(0) z2(1)] = [A A + 1.2484] for A such that the power
constraint is satisfied attains the same rate performance as (9).

IV. GAUSSIAN APPROXIMATION OF DENSITY EVOLUTION

In this section, we study the convergence of the BP al-
gorithm through density evolution (DE): we assume that the
message at the output of a variable node has a Gaussian dis-
tribution while the message at the output of a MAC node has
a distribution given by the mixture of two Gaussian densities.
Under these assumptions, we determine the convergence of a
for the BP algorithm as a function of the code distribution in
(5). In the BP algorithm, there are eight types of messages:
we will denote them as

(k)

My s 1,J € {Vaca m}, i#7, ke {132}3 (10)

where the subscript indicates that the message is from the type
of node 7 to type of node j and the superscript indicates the
user k. All possible messages ;™ are shown in Fig. 3 where
£ indicates the log-likelihood ratio of the channel output.
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Fig. 3. Messages employed in the MAC BP algorithm.

To simplify the analysis of the BP algorithm, we study the
evolution of mutual information during BP decoding by means
of the mutual information transfer function. Here we assume
that the message is a Gaussian random variable with mean

w. Thus, the mutual information between the message ml(f)

and the input constellation point [z (0), z(1)] for user k is
defined as I(zy;mi:)) in (13) such that 0 < I(zy;m{})) < 1.
Herein, we have

1 T — Ux —c
py (11X =2) = Toron exp <2/;2> , (11
Yy

for
1 — (21(0))? 2 — 2x,(0)xk(1)
1

2
C= —————""—U, Oy =

2(0) 2 (D™ 7Y T T2e(0) — (1)
(k) (k) (k)

Note that the messages mye, Mey', Mum follow from the
standard approximation of the BP evolution while the MAC
node update rule must be analyzed separately. The relationship
between the messages in Fig. 3 is given as

Lt

mi = (12)

, 6—ﬁ(y—fl(0)—z2(0))26mfﬂ Jr6—2(%2(Y—fﬁl(o)—ﬂm(l))2
B\ a2 Va1 (D220 @, o aiz (Va1 (V-2 (D) )’

(&

where m£§3 is defined in a symmetric manner.

Since we wish to track the mean of the messages, let
FZ.(].}C)(UQ,MV"]) for i,5 € {0,1}, k € {1,2}, be defined as
the mean of the messages from MAC to variable node. Here,
o2 denotes the noise variance of the channel, and Lym 18 the
mean of the messages from variable to MAC node for the
other user. The quantity Féé ) (02, ftym) is defined in (14) at the
top of this page. The other terms are defined in an analogous
manner. Using these definitions, the mutual information Ir(fv)
can be evaluated as

1 k _ i
8= % 7 (FPE I uEy),
[,51€[0,1]?

(15)

where the function J(-,-) is defined in (13).

Let now Jéf?” be the mutual information between xy

and the variable-to-check message and IC(\]f’l) be the mutual
information between zj, and the check-to-variable message in
the [-th iteration for user k, respectively. Similarly, let nyn’l)
be the mutual information between zj, and the messages from
variable to MAC nodes, and Ir(rﬁ;l) be the mutual information
between x; and the messages from MAC to variable nodes,
respectively. Then the mutual information between x; and the
messages from variable to check nodes for user 1 is given as

IED =37 i (TG = 1) GY)),
J

i

(16)
where
; 1
(1,5,0-1) _ - 1) (2 . 7-1/7(2,1-1)
Irnv Z 4J (Fab (J M]J (Icv )))7
[a,b]€]0,1]2
(17a)
18D = 1= pd ((m =177 0 = 1ED)) . (7b)
m

The term L(,z’l) can be derived similarly as (17b). The conver-
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gence conditions for the [-th iteration then become

IO > [0 5 20 S 201 5y e (0,1). (18)

From these conditions on the two-dimensional recursion
in (16) and (17), we obtain approximate conditions for the
convergence of the BP algorithm, which will be exploited for
code design in Sec. VI.

Using the GA of the DE, we can formulate the numerical
optimization of the symmetric rate as in (6):

le 12 l1,l2

max Reym =1 — 7,

(19)
Aty iy le ll ll

subject to convergence conditions
-1

1 de
Ao < exp (20> (Z (m—1)pm , (20a)

m=2

F® (N j, Ive) > Lye, VI €0,1], (20b)
27 (0) + 23(1) < 2, (20¢)
for k € {1,2}, Ay = Zl )\7;72 = 24A21j and with
F® (N, L ZA”J NI + (= 1T IR).

Note that (20a) is the stability constraint, (20b) is the DE for
GA in (16) while (20c) enforces the power constraint for the
binary input constellation.

V. HIGHER ORDER CONSTELLATIONS

In this section, we construct a superposition coded modu-
lation based on the binary constellation we introduced in Sec
II to increase the input cardinality and symmetric rate.

For instance a 4-PAM input can be obtained as the super-
position of two binary constellations, that is

X\ =VPuX) +V/PRX, 1)
X3 = /P X3\ +\/ Paa X3y, (22)

where X;; is a binary LDPC codewords mapped to the binary
constellation and under the power constraint

P+ Py <1,P + Poy < 1. (23)

BP and capacity region can be derived in a similar way, but
to simplify the optimization procedure, here we only consider
the antipodal constellation, with

Pi1 = Pio, Poy = Py, Ri1 = Rio = Ry, Ro1 = Rop = Ry,
24)

where R;; is the rate of codeword X;;, and Ry; is the
different power level. Since we mainly focus on antipodal
constellations, we also define

Ryym1 = Ri1 + Ra1, Ryyma = Ri2 + Ras. (25)

VI. SIMULATION RESULTS

For simulations, the transmission blocklength is N = 10%,
and the code optimization in (19), (20) is performed by
using CVX and linear programming. The check node degree
distribution is fixed to a single degree while the variable
node degree distribution is maximized for a maximum degree
distribution equal to 200. The parity check matrix is con-
structed by using the PEG algorithm in [10]. At decoding,
the messages are exchanged through the MAC node at each
iteration; the maximum number of iterations is set to 300. For
message passing schedules, different update rate of two users
are employed to verify that scheduling has no influence on the
overall performance.

Fig. 4 presents the error probabilities of the proposed code
design versus the SNR for the input constellations in Sec.
III. The simulations verify that the antipodal constellation
in (7) has the best performance at low rate, i.e., R < 0.5,
while no code can be successfully decoded for rates larger
than 0.7 with this input constellation. Instead, for higher rates
with R > 0.8, the maximum minimum distance constellation
in (8) attains the best performance, and the gap to capacity
decreases as the SNR increases. For the range of rates in
0.7 < R < 0.8, the asymmetric constellation in (9) attains
a better performance than both the constellations in (7) and
(8). This is rather surprising as it shows that there exists a
specific constellation choice which aids joint decoding, at least
for the proposed code design. Note that the constellation in
(9) arises from the maximization of an information theoretic
quantity under a large blocklength assumption. However, the
performance gain of this constellation can also be verified in
the finite blocklength regime based on numerical simulations
as shown in Fig. 4. The code polynomials for the relevant
codes in Fig. 4 are shown in Tab. I. Although the optimization
algorithm allows for any joint variable node distribution, the
best performance is obtained when the matrix A in (5a) has a
diagonal structure.

In Fig. 5 the distance between the performance of our code
designs and the theoretical performance in Fig. 2 is displayed.
It can be seen that we are able to attain the theoretical
performance to within 1dB for most SNRs.

Fig. 6 shows the BER performance for a superposition mod-
ulation antipodal constellation with same total rate R0 = 2,
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but different power allocations. The first level with larger
power Pr; = 0.8 is about 1.5 dB better than the other one with
Pr1 = 0.7654. In this case, we cannot guarantee the power
allocation with Pr; = 0.8 can give us the best BER, and the
optimization of the power allocation would be an interesting
issue.

TABLE I
LDPC DEGREE DISTRIBUTION FOR THE TWO-USER GMAC AND THE
RELEVANT SCENARIOS IN FIG. 6

R _[035 (075 [0.93 \
| | antipodal | asymmetric [ max. min. dist. |
T(@) |« 20 260
A(z)| 0.63222%23 0.3639z 722 0.1688z223

0.3236z373
0.022018z38
0.010521%23°
0.011721902:100

0.5213z%x3

0.049621223?
0.0325z13253
0.017623323°
0.0151z74z7?

0.6899z3x3
0.028021%z1?
0.1133z13z13

VII. CONCLUSION

This paper proposes an implementation of joint decoding
for LDPC codes for the two-user, symbol-synchronous, binary-
input GMAC that maximizes the symmetric rate. We focus, in
particular, on a joint code and constellation design and show
that it is possible to construct good irregular LDPC codes
which attain the theoretical performance to within 1dB for
most SNRs. We show that at low SNR the best performance
is attained by using antipodal inputs at both encoders. For
high SNR, the best performance is attained by a constellation
choice which maximizes the minimum distance among the
received constellation points. For the moderate SNR regime,
we show the interesting result that an asymmetric constellation
is able to outperform symmetric constellations. We also extend
the results to larger constellation alphabets, but only for the
antipodal constellation case.
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